Extruded molds and methods for manufacturing composite truck panels

Information

  • Patent Grant
  • 10538051
  • Patent Number
    10,538,051
  • Date Filed
    Friday, October 21, 2016
    7 years ago
  • Date Issued
    Tuesday, January 21, 2020
    4 years ago
Abstract
Extruded molds and methods for manufacturing composite structures using the extruded molds are disclosed. The molds may include recessed or raised longitudinal features to impart a corresponding shape to the molded composite structures. The composite structures may be panels used to construct cargo vehicles, for example.
Description
FIELD OF THE DISCLOSURE

The present disclosure relates generally to molds and methods for manufacturing composite structures using the molds. More particularly, the present disclosure relates to extruded molds and methods for manufacturing composite truck panels using the extruded molds.


BACKGROUND OF THE DISCLOSURE

Molds are used to manufacture composite truck panels. The molds themselves may be constructed of fiberglass, but these fiberglass molds are generally fragile and susceptible to wear and damage. Alternatively, the molds may be constructed of metal, but these metal molds are typically machined and expensive to manufacture.


SUMMARY OF THE DISCLOSURE

Extruded molds and methods for manufacturing composite structures using the extruded molds are disclosed. The molds may include recessed or raised longitudinal features to impart a corresponding shape to the molded composite structures. The composite structures may be panels used to construct cargo vehicles, for example.


According to an exemplary embodiment of the present disclosure, a mold is provided to form a composite structure, the mold including an extruded mold body having a mold surface upon which the composite structure is formed.


According to another exemplary embodiment of the present disclosure, a composite panel formed upon a mold body is provided, the composite panel including a first end, a second end, and a molded surface. The molded surface includes a first portion that is flat, a second portion that is flat, and a third portion that deviates from being flat, wherein the third portion extends entirely from the first end to the second end.


According to yet another exemplary embodiment of the present disclosure, a method of manufacturing a composite structure is provided, the method including providing an extruded mold body having a mold surface, and forming the composite structure upon the mold surface.


Additional features and advantages of the present invention will become apparent to those skilled in the art upon consideration of the following detailed description of the illustrative embodiments exemplifying the best mode of carrying out the invention as presently perceived.





BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing aspects and many of the intended advantages of this invention will become more readily appreciated as the same becomes better understood by reference to the following detailed description when taken in conjunction with the accompanying drawings.



FIG. 1 is a perspective view of an exemplary cargo vehicle of the present disclosure, the cargo vehicle including a cargo body formed from a floor, a roof, right and left sidewalls, a nose, and a rear door assembly;



FIG. 2 is a perspective view of the floor of FIG. 1;



FIG. 3 is a perspective view of an exemplary mold assembly of the present disclosure, the mold assembly including a mold body, a base, and a frame;



FIG. 4 is a perspective view of the mold body of FIG. 3, the mold body including a plurality of segments;



FIG. 5 is front end elevational view of two adjacent segments from the mold body of FIG. 4;



FIG. 6 is another front end elevational view of the segments of FIG. 5, shown with the floor being molded upon the segments; and



FIG. 7 is a flow chart of an exemplary molding process of the present disclosure.





Corresponding reference characters indicate corresponding parts throughout the several views. Although the drawings represent embodiments of various features and components according to the present disclosure, the drawings are not necessarily to scale and certain features may be exaggerated in order to better illustrate and explain the present disclosure. The exemplification set out herein illustrates an embodiment of the invention, and such an exemplification is not to be construed as limiting the scope of the invention in any manner.


DETAILED DESCRIPTION OF THE DRAWINGS

For the purposes of promoting an understanding of the principals of the invention, reference will now be made to the embodiments illustrated in the drawings, which are described below. The embodiments disclosed below are not intended to be exhaustive or limit the invention to the precise form disclosed in the following detailed description. Rather, the embodiments are chosen and described so that others skilled in the art may utilize their teachings. It will be understood that no limitation of the scope of the invention is thereby intended. The invention includes any alterations and further modifications in the illustrative devices and described methods and further applications of the principles of the invention which would normally occur to one skilled in the art to which the invention relates.


1. Cargo Vehicle


Referring initially to FIG. 1, a cargo vehicle 100 is shown for supporting and transporting cargo. The illustrative vehicle 100 extends along a longitudinal axis L from a front end 102 to a rear end 104 and includes a motorized truck 106 that powers a plurality of wheels 108 or other traction devices. The illustrative vehicle 100 also includes a chassis 110 and a cargo body 120 formed from a plurality of panels, specifically a floor 130, a roof 140, right and left sidewalls 150, and a front wall or nose 160. The cargo body 120 also includes a rear door assembly 170 to provide access to the cargo body 120.


In the illustrated embodiment of FIG. 1, cargo body 120 is an enclosed body that is supported entirely atop chassis 110. Cargo body 120 may be refrigerated and/or insulated to transport temperature-sensitive cargo. While the concepts of this disclosure are described in relation to a refrigerated truck body, it will be understood that they are equally applicable to other vehicles generally, and more specifically to conventional trailers (e.g., dry freight semi trailers, refrigerated semi trailers), conventional truck and/or box or van type trailers (e.g., dry vans), examples of which include, but are not limited to, straight truck bodies, small personal and/or commercial trailers and the like. Accordingly, those skilled in the art will appreciate that the present invention may be implemented in a number of different applications and embodiments and is not specifically limited in its application to the particular embodiments depicted herein.


