The invention relates generally to an extruded suspension linkage for a motor vehicle, and more particularly to an extruded suspension linkage for a motor vehicle having a reinforcement feature that has a cross-sectional profile configured to control a flexural rigidity of the extruded suspension linkage.
The statements in this section merely provide background information related to the present disclosure and may or may not constitute prior art.
A typical motor vehicle has numerous metal linkages that connect one member to another. For example, a specific category of metal linkages include suspension linkages used in the suspension system of motor vehicles. Suspension linkages generally connect components of the motor vehicle drive unit, such as wheels or axles, to the body or frame of the motor vehicle in order to transmit static and dynamic loads there between. For example, suspension linkages may include upper and lower control arms, tension linkages, longitudinal linkages, transverse linkages, forward or rear spring arms, etc. The suspension linkages are typically connected to the members of the motor vehicle via bearings to allow relative movement of the components of the suspension system and the frame of the motor vehicle.
In the past, these suspension linkages were made from stamped steel parts, assembled, and pressed into their final shapes. To reduce weight, these suspension linkages have more recently been made from forged/cast aluminum pieces which are welded together to form the final part or from extruded aluminum or other extruded metals or alloys. Extruded suspension linkages have the advantage of not requiring welds and generally reduce the post-processing requirements of the suspension linkage. While these extruded suspension linkages are useful for their intended purpose, it is difficult to control the flexural rigidity and strength of the suspension linkage while simultaneously minimizing weight and meeting packaging and tolerance requirements. Accordingly, there is a need in the art for an extruded suspension linkage that meets these requirements.
A suspension linkage for a motor vehicle is provided. The suspension linkage includes an extruded body having a first wall and a longitudinal length. An extruded feature is disposed on the first wall of the extruded body and extends along the longitudinal length. The extruded feature has a cross-sectional profile configured to control a flexural rigidity of the suspension linkage.
In one aspect, the extruded feature is a rib.
In another aspect, the rib is disposed on an inner surface of the first wall of the extruded body and the rib extends out from the inner surface of the first wall.
In yet another aspect, the rib extends along the entire longitudinal length of the first wall.
In yet another aspect, the first wall has a wall width and the rib has a rib width and the rib width is less than the wall width.
In yet another aspect, the rib width is less than half the wall width.
In yet another aspect, the rib is located on an outer surface of the first wall of the extruded body and the rib extends out from the outer surface.
In yet another aspect, the extruded body further includes a second wall and a third wall that connects the first wall to the second wall, and wherein an outer surface of the first wall is convex.
In yet another aspect, the extruded feature is a groove formed in the first wall of the extruded body.
In yet another aspect, the groove is formed in an inner surface of the first wall of the extruded body and the groove extends into the inner surface, and wherein the groove has a width less than a width of the first wall.
In yet another aspect, the groove is formed in an outer surface of the first wall of the extruded body and the groove extends into the outer surface, and wherein the groove has a width less than a width of the first wall.
In yet another aspect, the extruded body includes a first end portion disposed longitudinally opposite a second end portion, wherein the first end portion is connectable to a suspension unit and the second end portion is connectable to a frame of the motor vehicle.
Further aspects, examples, and advantages will become apparent by reference to the following description and appended drawings wherein like reference numbers refer to the same component, element or feature.
The drawings described herein are for illustration purposes only and are not intended to limit the scope of the present disclosure in any way.
The following description is merely exemplary in nature and is not intended to limit the present disclosure, application, or uses.
With reference to
In the example provided, the body 12 is formed as an elongated, rectangular tube having a top wall 14, a bottom wall 16, a first side wall 18, and a second side wall 20. However, the body 12 may have other profile configurations so long as the body 12 includes at least one wall. For example, the body 12 may have a hat shaped profile, an open “C”-shaped profile with a gap between walls, a cylindrical profile, etc. The body 12 further includes a first end portion 22 and a second end portion 24 disposed longitudinally opposite the first end portion 22.
