Not Applicable.
Not Applicable.
This invention relates generally to refrigerant heat exchangers. More particularly, the present invention pertains to a coaxial heat exchanger and method of forming the same.
Coaxial heat exchangers are used for various purposes. One such use of coaxial heat exchanger is in an internal heat exchanger (IHX) of an air-conditioning system. As shown in
The present invention allows a concentric tube IHX to be formed in a simple manner, without losing structural integrity.
In one aspect of the invention, a heat exchanger comprises a monolithic inner fluid tube and an outer fluid tube. The inner fluid tube has a length and an annular transverse cross-sectional profile at its longitudinal center. The annular transverse cross-sectional profile has a centroid, a maximum diameter, and undulates in a smooth manner toward and away from the centroid as the annular transverse cross-sectional profile extends circumferentially about the centroid. The inner tube has axially opposite end margins that each form cylindrical tube portions. The cylindrical tube portions have a diameter greater than the maximum diameter of the annular transverse cross-sectional profile. The inner fluid tube defines an inner fluid passageway encircled by the inner fluid tube. The outer fluid tube encircles the inner fluid tube and extends from one of the cylindrical tube portions of the inner fluid tube to the other of the cylindrical tube portions of the inner fluid tube in a manner defining an outer fluid passageway that extends between the inner fluid tube and the outer fluid tube. The outer fluid tube defines an inlet and an outlet that extend through the outer fluid tube. The outer fluid tube is sealed to the cylindrical tube portions of the inner fluid tube in a manner such that the inlet and outlet provide the only fluid access to the outer fluid passageway.
In another aspect of the invention, a method of forming a heat exchanger comprises altering a monolithic first fluid tube, thereafter extending the first fluid tube through a second fluid tube, and sealing the second fluid tube to the first fluid tube. The first fluid tube has an original configuration prior to the altering and a finished configuration following the altering. The first fluid tube has a uniform transverse cross-sectional profile when the first fluid tube is in its original configuration. The cross-sectional profile has a centroid, a maximum diameter, and undulates in a smooth manner toward and away from the centroid as the annular transverse cross-sectional profile extends circumferentially about the centroid. The cross-sectional profile has a constant thickness as it extends circumferentially around the centroid. The first fluid tube has axially opposite end margins that each form cylindrical tube portions after the first fluid tube is altered from the original configuration to the finished configuration. The cylindrical tube portions have a diameter greater than the maximum diameter of the annular transverse cross-sectional profile. The cylindrical tube portions have a wall thickness approximately equal to the thickness of the cross-sectional profile. The first fluid tube defines an inner fluid passageway encircled by the first fluid tube. The second fluid tube is shorter than the first fluid tube and extends from a first end that encircles one of the cylindrical tube portions of the first fluid tube to a second end that encircles the other of the cylindrical tube portions of the first fluid tube. The second fluid tube has an inlet adjacent the first end of the second fluid tube and an outlet adjacent the second end of the second fluid tube. The sealing of the second fluid tube to the first fluid tube defines an outer fluid passageway that extends between the first fluid tube and the second fluid tube and is only in fluid communication with the inlet and outlet of the second fluid tube.
Further features and advantages of the present invention, as well as the operation of the invention, are described in detail below with reference to the accompanying drawings.
Reference numerals in the written specification and in the drawing figures indicate corresponding items.
An IHX in accordance with the invention is shown in
The outer fluid tube 24 is cylindrical and is dimensioned to receive the inner fluid tube 22 with the end margins 28 of the inner fluid tube snugly engaging against the inner surface of the outer fluid tube. The outer fluid tube 24 is preferably slightly shorter that the inner fluid tube 22 and is preferably formed of aluminum. As such, the end margins 30 of the outer fluid tube 24 can easily be welded or brazed to the inner fluid tube 22. In addition, the end margins 30 of the outer fluid tube 24 can be crimped to the end margins 28 of the inner fluid tube 22 as shown in
In view of the foregoing, it should be appreciated that the invention has several advantages over the prior art.
As various modifications could be made in the constructions and methods herein described and illustrated without departing from the scope of the invention, it is intended that all matter contained in the foregoing description or shown in the accompanying drawings shall be interpreted as illustrative rather than limiting. Thus, the breadth and scope of the present invention should not be limited by any of the above-described exemplary embodiments, but should be defined only in accordance with the following claims appended hereto and their equivalents.
It should also be understood that when introducing elements of the present invention in the claims or in the above description of exemplary embodiments of the invention, the terms “comprising,” “including,” and “having” are intended to be open-ended and mean that there may be additional elements other than the listed elements. Additionally, the term “portion” should be construed as meaning some or all of the item or element that it qualifies. Moreover, use of identifiers such as first, second, and third should not be construed in a manner imposing any relative position or time sequence between limitations. Still further, the order in which the steps of any method claim that follows are presented should not be construed in a manner limiting the order in which such steps must be performed, unless such an order is inherent.
The present application is a non-provisional application claiming the benefit of U.S. Provisional App. Ser. No. 62/406,747, filed Oct. 11, 2016, which is incorporated herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
62406747 | Oct 2016 | US |