2. Composite Panels


Various panels of the cargo body 120 may be constructed, at least in part, of composite materials. For example, the floor 130, roof 140, right and left sidewalls 150, and/or nose 160 of the cargo body 120 may be constructed of composite materials. As such, the floor 130, roof 140, right and left sidewalls 150, and/or nose 160 of the cargo body 120, may be referred to herein as composite panels.


Composite structures are generally formed by combining two or more different constituents that remain separate and distinct in the final composite material. Exemplary composite materials include fiber-reinforced plastics (FRP), for example carbon-fiber reinforced plastics (CRP). These composite structures may lack internal metal components. Also, each composite panel may be a single, unitary component, which may be formed from a plurality of layers permanently coupled together, as discussed further below.


The composite construction of the cargo body 120 may present certain advantages. For example, the composite cargo body 120 may be lighter in weight than a typical metallic cargo body, which may improve fuel efficiency. Also, the composite cargo body 120 may have fewer metallic structures than a typical cargo body, which may make the cargo body 120 less susceptible to corrosion and heat loss. Additionally, the composite cargo body 120 may include fewer parts than a typical metallic cargo body, which may simplify construction, reduce inventory, and reduce variation in manufacturing. Further, the composite cargo body 120 may be suitable for use with sensitive cargo, including foodstuffs, because the composite materials may be inert to avoid reacting with the cargo and other materials and because the composite materials may be easy to clean and maintain to ensure proper hygiene. As a result, the composite cargo body 120 may qualify as “food grade” equipment.


Referring next to FIG. 2, the composite floor 130 of the cargo body 120 is shown in more detail. Although the following description pertains to the composite floor 130 of the cargo body 120, this description is also applicable to other composite panels of the cargo body 120, including the roof 130, right and left sidewalls 150, and/or nose 160. This description is also applicable to composite structures generally, including panels and other structures used to construct storage units, temporary shelters, shipping containers, boat hulls, airplane fuselages and wings, and furniture, for example.


The illustrative composite floor 130 is generally rectangular in shape and extends along the longitudinal axis L of the vehicle 100 (FIG. 1). The composite floor 130 includes right and left sides 131 positioned adjacent to the right and left sidewalls 150 of the cargo body 120, a front end 132 positioned adjacent to the nose 160 of the cargo body 120, and a rear end 133 positioned adjacent to the rear door assembly 170 of the cargo body 120 (FIG. 1).


The composite floor 130 also includes an upper floor surface 134 and a lower floor surface 135. The upper floor surface 134 includes flat portions 136 for supporting cargo. The upper floor surface 134 may also include various longitudinal features that deviate from the flat portions 136 and extend parallel to the longitudinal axis L. For example, as shown in FIG. 2, the upper floor surface 134 includes a plurality of longitudinal channels 138 that are recessed into the otherwise flat upper floor surface 134, with flat portions 136 being located between adjacent channels 138. The upper floor surface 134 may also include longitudinal ridges (not shown) that are raised above the otherwise flat upper floor surface 134. The longitudinal channels 138 and ridges (not shown) may provide traction on the otherwise flat upper floor surface 134 to stabilize the cargo and reduce slippage. The longitudinal channels 138, in particular, may also accommodate electrical wiring, air lines, or other equipment for vehicle 100.


The size and shape of the composite floor 130 may vary to accommodate different vehicles 100. In the illustrated embodiment of FIG. 2, the composite floor 130 has a width wf between the right and left sides 131 of about 8.5 feet, a length lf between the front end 132 and the rear end 133 of about 34 feet, and a thickness tf between the upper floor surface 134 and the lower floor surface 135 of about 4 inches. However, the composite floor 130 may have a width wf of about 8-12 feet, a length lf of about 12-60 feet, and a thickness tf of about 1-8 inches, for example.


Additional information regarding composite structures is disclosed in the following patents and published patent applications, each of which is incorporated by reference in its entirety herein: U.S. Pat. Nos. 5,429,066, 5,800,749, 5,664,518, 5,897,818, 6,013,213, 6,004,492, 5,908,591, 6,497,190, 6,911,252, 5,830,308, 6,755,998, 6,496,190, 6,911,252, 6,723,273, 6,869,561, 8,474,871, 6,206,669, and 6,543,469, and U.S. Patent Application Publication Nos. 2014/0262011 and 2014/0199551. Exemplary composite structures include DuraPlate® structures provided by Wabash National Corporation of Lafayette, Ind. and PRISMA® structures provided by Compsys, Inc. of Melbourne, Fla.


3. Mold


Referring next to FIGS. 3-6, a mold assembly 300 is provided for manufacturing the composite floor 130 of the cargo body 120 (FIG. 1). In the case of vehicle 100, similar molds may be provided for manufacturing other composite panels of the cargo body 120, such as the roof 140, right and left sidewalls 150, and/or nose 160 (FIG. 1). In the case of other composite structures, such as the above-mentioned storage units, temporary shelters, shipping containers, boat hulls, airplane fuselages and wings, and furniture, similar molds may also be provided for manufacturing those composite structures.


