Not Applicable
Not Applicable
The subject technology is in the technical field of heat sinks, particularly for lamps, light heads, fixtures, luminaries, and other situation requiring heat to be drawn away to protect the entity producing heat.
A light emitting diode (“LED”) produces light by as a result of passing electrical energy through particular solid components. In incandescent lamps, where electrical energy also is passed through a solid component, namely the filament, most of the electrical energy delivered to the lamp is converted to heat. A small portion is converted to light. In an LED lamp, the process is more efficient in several respects, including:
a) less electrical energy is consumed, and
b) the majority of that energy is converted to light energy as opposed to heat energy.
Fluorescent lamps, including compact fluorescent lamps (hereafter the term “CFL” shall refer to both) work differently, in that instead of passing electrical energy through a solid component, the electrical energy is passed through a container holding a gas mixture typically comprising mercury and argon. First, ballast electronic circuitry converts the electrical energy from typically 120 V sinusoidal alternating current and 60 Hz, to full-wave rectification, to square-wave alternating current at much higher frequency, back to sinusoidal wave form at much higher voltage. The ballast causes the required initial “strike” electrical characteristics needed to ignite, and the post-strike characteristics that allow the CFL to operate thereafter. The resulting reaction generates heat as well ultraviolet light. The ultraviolet light, in turn excites fluorescent coating (phosphor) inside the container. That excitation produces visible light. As with the LED, the CFL lamp is more efficient than the incandescent lamp in that less electrical energy is consumed, and the majority of that energy is converted to light energy as opposed to heat energy. However, the efficiency of an LED lamp exceeds that of the CFL lamp. The CFL requires more electrical energy to produce the same amount of light as an LED lamp, and produces more heat per radiated light.
In all lamps, some of the heat produced is transferred into the lamp itself and into surrounding components. Particularly for LED and CFL lamps, this heat, although considerably less than generated by incandescent technology, can cause damage: to the LED itself or to the ballast electronics of the CFL. It is essential that this heat is transferred away quickly, sufficiently, and efficiently in order to avoid damaging the lamp.
In particular, an LED that has been exposed to high heat will likely lose efficiency, produce less light, and have a greatly reduced service life. Because of increasing efficiencies and lower costs of LED technology, and lingering problems related to mercury and the disposal of CFL lamps, LED technology will likely prevail. Thus, a need exists for high-performance heat sinks capable of removing the heat generated by LEDs.
What is needed is a heat sink body which comprises an extruded fixture or light head onto which the lamps are attached. Specially oriented fins and cut outs cause efficient air flow across the heat sink surface area.
The subject technology is an article of manufacture comprising a heat sink to be attached a heat source, being coupled thermally and directly for conductive flow of heat from the heat source to the heat sink. The heat sink is formed via extrusion of material of suitable density and mass to absorb heat from the particular heat source based on design requirements. The extruded heat sink is further configured with specially oriented extruded fins and machined cross cuts to increase surface area available to air flow, and arranged for efficient passage of air flow around the extruded heat sink, thus effecting efficient convection of heat from the extruded heat sink and into the air ambient. Cross cuts and fin are specifically arranged to enhance the so-called “stack effect,” or “chimney effect,” associated with air flow. (Wong, et al., The study of active stack effect to enhance natural ventilation using wind tunnel and computational fluid dynamics (CFD) simulations, Elsevire, Energy and Buildings, Volume 36, Issue 7, July 2004, Pages 668-678).
An objective is to maximize air flow across available surface area, and thus to enhance removal of heat into the air ambient.
The subject technology will be described more fully with reference to the accompanying drawings, in which a preferred embodiment of the subject technology is shown. However, persons of ordinary skill in the appropriate arts may modify the subject technology described here while still achieving the favorable results. Accordingly, the description which follows is to be understood as being a broad, teaching disclosure directed to persons of ordinary skill in the appropriate arts, and not as limiting upon the subject technology.
