The present disclosure relates generally to an extruded wall panel system such as used in building construction. More particularly, the present disclosure pertains to the provision of extruded wall members configured with connecting structure for mating and locking engagement with similar adjoining extruded wall members so that they can be easily interconnected and maintained together in the erection of the structure desired.
It is well known to use extruded plastic structural wall members or extruded plastic wall panel systems to construct different types of wall structures used in various construction applications. Such wall members may have a solid construction or may be provided with ribs or webs that form hollow chambers adapted to receive concrete or other materials. These known systems typically include one or more slidable intermediary connectors that allow multiple wall members to be connected together in an end-to-end configuration generally without the need for tools and fasteners.
Known connectors take the form of elongated joiners or columns formed with flanges or lips which are adapted to slidably engage and seat in grooves constructed in the wall panels of adjoining wall members to form an interlock therewith. With this arrangement, exposed faces of the wall members are flush with exposed surfaces of the joiners or columns. Such connectors permit the wall members to be joined typically in a straight line or at a right angle.
While such wall panel systems have been commonly used, interconnection is problematical or difficult because the side edge portions of the adjoining wall members must first be aligned and properly spaced from one another after which the elongated connectors must be slidably engaged with the grooves on the wall members from the top ends thereof in a vertical motion.
Accordingly, it is desirable to overcome the shortcomings of known interconnected wall panel designs by providing a differently constructed wall panel system which permits a quick, simple and improved interlocking assembly of wall members without the use of tools and fasteners.
The present disclosure relates to a wall member which is useful in forming a wall panel system. The wall member includes a pair of outer walls held spaced apart and fixed together at a pair of opposed side edges. One of the side edges is provided with a first connecting structure, and the other of the side edges is provided with a second connecting structure which is structurally different than the first connecting structure. The first and second connecting structure includes a number of projections secured to and extending outwardly from the side edges and constructed with snap fit elements separately located from the outer walls. The wall member is adapted to be joined to an adjacently disposed wall member of similar structure by direct snap fit mating engagement between one of the first and second connecting structure at one of the side edges of the wall member and the other of the first and second connecting structure on a facing side edge of the adjacently disposed wall member.
In the preferred embodiment, the first connecting structure is a male connecting structure, and the second connecting structure is a female connecting structure. The outer walls are held in spaced relationship by a series of spaced apart crosspieces extending across and defining internal chambers between the outer walls. The outer walls and the first and second connecting structure are preferably formed from extruded plastic. The first and second connecting structure extends vertically between top and bottom edges of the outer walls.
The first connecting structure includes a pair of spaced tubular projections that extend outwardly at the one side edge from a first end crosspiece joining the outer walls. The tubular projections have inner surfaces, outer edges and outer surfaces joined to each other, the outer surfaces being coplanar with external surfaces of the outer walls. The first connecting structure further includes a pair of grooved walls extending outwardly from the first end crosspiece and forming inwardly projecting depressions. Outer ends of the grooved walls are joined to inwardly extending U-shaped channels that have outwardly extending legs connected by an end wall extending generally to the first end crosspiece.
The second connecting structure includes a second pair of tubular projections that extend at the other side edge from a second end crosspiece joining the outer walls. The tubular projections have inner surfaces, outer edges and outer surfaces connected together, the outer surfaces being coplanar with external surfaces of the outer walls. A third pair of tubular projections extend outwardly from the second pair of tubular projections and have inner surfaces, outer edges and outer surfaces joined together. A fourth pair of tubular projections extend inwardly from the third pair of tubular projections and are formed with rear walls, outer surfaces, outer edges and grooved inner walls having inwardly extending nibs formed thereon. The second connecting structure also has outwardly extending U-shaped channels formed therein.
In one exemplary embodiment, the outer walls are flat between the opposed side edges. In another exemplary embodiment, the outer walls are each comprised of a first flat wall segment integrally joined to a second wall segment that is angled relative to the first wall segment. The first connecting structure and the second connecting structure are integrally formed at the opposed side edges, or are provided in the form of adapters which are separately connected at the opposed side edges.