The illustrative mold assembly 300 includes a mold body 310, a base 330, and a frame 340 having castor wheels 342 to facilitate movement of the mold assembly 300. The mold assembly 300 may also include brackets (not shown) to facilitate lifting and transporting the mold assembly 300, such as using a crane.


As shown by comparing FIG. 4 with FIG. 2, the mold body 310 of FIG. 4 generally corresponds in size and shape to the resulting composite floor 130 of FIG. 2. The mold body 310 is generally rectangular in shape and extends along the longitudinal axis L. The mold body 310 includes right and left sides 311 that correspond to the right and left sides 131 of the resulting composite floor 130, a front end 312 that corresponds to the front end 132 of the resulting composite floor 130, and a rear end 313 that corresponds to the rear end 133 of the resulting composite floor 130. The mold body 310 has a width wm between the right and left sides 311 that is equal to or greater than the width wf of the resulting composite floor 130. The mold body 310 has a length lm between the front end 312 and the rear end 313 that is equal to or greater than the length lf of the resulting composite floor 130.


The mold body 310 also includes an upper mold surface 314 and a lower mold surface 315. The upper mold surface 314 is a negative mold for the resulting upper floor surface 134, such that the upper floor surface 134 can be formed upon the upper mold surface 314, as discussed further below. The upper mold surface 314 includes flat portions 316. Any unintended gaps or defects in the upper mold surface 314 may be filled with a suitable filler 317 (e.g., metal rods, wax) to provide this flat surface. The upper mold surface 314 may also include various longitudinal features that deviate from the flat portions 316 and extend parallel to the longitudinal axis L to form the opposite longitudinal features in the upper floor surface 134. For example, as shown by comparing FIG. 4 with FIG. 2, the upper mold surface 314 includes longitudinal ridges 318 that form corresponding longitudinal channels 138 in the otherwise flat upper floor surface 134. The upper mold surface 314 may also include longitudinal channels (not shown) that would form corresponding longitudinal ridges (not shown) in the otherwise flat upper floor surface 134.


Between the upper mold surface 314 and the lower mold surface 315, the mold body 310 may be substantially hollow except for a plurality of spaced-apart internal supports 319. The hollow construction of the mold body 310 may accommodate a heat exchange fluid (e.g., air, water) inside the mold body 310 to control the temperature of the upper mold surface 314 during molding, as discussed further below.


According to an exemplary embodiment of the present disclosure, the mold body 310 is formed by extrusion along the longitudinal axis L from the front end 312 to the rear end 313. More specifically, the mold body 310 may be formed by passing material through a die along the longitudinal axis L, where the die has a desired cross-section in a direction perpendicular to the longitudinal axis L. As such, the mold body 310 may be referred to herein as an “extruded” mold body 310. Because the features in the upper mold surface 314 of the mold body 310 (e.g., the flat portions 316, the ridges 318) are also formed by extrusion, these features may extend along the longitudinal axis L entirely from the front end 312 to the rear end 313. The mold body 310 may be constructed of metal (e.g., aluminum) or another material that is suitable for extrusion.


To accommodate standard extrusion equipment, the mold body 310 may be divided into a plurality of individually extruded segments 320 across the width wm. The illustrative mold body 310 includes nine segments 320, with each segment 320 accounting for 1/9 of the width wm, but this number may vary. The width ws of each segment 320 may be about 0.5-2 feet, and the length ls of each segment may be the same as the overall length lm of the mold body 310 itself. For simplicity of construction, the segments 320 may be identical to one another and trimmed to the desired length.



FIG. 5 shows two adjacent segments of mold body 310—a left segment 320L and a right segment 320R. The segments 320L, 320R are placed side by side and coupled together to form the mold body 310. Adjacent segments 320L, 320R may be coupled directly together through mechanical fastening, welding, and/or adhesive bonding, for example. Also, adjacent segments 320L, 320R may include interconnecting features. For example, in the illustrated embodiment of FIG. 5, the left side of each segment 320L, 320R includes a protrusion 322, and the right side of each segment 320L, 320R includes a recess 324 that is configured to receive the adjacent protrusion 322. In certain embodiments, this connection may be tight and secure, like a snap connection, such that the interconnecting features are configured to physically hold the adjacent segments 320L, 320R together. Adjacent segments 320L, 320R may also be indirectly coupled together through the base 330 (FIG. 3). For example, if the base 330 is constructed of plywood, each segment 320L, 320R may be screwed to the base 330. The filler 317 may be used between adjacent segments 320L, 320R to provide a flat upper mold surface 314.


The extruded construction of the mold body 310 may present certain advantages. First, the extruded mold body 310 may be less expensive than a machined mold body. Second, the extruded mold body 310 may be more durable than a cast (e.g., fiberglass) mold body. Third, the extruded mold body 310 may be repaired, if necessary, such as by removing and replacing a damaged segment 320 while retaining the other segments 320. Finally, the profile of the upper mold surface 314 may be customized to create desired features in the upper floor surface 130 (FIG. 2).


4. Molding Process


Referring next to FIGS. 6 and 7, an exemplary molding process 700 is provided for manufacturing the composite floor 130 using the mold assembly 300.


In step 702, the upper mold surface 314 of the mold body 310 may be prepared for molding. For example, the upper mold surface 314 may be cleaned and/or pretreated with a release agent (e.g., wax) to facilitate separation after molding.