The first end portion 22 is configured to be attached to a component of a suspension unit (not shown) and includes first and second holes 26, 28 formed in the first and second side walls 18, 20, respectively. The first and second holes 26, 28 may be cut or punched into the body 12 during post-processing. The second end portion 24 is configured to be attached to a body frame (not shown) of a motor vehicle and includes mounting holes 30 and 32 formed in the first side wall 20, mounting holes 34 and 36 formed in the second side wall 22, and “v” shaped slots 38, 39 formed in the top and bottom walls 14, 16, respectively. It should be appreciated that the body 12 may include additional features to accommodate particular installation configurations.
The body 12 may be bent or curved in post-processing so that one or more of the walls 14, 16, 18, 20 may be concave and an opposite wall is convex. In the example provided, the body 12 is bent such that an outer surface 40 of the body 12 is concave along the top wall 14 while the outer surface 40 is convex along the bottom wall 16.
The extruded suspension linkage 10 further includes an extruded reinforcement feature 50 formed on the body 12. The extruded reinforcement feature 50 has a cross-sectional profile configured to control a flexural rigidity of the extruded suspension linkage 10. Generally, the extruded reinforcement feature 50 is comprised of a rib 52 that increases the thickness of one of the walls 14, 16, 18, and 20. The rib 52 is formed on the extruded suspension linkage 10 during the extrusion process. In the example provided, the rib 52 is disposed on an inner surface 54 of the first wall 14. Preferably, the rib 52 is disposed on whichever of the walls 14, 16, 18, and 20 is convex in order to maximize the strength or flexural rigidity of the extruded suspension linkage 10. In addition, locating the rib 52 on the inner surface 54 minimizes the impact on packaging of the extruded suspension linkage 10. The rib 52 has a substantially rectangular cross-section and has a height “h” and a width “w”. However, the rib 52 may have other cross-sectional profiles without departing from the scope of the present invention. The width w of the rib 52 is less than a width “W” of the top wall 14, as shown in
Turning to
Turning now to
Turning to
The description of the invention is merely exemplary in nature and variations that do not depart from the gist of the invention are intended to be within the scope of the invention. Such variations are not to be regarded as a departure from the spirit and scope of the invention.
Number | Name | Date | Kind |
---|---|---|---|
1380659 | Layman | Jun 1921 | A |
5007497 | Trema | Apr 1991 | A |
5362090 | Takeuchi | Nov 1994 | A |
5607177 | Kato | Mar 1997 | A |
5800024 | Steimmel | Sep 1998 | A |
6070445 | Holierhoek | Jun 2000 | A |
6810586 | Waaler | Nov 2004 | B1 |
7163219 | Seksaria et al. | Jan 2007 | B2 |
7261307 | Nuno | Aug 2007 | B2 |
7273219 | Michel | Sep 2007 | B2 |
7850182 | Jang et al. | Dec 2010 | B2 |
7918200 | Nguyen | Apr 2011 | B2 |
7980576 | Inoue | Jul 2011 | B2 |
8616570 | Mielke et al. | Dec 2013 | B2 |
8690176 | Perry | Apr 2014 | B2 |
8783993 | Brunneke | Jul 2014 | B2 |
20010040387 | Takagi et al. | Nov 2001 | A1 |
20090072506 | Jang et al. | Mar 2009 | A1 |
20100084834 | Ersoy | Apr 2010 | A1 |
20120299264 | Pedersen et al. | Nov 2012 | A1 |
20120315414 | Wesch | Dec 2012 | A1 |
20140210177 | Dicke | Jul 2014 | A1 |
20160075201 | Mosteiro Goyoaga | Mar 2016 | A1 |
Number | Date | Country |
---|---|---|
1812894 | Aug 2006 | CN |
102010018903 | Dec 2010 | DE |
2001097014 | Apr 2001 | JP |
2010254255 | Nov 2010 | JP |
Number | Date | Country | |
---|---|---|---|
20170253097 A1 | Sep 2017 | US |