The present disclosure further relates to a wall panel system that includes a first wall member and a second wall member. Both the first wall member and the second wall member commonly have a pair of outer walls held spaced apart and fixed together at a pair of opposed side edges. One of the side edges is provided with a male connecting structure and the other of the side edges is provided with a female connecting structure. The first wall member is positioned adjacent the second wall member such that with one pair of the side edges of the first and second wall members facing each other, one of the male and female connecting structure at the facing side edge of the first wall member is movable into direct snap fit mating engagement with the other of the male and female connecting structure on the facing side edge of the second wall member to form an interconnection between the first and second wall members.
The female connecting structure is constructed with nibs that are engageable in the snap fit engagement with walls of depressions formed in the male connecting structure. The interconnection formed by the engaged male and female connecting structure defines a passageway arrangement for receiving a locking bar structure to positively lock the first and second wall members together. The interconnection formed by the engaged male and female connecting structure is concealed from exterior surfaces of the connected first and second wall members, and lies completely between the connected first and second wall members.
The present disclosure also relates to a method of forming a wall panel system including the steps of providing a first wall member and a second wall member, both having a pair of outer walls held spaced apart and fixed together at a pair of opposed side edges with one of the side edges being provided with a male connecting structure and the other of the side edges being provided with a female connecting structure, the male and female connecting structure being constructed with snap fit elements separately located from the outer walls; positioning the first and second wall members adjacent each other such that one pair of the side edges of the first and second wall members face each other; and slidably forcing one of the male and female connecting structure at the facing side edge of the first wall member into direct snap fit mating engagement with the other of the male and female connecting structure on the facing side edge of the second wall member to form an interconnection between the first and second wall members.
The formed interconnection between the first and second wall members defines a passageway arrangement. The method also includes the step of inserting locking bar structure into the passageway arrangement to secure the formed interconnection between the first and second wall members. The outer walls of the first and second wall members are provided with a plurality of crosspieces which form internal chambers between the outer walls. The method further includes the step of adding a flowable material to at least one of the internal chambers after the first and second wall members are interconnected together.
The best mode of carrying out the disclosure described herein below with reference to the following drawing figures.
a is an enlarged detail view of a male connecting structure on one side edge of the center wall member in
b is an enlarged detail view of the female connecting structure on the other side edge of the center wall member shown in
c is an assembled view of the connecting structure on one side edge of
Referring now to the drawings,
Each of the wall members 12, 12′, 12″ is integrally formed of a rigid material, preferably extruded plastic, such as polyvinyl chloride (PVC) which is particularly desirable for use in buildings where moisture is prevalent and sanitation is important. The PVC material is extremely strong, lightweight, impervious to corrosive environments and easy to clean. Moreover, extruded plastic will not rust, rot, flake or require paint. While use of extruded plastic offers multiple advantages, it should be appreciated that other methods of forming and other materials for forming the wall members 12, 12′, 12″ are contemplated within the scope of this disclosure.
Each of the wall members 12, 12′, 12″, such as the center wall member 12′ shown in
As will be more fully described hereafter, male and female connecting structure 32, 34 on facing opposite side edges 28, 30 of adjoining wall members 12, 12′ and 12′, 12″ are provided with cooperating snap fit elements located separately from the outer walls 16, 18 and are designed to be matingly and frictionally coupled together in a direct snap fit engagement with one another to quickly effect interconnection at each joint 14.
With further reference to
Referring to
The side edges 28, 30 with their male and female connecting structure 32, 34, respectively, are joined integrally with and extend beyond terminal edges of outer walls 16, 18, and aid in maintaining spacing therebetween by means of the end crosspieces 20′, 20″.