In step 704, a first resin layer 600 is applied onto the upper mold surface 314 of the mold body 310. An exemplary first resin is a gel coat polyester resin. The first resin layer 600 may be applied across the mold body 310 in liquid form by spraying, rolling, brushing, or calendaring, for example. The first resin layer coats the negative space above the upper mold surface 314.


In step 706, the first resin layer 600 is allowed to cure using a suitable curing catalyst. Ultimately, the first resin layer 600 will take on the opposite profile of the upper mold surface 314 to form the upper floor surface 134 of the composite floor 130.


In step 708, one or more reinforcing materials 604 are applied onto the cured first resin layer 600 from step 706. Exemplary reinforcing materials 604 include woven or stitched fiberglass cloth sheets, for example. Other exemplary reinforcing materials 604 include extruded preform assemblies of a woven or stitched fiberglass cloth, a non-woven spun bond polymeric (e.g., polyester) material, and a polymeric (e.g., polyurethane) foam core, for example. The spun bond polymeric material may be mechanically stitched to the fiberglass cloth and/or the foam. In one embodiment, the spun bond material may be a polyester material, the foam may be a polyurethane material, and the resin may be a thermoset plastic resin matrix. Such preforms and any other reinforcing materials 604 may be shaped, cut to size, and arranged on the mold assembly 300 in a manner that accommodates the strength requirements of the final structure. In areas of the final structure requiring less strength, the preforms may be relatively large in size, with the foam cores spanning relatively large distances before reaching the surrounding fiberglass and polymeric skins. By contrast, in areas of the final structure requiring more strength, the preforms may be relatively small in size, with the foam cores spanning relatively small distances before reaching the surrounding fiberglass and polymeric skins. For example, the preforms may be shaped as relatively wide panels in areas of the final structure requiring less strength and as relatively narrow support beams in areas of the final structure requiring more strength. Other exemplary techniques for strengthening such support beams include reinforcing the outer skins, such as by using uni-directional glass fibers or additional cloth in the outer skins, and/or reinforcing the inner cores, such as by using hard plastic blocks or higher density foam in the inner cores.


In step 710, a second liquid resin layer 602 is applied and worked into the reinforcing materials 604 to wet the reinforcing materials 604 with the second resin 602. An exemplary second resin is a polyester resin, which may be similar to the first resin. An exemplary resin is the co-cure resin disclosed in U.S. Pat. No. 9,371,468, which is incorporated by reference in its entirety herein.


In step 712, the reinforced second resin layer 602 is allowed to cure using a suitable curing catalyst. During curing, the reinforcing materials 604 may be forced into close contact with the second liquid resin layer 602 by applying pressure on top of the reinforcing materials 604 and/or by applying a vacuum to the reinforcing materials 604, for example. Once cured, the second resin layer 602 becomes permanently coupled to the reinforcing materials 604 and the first resin layer 600 to form a single structure. Steps 708-712 may be repeated one or more times. In certain embodiments, the first curing step 706 may be performed together with the second curing step 712. In other words, the curing steps 706, 712 may be performed simultaneously.


In step 714, a third resin layer 606 may be applied onto the cured second resin layer 602. An exemplary third resin is a polyester resin, which may be similar to the first and/or second resins.


In step 716, the third resin layer 606 is allowed to cure using a suitable curing catalyst. Once cured, the third resin layer becomes permanently coupled to the first resin layer 600 and second resin layer 602 to form a single structure. Ultimately, the third resin layer 606 may form the lower floor surface 135 of the composite floor 130. It is also within the scope of the present disclosure for the third resin layer 606 to be eliminated and for the reinforced second resin layer 602 to form the lower floor surface 135 of the composite floor 130. In certain embodiments, the first curing step 706 and the second curing step 712 may be performed together with the third curing step 716. In other words, the curing steps 706, 712, 716 may be performed simultaneously.


In step 718, the composite floor 130 is removed from the mold body 310 and flipped over 180 degrees such that the upper floor surface 134 that was facing downward toward the mold body 310 now faces upward. If necessary, the outer perimeter of the composite floor 130 may be trimmed to desired dimensions for use in vehicle 100 (FIG. 1).


As indicated above, a heat exchange fluid (e.g., air, water) may be introduced (e.g., pumped) into the hollow mold body 310 to control the temperature of the upper mold surface 314 during the molding process 700. For example, to slow down or otherwise control a curing step 706, 712, 716, a cold heat exchange fluid may be introduced into the hollow mold body 310. Using a cold heat exchange fluid may be particularly beneficial when the curing step 706, 712, 716, is exothermic, because the cold heat exchange fluid may remove excess heat and maintain a controlled curing temperature. To speed up or otherwise control a curing step 706, 712, 716, a hot heat exchange fluid may be introduced into the hollow mold body 310. The temperature of the mold body 310 may also be controlled by placing the mold body 310 inside a temperature-controlled environment, such as a large refrigerator, oven, or autoclave, for example. The heat exchange fluid may be circulated repeatedly through the mold body 310 as part of a heat exchange loop.


Although the illustrative mold assembly 300 of FIG. 6 is an open mold that forms the upper floor surface 134 of the composite floor 130, it is also within the scope of the present disclosure for the mold assembly 300 to form other surfaces of the composite floor 130. For example, the mold assembly 300 may be a closed mold that forms the right and left sides 131, the front end 132, the rear end 133, the upper floor surface 134, and/or the lower floor surface 135 of the composite floor 130. The mold assembly 300 may include one or more mold bodies 310, some or all of which may be extruded. For example, the mold assembly 300 may have upper and lower mold bodies that interact to form the composite floor 130 therebetween. One or both of the upper and lower mold bodies may be extruded.