A heat source, which is typically one or more LED lamps, is thermally and directly coupled to the extruded heat sink inside an interior cavity, so that light is radiated outward through an aperture. The heat source is thermally coupled in series via one or more intermediate thermally conductive materials, which are in series adjacent with the heat source and which are themselves thermally coupled to each other. The thermally conductive materials, although they serve particular purposes, also allow the conductive flow of heat from the LED to the extruded heat sink. The thermally conductive materials include printed circuit boards (“PCB”) onto which the LED is electrically and mechanically coupled, and a thermally conductive pad or paste, bonding the adjacent intermediate thermally coupled material to the extruded heat sink.
Certain definitions are stated to assist in interpreting this description and the Figures.
A “lamp” is an actual light source, such as an LED, compact fluorescent light (“CFL”) bulb, fluorescent tube, or incandescent bulb.
A “light head” receives the lamp, and is generally portable.
A “fixture” receives the lamp, and is generally fixed.
A “luminaire” is a complete assembly providing illumination. The term used especially in technical contexts. A luminaire may be a fixture or light head. In this case, the luminaire is sealed to prevent intrusion of water, gasses, and dirt.
For two entities to be “coupled thermally directly for conductive flow of heat” from one entity to the other means that there is no intermediate entity between the entities that substantially impedes the flow of heat from one entity to the other. Indeed, any intermediate entity is designed or otherwise selected to promote conduction of heat.
“Direction of extrusion” refers to the longitudinal direction of extruded material out of an extrusion die. As will be discussed further, pathways for additional air flow created by cross cuts are generally perpendicular to the direction of extrusion. Complementary to the direction of extrusion is a perpendicular in all planes. For example, if the direction of extrusion is along the z axis in conventional terms, then x and y axes in all planes are perpendicular to the direction of extrusion.
The terms “extrusion” and “heat sink” may be used interchangeably. The product of extrusion here is a single body that and operates as a heat sink after application of cross cuts.
The extruded heat sink comprises generally a cylindrical tube with a machined cut opening along an outside surface, exposing an interior cavity and creating an aperture. Additionally, a grooved feature is machined cut around the aperture opening, creating a pocket for a gasket or adhesive seal. This gasket seal forms a flexible water tight barrier between a transparent glass or polymer window and the extrusion. The extruded heat sink, as a property of extrusion process, is open at two ends. Furthermore, the extruded heat sink provides a platform inside an interior cavity and on an interior side onto which the heat source is thermally and directly coupled. The process of extrusion naturally leaves ends open, revealing the interior cavity.
The extruded heat sink 100 is generally tubular, with a cavity 112, a set of back fins 102, sets of side fins 106, and a front surface 110, all of which being formed as a result of extrusion. The cavity 112 defines a mounting surface 108. The back fins 102 generally run parallel to the axis of extrusion 114 and generally extend away orthogonally from the axis of extrusion 114. The side fins 106 generally run parallel to the axis of extrusion 114 and generally extend away obliquely from the axis of extrusion 114 and relative to a perpendicular to the axis of extrusion 114, angled towards the front surface 110.
Extruded material is any material suitable for extrusion and with sufficient thermal conductivity, and most particularly aluminum or aluminum alloys. Although other forms of manufacture are available for producing a desired shape, including forging and casting, extrusion produces superior results for the contemplated embodiments. The superior results include creation on the cavity 112 into which lamps will be deployed, lower costs, and greater thermal conductivity. (Jackson, Steve; Aluminum extrusions match SSL thermal management need in many applications; LEDs Magazine, April 2013). Furthermore, extrusion makes the resulting product very dense and thus very massive, which allows it to absorb more heat away for the heat source.
