The invention relates to an extrusion method comprising extruding material through a nozzle, whereby the material is pressed around rods in the nozzle so that tubular cavities are formed in the wall of a product.
The invention further relates to an extrusion apparatus comprising means for feeding material, a nozzle for forming a product and rods arranged in connection with the nozzle for forming tubular cavities in the wall of a product.
U.S. Pat. No. 4,323,339 discloses a solution for making a plastic tube whose wall is provided with elongated cavities. The product is manufactured by an extruder whose nozzle comprises an annular retainer. The retainer is provided with rods around which material is pressed, whereby the rods form tubular cavities in the product walls.
The object of the invention is to provide a novel and improved extrusion method and extrusion apparatus.
The method according to the invention is characterized in that the rods are hollow and connected to the channels provided in the extrusion apparatus to enable flow through the tubular cavities, hollow rods and channels.
The apparatus according to the invention is characterized in that the rods are hollow and that the apparatus comprises channels connected to the hollow rods.
The invention is based on the idea that a product is extruded by supplying material to the extruder nozzle, where there are rods inside the material so that tubular cavities are formed inside the wall of the extruded object. The rods are hollow and connected to the channels leading through the extruder. This enables flow in the tubular cavities as well as the manufacture of a product with a good quality.
According to another embodiment, cooling air is sucked through the tubular cavities inside the wall of the object and through the hollow rods. In that case, a very large cooling surface is achieved and the product cools very efficiently. Furthermore, a very rapid cooling is achieved. If desired, energy can be recovered from the warm air sucked in cooling and utilized. In addition, steam, gas or moisture can be led away from inside the product efficiently, if desired.
The invention will be described in greater detail in the accompanying drawings, in which
For the sake of clarity, the figures illustrate the invention in a simplified manner. Like reference numbers refer to like parts in the figures.
By rotating the inner rotor 2, material is conveyed through an inner material channel 6 to a nozzle 10. Correspondingly, by rotating the outer rotor 4, material is conveyed along an outer material channel 7 to the nozzle 10.
For the sake of clarity,
The intermediate stator 3 comprises an endpiece 8 attached immovably to its end. The endpiece 8 comprises rods 9 that extend inside the nozzle 10. The material to be extruded is pressed through the material channels 6 and 7 around the rods 9.
A product according to
The rods 9 are hollow. A suction duct 14 leads from the rods 9 through the endpiece and the intermediate stator 3. The suction duct 14 leads to a pump 15, by means of which air is sucked. In other words, air is sucked through the tubular cavities 13 in the product into the hollow rods 9 and further therefrom along the suction ducts 14.
A suction duct 14 leads from each hollow rod 9 through the endpiece B. A connecting channel 16 is formed at the joining point of the endpiece 8 and the intermediate stator 3. The flows from the suction ducts 14 leading from the hollow rods 9 are combined in the connecting channel 16. One or more suction ducts 14 lead further from the connecting channel 16 to the pump 15. If there are 32 hollow rods 9 as in the case illustrated in
By sucking air through the tubular cavities 13 provided inside the wall of the product, the extruded product can be cooled very efficiently because the cooling surface can be made large. The cooling speed will also be good. Furthermore, since suction takes place from inside the product wall, steam, gas or moisture discharged from the product material can be sucked away.
The air sucked from inside the product wall is rather warm, and if desired, this warm air can be utilized in heating the material to be fed into the extruder, for example. Heat can be recovered efficiently because the suction takes place in the direction opposite to the extrusion direction and thus the solution also functions as a counterflow heat exchanger.
The rods 9 are so long that the molten material has time to stiffen before the end of the rod, in which case tubular cavities 13 form in the desired manner. The rods 9 may extend to the end of the nozzle 10 as illustrated in
In some cases, the features presented in this application may be utilized as such regardless of the other features. On the other hand, the features presented in this application may be combined to form various combinations, if necessary.
The drawings and the related description are only intended to illustrate the inventive concept. The details of the invention may vary within the scope of the claims. Thus the product achieved by the described solution may be a pipe 11 comprising tubular cavities 13, as illustrated in
Number | Date | Country | Kind |
---|---|---|---|
20055387 | Jul 2005 | FI | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/FI2006/050311 | 7/3/2006 | WO | 00 | 2/5/2008 |