The closed-molding method may be similar to the open-molding method of FIG. 7 with certain differences, as noted herein. The reinforcing materials may be placed inside the mold assembly 300 before the resin. With the mold assembly 300 closed, the resin may be introduced into the mold assembly 300, such as by injecting the resin into the mold assembly 300 and/or pulling the resin into the mold assembly 300 using a vacuum. Then, the mold assembly 300 may be compressed, such as by using vacuum pressure, mechanical pressure, and/or water pressure, to form the composite floor 130 inside. Finally, the mold assembly 300 may be opened to reveal the composite floor 130.


While this invention has been described as having an exemplary design, the present invention may be further modified within the spirit and scope of this disclosure. This application is therefore intended to cover any variations, uses, or adaptations of the invention using its general principles. Further, this application is intended to cover such departures from the present disclosure as come within known or customary practices in the art to which this invention pertains.

Claims
  • 1. A method of manufacturing a composite structure comprising: providing a mold body having a mold surface with: a first portion that is flat;a second portion that is flat; anda third portion that deviates from being flat;forming a fiber-reinforced plastic composite structure upon the mold surface, a molded surface of the composite structure having: a first portion corresponding to the first portion of the mold surface;a second portion corresponding to the second portion of the mold surface; anda third portion corresponding to the third portion of the mold surface, wherein the third portion extends across an entire length of the composite structure; anddirecting a heat exchange fluid through a substantially hollow interior of the mold body,wherein the mold body includes a plurality of individually extruded segments that are coupled together and cooperate to define the mold surface.
  • 2. The method of claim 1, wherein each segment extends an entire length of the mold body and a partial width of the mold body.
  • 3. The method of claim 1, wherein each segment has a width of about 0.5-2 feet.
  • 4. The method of claim 1, wherein the plurality of segments are identical to each other.
  • 5. A method of manufacturing a composite structure comprising: providing an extruded mold body having a mold surface by coupling together a plurality of individually extruded segments that cooperate to define the mold surface;forming the composite structure upon the mold surface, the composite structure comprising: a first end;a second end; anda molded surface including: a first portion that is flat;a second portion that is flat; anda third portion that deviates from being flat, wherein the third portion extends entirely from the first end to the second end; anddirecting a heat exchange fluid through a substantially hollow interior of the mold body.
  • 6. The method of claim 5, wherein the composite is a fiber-reinforced plastic.
  • 7. The method of claim 5, wherein the mold body is extruded along a longitudinal axis, and the third portion extends parallel to the longitudinal axis.
  • 8. The method of claim 5, wherein the third portion is a channel that is recessed between the first and second portions.
  • 9. The method of claim 5, wherein the composite panel is one of a floor, a roof, a sidewall, and a nose for a cargo vehicle.
  • 10. A method of manufacturing a composite structure comprising: providing an extruded mold body having a mold surface by coupling together a plurality of individually extruded segments that cooperate to define the mold surface;forming the composite structure upon the mold surface, wherein the mold surface includes: a first portion that is flat;a second portion that is flat; anda third portion that deviates from being flat, wherein the third portion extends parallel to a longitudinal axis of the extruded mold body; anddirecting a heat exchange fluid through a substantially hollow interior of the mold body.
  • 11. The method of claim 10, wherein the third portion is a channel that is recessed between the first and second portions.
  • 12. The method of claim 10, wherein the third portion extends entirely from a first end to a second end of the mold body.
  • 13. The method of claim 10, wherein the extruded mold body interacts with a second mold body to form the composite structure therebetween.
  • 14. The method of claim 10, wherein the forming step comprises: applying a resin layer onto the mold surface;inserting reinforcing materials into the resin layer; andallowing the reinforced resin layer to cure.
  • 15. The method of claim 10, wherein: the providing step comprises providing the mold body having a width of about 8-12 feet and a length of about 20-50 feet; andthe forming step comprises forming the composite structure having a width of about 8-12 feet and a length of about 20-50 feet.
  • 16. The method of claim 10, wherein each segment extends an entire length of the mold body such that the coupling step comprises arranging the plurality of extruded segments across a width of the mold body.
  • 17. The method of claim 10, wherein the mold body is metallic.
  • 18. The method of claim 17, wherein the mold body is constructed of aluminum.
  • 19. The method of claim 10, wherein the composite structure is a fiber-reinforced plastic.
  • 20. A method of manufacturing a composite structure comprising: providing an extruded mold body having a mold surface by coupling together a plurality of individually extruded segments that cooperate to define the mold surface, wherein the providing step comprises providing the mold surface having: a first portion that is flat;a second portion that is flat; anda third portion that deviates from being flat; andforming the composite structure upon the mold surface, wherein the forming step comprises forming a molded surface of the composite structure having: a first portion corresponding to the first portion of the mold surface;a second portion corresponding to the second portion of the mold surface; anda third portion corresponding to the third portion of the mold surface, wherein the third portion extends across an entire length of the composite structure; anddirecting a heat exchange fluid through a substantially hollow interior of the mold body.
  • 21. The method of claim 20, wherein: the third portion of the mold surface is a longitudinal ridge between the first and second portions; andthe third portion of the molded surface is a longitudinal channel.
  • 22. A method of manufacturing a composite structure comprising: providing a mold body formed by extrusion and having a mold surface with: a first portion that is flat;a second portion that is flat; anda third portion that deviates from being flat;forming a fiber-reinforced plastic composite structure upon the mold surface, a molded surface of the composite structure having: a first portion corresponding to the first portion of the mold surface;a second portion corresponding to the second portion of the mold surface; anda third portion corresponding to the third portion of the mold surface, wherein the third portion extends across an entire length of the composite structure; anddirecting a heat exchange fluid through a substantially hollow interior of the mold body.
  • 23. The method of claim 22, wherein the mold body has a width of about 8-12 feet and a length of about 20-50 feet.
  • 24. The method of claim 22, wherein the third portion of the mold body is formed by extrusion and extends across an entire length of the mold body.
  • 25. The method of claim 22, wherein the mold body is metallic.
  • 26. The method of claim 22, wherein: the third portion of the mold surface is a longitudinal ridge between the first and second portions; andthe third portion of the molded surface is a longitudinal channel.
  • 27. The method of claim 22, wherein the forming step comprises applying a gel coat polyester resin onto the mold surface to form the molded surface of the composite structure.
  • 28. The method of claim 26, wherein the forming step further comprises applying an extruded preform assembly of a non-woven spun bond polymeric material and a polymeric foam core onto the gel coat polyester resin.
  • 29. The method of claim 22, wherein the molded surface includes a plurality of features similar to the third portion, the plurality of features being spaced apart and separated by flat portions similar to the first and second portions.
  • 30. The method of claim 22, further comprising: removing the composite structure from the mold body;rotating the composite structure 180 degrees such that the molded surface faces upward; andinstalling the composite structure as a floor in a cargo vehicle.
CROSS REFERENCE TO RELATED APPLICATIONS