Light directed upward, causing heat initially to be driven downward as in
An assembly comprises an LED 708 reflector assembly 962 comprising one or more reflector 706s, further containing individual LED 708 lamps deployed within the reflector 706s. The reflector 706s are configured to collect light 720 from the LED 708 lamps, and to direct the light 720 outward. The LED 708 reflector assembly 962 further comprises a PCB 710, generally of aluminum and having a front side and a back side, and an internal electrical connector 964 attached to the PCB 710. The LED 708 reflector assembly 962 is connected to the front side of the PCB 710. The PCB 710 and internal electrical connector 964 are configured so that electrical energy delivered to the internal electrical connector 964 is delivered to the LED 708 lamps. The assembly further comprises a thermally conductive pad 714 connected to the back side of the PCB 710. The assembly is attached, via screws 950, to the mounting surface 108 (not shown in
The o-ring 704 is deployed at the aperture 502, between the lens 718 and the extruded heat sink 100, the o-ring 704 thus providing a seal. Light from the LED 708 lamps passes through the lens 718. A hold downs 716 secure the lens 718 to the extruded heat sink 100.
A bottom assembly completes the closure and sealing of the extruded heat sink 100, and provides means for delivering electrical energy to the internal electrical connector 964. In the order of connection, the bottom assembly comprises: a bottom seal 910; a bottom cap 914, further comprising internal electrical connector 912 which passes through the bottom seal 910, and an external electrical connector 916; an o-ring 920 providing a seal for the external electrical connector 916; a thread connector attachment plate 922, through which the external electrical connecter 916 passes to receive electrical energy; an o-ring 924 for sealing the thread connector and bottom assembly and an external power source (not shown); and screws 950 holding the bottom assembly to the extruded heat sink 100. The external power source comprises a battery or other source that connects to the external electrical connector 916 which protrudes from the thread connector attachment plate 922.
Finite element analysis shows heat transfer characteristics of the extruded heat sink 100 in several conventional orientations. These orientations include light directed downward, light directed upward, light directed horizontally, and several variations. Finite element analysis was conducted with these initial parameters:
air ambient being 33 degrees Celsius
3 LED heat sources each producing 24.3 Watts (for a total of 72.9 Watts)
0.1 Degree Celsius/Watt thermal resistance of the thermally conductive pad on the mounting surface
Results of the analysis, in the light upward configuration of
maximum air velocity was approximately 0.252 m/s
maximum temperature at the heat source (LED) was approximately 74 degrees Celsius
temperature of the extruded heat sink 100 at the interface with the air ambient 62 degrees Celsius
computed case to ambient thermal resistance 0.563 degrees Celsius/Watt
The subject technology delivers several advantages, including:
Works well in any orientation relative to gravity and rising air
Light weight
Totally passive cooling design; no added mechanical systems required for cooling
Extrusion is superior to die casting: less expensive and can have variable lengths for manufacturing. Although the extruded aluminum structure is relatively expensive, it is less so than a die cast product.
Simple manufacturing: The heat sink is extruded, and then the cross cuts and opening aperture are cut out.
The “T-shaped” adapter fins allow for linear length-wise combination and connectivity of several heat sinks or to other mechanical attachment mounts. Extruded heat sink 100s may be aligned along the extrusion axis, and connected via clamps at the “T-shaped” adapter fins.
Few water leak points, relative to the aperture. An “O” ring around a glass covering (covering the aperture) provides a seal. Other 0-rings provide seals where electrical connectors are introduced and at ends.
Other control or power electronics, which are outside of the heat sink interior, still benefit from the heat sink if thermally coupled to the heat sink body. The structure is physically strong and can be used as load bearing physical support elements.
The extruded heat sink 100 is never hot to the touch when in use.
A preferred embodiment of the subject technology is as a light head, fixture, or luminaire, as show in in
While the foregoing written description enables one of ordinary skill to make and use what is considered presently to be the best mode thereof, those of ordinary skill will understand and appreciate the existence of variations, combinations, and equivalents of the specific embodiment, method, and examples herein. For example, the arrangement of the second set of fins, may be angled differently or not angled at all. Unless claimed, particular system architecture and algorithms shown are not critical, but represent one or more embodiments.
This application claims priority to U.S. Provisional application No. 62/569,080, filed Oct. 6, 2017, the contents of which are incorporated herein by reference.