When it is desired to interconnect adjacently disposed wall members, such as wall members 12 and 12′ (
It should be understood that once the joining wall members 12, 12′, 12″, 12′″ and 12″″ have been interconnected at secure joints 14 as described above, the formed wall panel systems 10, 10′ may be reinforced. An example of such reinforcement is shown in
The present disclosure thus provides a wall panel system 10, 10′ comprised of adjacently disposed wall members 12, 12′, 12″, 12′″ and 12″″ which are assembled together without tools and fasteners by means of a lateral snap fit direct engagement of mating male and female connecting structure 32, 34 on facing side edges 28, 30 of the adjoining wall members, and then positively secured in a joint 14 by the insertion of locking bars 84.
In contrast with interconnected wall panel systems of the prior art, the present disclosure provides a joint arrangement which is more quickly and simply connected together and more user friendly at a job site because precise spacing between the side edges of the adjoining wall members is not required. The present wall panel system has been found to reduce construction time and labor costs. In addition, the joint arrangement enabled by the present disclosure provides a wall member interconnection that is internal to and completely concealed with the formed wall panel system 10, 10′ resulting in less seams therein and an improved smooth exterior appearance.
The wall panel system 10, 10′ of the present disclosure, when formed from extruded plastic, is particularly useful in the fields of agriculture, food processing, cold storage, laboratories, and vehicle wash facilities where sanitation, low maintenance, durability and a clean appearance are desired. However, the wall panel system 10, 10′ is not limited to these applications, and may have utility in other building construction.
Various alternatives are contemplated as being within the scope of the following claims particularly pointing out and distinctly claiming the subject matter regarded as the invention.
Number | Name | Date | Kind |
---|---|---|---|
3301147 | Clayton et al. | Jan 1967 | A |
3562992 | kinsey | Feb 1971 | A |
4557091 | Auer | Dec 1985 | A |
5259705 | Breaux et al. | Nov 1993 | A |
5491943 | Vondrejs et al. | Feb 1996 | A |
D371208 | De Zen | Jun 1996 | S |
D371209 | De Zen | Jun 1996 | S |
D371210 | De Zen | Jun 1996 | S |
D375173 | De Zen | Oct 1996 | S |
5636481 | De Zen | Jun 1997 | A |
5706620 | De Zen | Jan 1998 | A |
5729944 | De Zen | Mar 1998 | A |
5915446 | De Zen | Jun 1999 | A |
5953880 | De Zen | Sep 1999 | A |
6039307 | De Zen | Mar 2000 | A |
6119878 | De Zen | Sep 2000 | A |
6189269 | De Zen | Feb 2001 | B1 |
6195953 | Gitter et al. | Mar 2001 | B1 |
6212845 | De Zen | Apr 2001 | B1 |
6253527 | De Zen | Jul 2001 | B1 |
6258877 | De Zen | Jul 2001 | B1 |
6412227 | De Zen | Jul 2002 | B1 |
6481179 | De Zen | Nov 2002 | B2 |
D469885 | De Zen | Feb 2003 | S |
6591558 | De Zen | Jul 2003 | B1 |
6679310 | De Zen | Jan 2004 | B2 |
6872434 | De Zen | Mar 2005 | B2 |
6889475 | De Zen | May 2005 | B2 |
7628000 | Kahl | Dec 2009 | B2 |
D619879 | McCarthy et al. | Jul 2010 | S |
8061103 | McMahon | Nov 2011 | B2 |
20010003889 | De Zen | Jun 2001 | A1 |
20020124494 | De Zen | Sep 2002 | A1 |
20030000656 | De Zen | Jan 2003 | A1 |
20040074158 | De Zen | Apr 2004 | A1 |
20040081786 | De Zen | Apr 2004 | A1 |
20100096608 | McCarthy et al. | Apr 2010 | A1 |
20110045250 | De Zen | Feb 2011 | A1 |
20110258943 | De Zen et al. | Oct 2011 | A1 |