This application claims priority to U.S. Provisional Patent Application Ser. No. 62/245,503, filed Oct. 23, 2015, the disclosure of which is hereby expressly incorporated by reference herein in its entirety.

US Referenced Citations (181)
Number Name Date Kind
2368327 Rose Jan 1945 A
3557992 Reeves Jan 1971 A
3637252 Metsker Jan 1972 A
4331628 Ziegler May 1982 A
4418507 Roberts et al. Dec 1983 A
4685720 Oren Aug 1987 A
4758299 Burke Jul 1988 A
4976490 Gentle Dec 1990 A
5403063 Sjostedt et al. Apr 1995 A
5429066 Lewit et al. Jul 1995 A
5468207 Bower Nov 1995 A
5507405 Thomas Apr 1996 A
5562981 Ehrlich Oct 1996 A
5664518 Lewit et al. Sep 1997 A
5700118 Bennett Dec 1997 A
5765639 Muth Jun 1998 A
5772276 Fetz et al. Jun 1998 A
5800749 Lewit et al. Sep 1998 A
5802984 Thoman Sep 1998 A
5830308 Reichard Nov 1998 A
5860668 Hull et al. Jan 1999 A
5860693 Ehrlich Jan 1999 A
5890435 Thoman Apr 1999 A
5897818 Lewit et al. Apr 1999 A
5908591 Lewit et al. Jun 1999 A
5916093 Fecko Jun 1999 A
5979684 Ohnishi Nov 1999 A
5992117 Schmidt Nov 1999 A
6004492 Lewit et al. Dec 1999 A
6013213 Lewit et al. Jan 2000 A
6076693 Reiter Jun 2000 A
6082810 Bennett Jul 2000 A
6092472 Thoman Jul 2000 A
6199939 Ehrlich Mar 2001 B1
6206669 Lewit et al. Mar 2001 B1
6220651 Ehrlich Apr 2001 B1
6227125 Schroeder May 2001 B1
6231711 Roberts May 2001 B1
6247747 Kawanomoto Jun 2001 B1
6318794 Berube Nov 2001 B1
6349988 Foster Feb 2002 B1
6374546 Fecko Apr 2002 B1
6496190 Driemeyer et al. Dec 2002 B1
6497190 Lewit Dec 2002 B1
6505883 Ehrlich Jan 2003 B1
6543469 Lewit et al. Apr 2003 B2
6615741 Fecko Sep 2003 B2
6626622 Zubko Sep 2003 B2
6688835 Buher Feb 2004 B1
6723273 Johnson et al. Apr 2004 B2
6740381 Day et al. May 2004 B2
6745470 Foster et al. Jun 2004 B2
6755998 Reichard et al. Jun 2004 B1
6761840 Fecko Jul 2004 B2
6824341 Ehrlich Nov 2004 B2
6843525 Preisler Jan 2005 B2
6854791 Jaggi Feb 2005 B1
6863339 Bohm Mar 2005 B2
6869561 Johnson et al. Mar 2005 B2
6877940 Nelson Apr 2005 B2
6893075 Fenton et al. May 2005 B2
6911252 Lewit et al. Jun 2005 B2
6986546 Ehrlich Jan 2006 B2
7000978 Messano Feb 2006 B1
7025166 Thomas Apr 2006 B2
7025408 Jones et al. Apr 2006 B2
7069702 Ehrlich Jul 2006 B2
7134820 Ehrlich Nov 2006 B2
7182396 Taylor Feb 2007 B2
7219952 Taylor May 2007 B2
7264305 Kuriakose Sep 2007 B2
7353960 Seiter Apr 2008 B2
7407216 Taylor Aug 2008 B2
7434520 Zupancich Oct 2008 B2
7451995 Bloodworth et al. Nov 2008 B2
7461888 Brown Dec 2008 B2
7517005 Kuriakose Apr 2009 B2
7575264 Solomon Aug 2009 B1
7578534 Wearifel, III Aug 2009 B2
7578541 Layfield Aug 2009 B2
7587984 Zupancich Sep 2009 B2
7588286 Lewallen Sep 2009 B2
7594474 Zupancich Sep 2009 B2
7608313 Solomon Oct 2009 B2
7621589 Gerome Nov 2009 B1
7704026 Roush Apr 2010 B2
7722112 Ehrlich May 2010 B2
7748172 Zupancich Jul 2010 B2
7762618 Lewallen Jul 2010 B2
7790076 Seiter Sep 2010 B2
7829165 Grandominico et al. Nov 2010 B2
7887120 Bovine Feb 2011 B2
7901537 Jones Mar 2011 B2
7905072 Verhaeghe Mar 2011 B2
7914034 Roush Mar 2011 B2
7931328 Lewallen Apr 2011 B2
8016322 Keehan Sep 2011 B2
8056960 Brown Nov 2011 B2
8186747 Bloodworth et al. May 2012 B2
8263217 Verhaeghe Sep 2012 B2
8342588 Skaradzinski Jan 2013 B2
8448989 Verhaeghe May 2013 B2
8474871 Ludwick Jul 2013 B1
8696048 Griffin et al. Apr 2014 B2
8757704 Zhao et al. Jun 2014 B2
8814255 Yamaji et al. Aug 2014 B2
8876193 Kunkel et al. Nov 2014 B2
8950144 Padmanabhan Feb 2015 B2
9051014 Lookebill et al. Jun 2015 B2
9138943 Weinberg Sep 2015 B2
9138974 Weinberg Sep 2015 B2
9138975 Weinberg Sep 2015 B2
9174656 Heitmeyer Nov 2015 B2
9199440 Weinberg Dec 2015 B2
9205635 Weinberg Dec 2015 B2
9260117 Vande Sands Feb 2016 B2
9317468 Liebald et al. Apr 2016 B2
9339987 Weinberg May 2016 B2
9409607 Osten Aug 2016 B2
9434421 Lu Sep 2016 B1
9499203 Finley Nov 2016 B1
9566769 Weinberg Feb 2017 B2
9604677 McKinney Mar 2017 B2
9650003 Owens May 2017 B2
9708009 Vance Jul 2017 B2
9738050 Lee Aug 2017 B2
9744753 Sheffield Aug 2017 B2
9815501 McCormack Nov 2017 B2
9827750 Lookebill Nov 2017 B2
9828164 Denson Nov 2017 B2
9878744 Lu Jan 2018 B2
9884660 Fenton Feb 2018 B2
9884661 Fenton Feb 2018 B2
9889637 Weinberg Feb 2018 B2
20010011832 Ehrlich Aug 2001 A1
20040094875 Estrada May 2004 A1
20050194381 Zupancich Sep 2005 A1
20050241253 Song et al. Nov 2005 A1
20060065152 Heitmeyer Mar 2006 A1
20060108361 Seiter May 2006 A1
20060121244 Godwin Jun 2006 A1
20060123725 Godwin Jun 2006 A1
20060158005 Brown Jul 2006 A1
20060179733 Padmanabhan Aug 2006 A1
20060201081 Godwin Sep 2006 A1
20060219129 Jarvis Oct 2006 A1
20070119850 Seiter May 2007 A1
20070132278 Lester et al. Jun 2007 A1
20070160793 Cageao Jul 2007 A1
20070194602 Ehrlich Aug 2007 A1
20070216197 Wuerfel, III Sep 2007 A1
20070250025 Sams Oct 2007 A1
20080290057 Zupancich Nov 2008 A1
20090126600 Zupancich May 2009 A1
20090278386 Ehrlich Nov 2009 A1
20100101876 Misencik Apr 2010 A1
20100109309 Kootstra May 2010 A1
20110095574 Brown Apr 2011 A1
20110204611 Ziegler Aug 2011 A1
20130207413 Lookebill et al. Aug 2013 A1
20130328243 Hino Dec 2013 A1
20140199551 Lewit Jul 2014 A1
20140262011 Lewit et al. Sep 2014 A1
20140300134 Gerst Oct 2014 A1
20140374013 Hansen Dec 2014 A1
20150054311 Marchesano et al. Feb 2015 A1
20150076861 Padmanabhan Mar 2015 A1
20150137560 Presiler May 2015 A1
20150158532 Ayuzawa Jun 2015 A1
20150203160 Peterson et al. Jul 2015 A1
20160332393 Autry Nov 2016 A1
20170057561 Fenton Mar 2017 A1
20170166263 McKinney Jun 2017 A1
20170210317 Owens Jul 2017 A1
20170240216 Bauer Aug 2017 A1
20170240217 Storz Aug 2017 A1
20170241134 McCloud Aug 2017 A1
20170247063 Banerjee Aug 2017 A1
20170282499 LaRocco Oct 2017 A1
20170334489 Shin Nov 2017 A1
20180037151 Bauer et al. Feb 2018 A1
Foreign Referenced Citations (40)
Number Date Country
713260 Nov 1999 AU
1329818 May 1994 CA
2181750 Jan 1997 CA
2199584 Sep 1997 CA
2253308 Nov 1997 CA
2551863 Mar 1998 CA
2219312 Apr 1998 CA
2242467 Jul 1999 CA
2261384 Aug 1999 CA
2265405 Jan 2000 CA
2275848 Dec 2000 CA
2382578 Mar 2001 CA
2455957 May 2004 CA
2768878 Mar 2005 CA
2811134 Apr 2006 CA
2529762 Jun 2006 CA
2650992 Nov 2006 CA
2528558 May 2007 CA
2565510 Aug 2007 CA
2604282 Mar 2008 CA
2689745 Jul 2009 CA
2689746 Jul 2009 CA
2689747 Jul 2009 CA
2689748 Jul 2009 CA
2689749 Jul 2009 CA
2689751 Jul 2009 CA
2797778 Jul 2009 CA
2802907 Jul 2009 CA
2763094 Sep 2009 CA
2788047 Aug 2011 CA
2848174 Oct 2014 CA
2894059 Dec 2015 CA
2807710 May 2016 CA
2977131 Sep 2016 CA
2958805 Aug 2017 CA
2958838 Aug 2017 CA
2958839 Aug 2017 CA
2617169 Oct 2013 DE
2660119 Jun 2013 EP
06293233 Oct 1994 JP
Non-Patent Literature Citations (19)
Entry
Black, Sara, “Structural adhesives, Part I: Industrial,” CompositesWorld, posted Apr. 11, 2016, 7 pages.
CMS North America, Inc., “Transportation: Refrigerated Semi-trailers, Trailers & Vans,” available online at http://www.cmsna.com/13_transportation_refrigerated_semi_trailers_trailers_vans.php on or before Jul. 2, 2014, 2 pages.
North American Composites, Virtual Engineered Composites (VEC) Article, available online at http://www.nacomposites.com/delivering-performance/page.asp?issueid=7&page=cover, Fall 2006, 4 pages.
Reichard, Dr. Ronnal P., “Composites in Theme Parks: From the perspective of a contractor—trouble shooter—enthusiast!” presented at Florida Institute of Technology at least as early as 1999, 37 pages.
Lightweight Structures B.V., “ColdFeather: lightweight composite isothermal trailer,” available online at http://www.lightweight-structures.com/coldfeather-lightweight-composite-isothermal-trailer/index.html at least as early as Jun. 18, 2015, 6 pages.
Expedition Portal, “Truck Camper Construction Costs?,” available online at http://www.expeditionportal.com/forum/threads/12486-Truck-Camper-Construction-Costs at least as early as Jun. 18, 2015, 5 pages.
Griffiths, Bob, “Rudder Gets New Twist with Composites,” CompositesWorld, posted Aug. 1, 2006, 4 pages.
Morey, Bruce, “Advanced Technologies Supplement: Processes Reduce Composite Costs,” Advanced Manufacturing, posted Apr. 1, 2007, 7 pages.
NetCompositesNow.com, “Twisted Composites Rudders,” available online at http://www.netcomposites.com/news/twisted-composites-rudders/3202 as early as Aug. 11, 2005, 3 pages.
Eric Green Associates.com, “Composite Rudders Take Shape for U.S. Navy” available online at http://www.ericgreeneassociates.com/images/Composite_Twisted_Rudder.pdf, accessed as early as Jul. 13, 2014, 7 pages.
Seaver, Mark and Trickey, Stephen, “Underwater Blast Loading of a Composite Twisted Rudder with FBGS,” dated Apr. 14, 2008, 19th International Conference on Optical Fibre Sensors, 2 pages.
Scott Bader Group Companies, Crystic, “Composites Handbook”, 100 pages.
Kedward, Keith and Whitney, James, Delaware Composites Design Encyclopedia, “Design Studies,” vol. 5, 1990, preview version available at https://books.google.com/books?id=9-KYOm81MWEC&printsec=frontcover#v=onepage&q&f=false, 17 pages.
Zweben, Carl, Handbook of Materials Selection, “Chapter 12: Composite Materials,” 2002, preview version available at https://books.google.com/books?id=gWg-rchM700C&printsec=frontcover#v=onepage&q&f=false, 47 pages.
Johnson Truck Bodies, Blizzard Series brochure, accessed as early as Aug. 1, 2014, 8 pages.
International Trucking Shows, “True Composites Platform Highlight of International Trucking Show,” Aug. 1992, 1 page.
Composite Twisted Rudder, TCC Meeting 2008, handout, 32 pages.
Composite Marine Control Surface, installed on USS Pioneer (MCM 9), May 1997, 13 pages.
Trailer/Body Builders, “More Emphasis on Less Weight,” available at http://trailer-bodybuilders.com/trailers/more-emphasis-less-weight, May 1, 2008, 5 pages.
Related Publications (1)
Number Date Country
20170113434 A1 Apr 2017 US
Provisional Applications (1)
Number Date Country
62245503 Oct 2015 US