Extrusion of polyurethane composite materials

Information

  • Patent Grant
  • 9139708
  • Patent Number
    9,139,708
  • Date Filed
    Friday, February 14, 2014
    10 years ago
  • Date Issued
    Tuesday, September 22, 2015
    9 years ago
Abstract
Methods of extruding polyurethane composite materials are described. One method includes introducing at least one polyol and inorganic filler to a first conveying section of the extruder, transferring the at least one polyol and inorganic filler to a first mixing section of an extruder, mixing the at least one polyol and the inorganic filler in the first mixing section, transferring the mixed at least one polyol and inorganic filler to a second conveying section of the extruder, introducing a di- or poly-isocyanate to the second conveying section, transferring the mixed at least one polyol and inorganic filler and the di- or poly-isocyanate to a second mixing section, mixing the mixed at least one polyol and inorganic filler with the di- or poly-isocyanate in the second mixing section of the extruder to provide a composite mixture, and transferring the composite mixture to an output end of the extruder. Other related methods are also described.
Description
BACKGROUND OF THE INVENTION

1. Field


The invention relates to foamed and nonfoamed polymeric material, and more particularly polyurethane composite materials, and methods for extruding the same.


2. Description of the Related Technology


Polymeric composite materials that contain organic or inorganic filler materials have become desirable for a variety of uses because of their excellent mechanical properties, weathering stability, and environmental friendliness.


These materials can be are relatively low density, due to their foaming, or high density when unfoamed, but are extremely strong, due to the reinforcing particles or fibers used throughout. Their polymer content also gives them good toughness (i.e., resistance to brittle fracture), and good resistance to degradation from weathering when they are exposed to the environment. This combination of properties renders some polymeric composite materials very desirable for use in building materials, such as roofing materials, decorative or architectural products, outdoor products, insulation panels, and the like.


SUMMARY OF THE INVENTION

Described herein are extrusion processes as related to polymeric composite materials. More particularly, the extrusion processes related to polyurethane composite materials. In some embodiments, highly filled polyurethane composite materials are extruded. Such materials may then be shaped and formed into solid surface articles. Articles comprising the polyurethane composite material as described herein are suitable for structure, building, and outdoor applications.


In one embodiment, a method of forming a polymeric composite material includes introducing at least one polyol and inorganic filler to a first conveying section of the extruder, transferring the at least one polyol and inorganic filler to a first mixing section of an extruder, mixing the at least one polyol and the inorganic filler in the first mixing section, transferring the mixed at least one polyol and inorganic filler to a second conveying section of the extruder, introducing a di- or poly-isocyanate to the second conveying section, transferring the mixed at least one polyol and inorganic filler and the di- or poly-isocyanate to a second mixing section, mixing the mixed at least one polyol and inorganic filler with the di- or poly-isocyanate in the second mixing section of the extruder to provide a composite mixture; and transferring the composite mixture to an output end of the extruder.


In some embodiments, the composite mixture includes about 40 to about 85 weight percent of the inorganic filler. In some embodiments, the composite mixture includes about 60 to about 85 weight percent of the inorganic filler. In some embodiments, the composite mixture includes about 65 to about 80 weight percent of the inorganic filler. The inorganic filler may include many different types of filler. One preferred filler includes fly ash.


In certain embodiments, the conveying sections and mixing sections are defined in terms of the screw segments and screw elements contained within the conveying or mixing section. In one embodiment, the first conveying section includes one or more transfer screws. In one embodiment, the first mixing section includes a slotted screw. In another embodiment, the first mixing section includes a lobal screw. In one embodiment, the first mixing section includes a lobal screw and a slotted screw.


In some embodiments, the second conveying section is located downstream of a first conveying section. In some embodiments, the second conveying section is located downstream of a first mixing section. In some embodiments, the section conveying section includes one or more transfer screws.


In some embodiments, a second mixing section is located downstream of a first mixing section. In some embodiments, a second mixing section is located downstream of the second conveying section. In certain embodiments, the second mixing section is adjacent to the output end of the extruder. In certain embodiments, the second mixing station includes a reverse screw. In certain embodiments, the reverse screw includes a reverse slotted screw.


In some embodiments, the method may further include adding one or more components of the composite mixture in the first conveying section of the extruder. Such additional components are further described herein. In one embodiment, the one or more components is selected from the group consisting of a catalyst, a surfactant, and a blowing agent. In other embodiments, the one or more components may include one or more of a cross linker, a chain extender, and a coupling agent. In certain of these embodiments, the method further includes blending the one or more components with the at least one polyol prior to introduction to the first conveying section.


In some embodiments, the method further includes mixing the mixed at least one polyol and inorganic filler and the di- or poly-isocyanate in a third mixing section subsequent to the second conveying section and prior to the second mixing section. In some embodiments, the third mixing section includes a reverse screw. Certain embodiments, further include introducing fibrous material in the third conveying section. In certain embodiments, the third conveying section is located between the second mixing section and the third mixing section.


As described herein, one or more fibrous materials may be extruded with the polymeric composite material. In one embodiment, the method further includes introducing fibrous material in the second conveying section. In certain embodiments, the method includes mixing the fibrous material with the mixed at least one polyol and inorganic filler and the di- or poly-isocyanate in the second mixing section.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is an illustration of an extruder including a screw shaft with various screw elements.



FIG. 2 is a drawing of a kneading block element.



FIG. 3 is an view of lobal screw elements in a twin screw extruder.



FIG. 4 is an illustration of one configuration of an extruder containing multiple segments useful in the production of polyurethane composite materials.



FIG. 5 is an illustration of one configuration of an extruder containing conveying and mixing section useful in the production of polyurethane composite materials.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

Thermosetting polymeric composite materials may be made using an extruder. Such a process allows for thorough mixing of the various components of the polymeric composite material in the extruder. The screw and screw elements may be configured in various ways within an extruder to provide a substantially homogeneous mixture of the various components of the polymeric composite material. In addition, friction and other forces may promote the reaction of various monomers and other additives that create a polymeric matrix in the polymeric composite material. Moreover, the various components of a polymeric composite material may be added in different orders and at different positions in an extruder. Thus, extrusion of polymeric composite material is a desirable method for providing a medium for reaction, controlling reaction ingredients and conditions, and mixing the various components.


An extruder having one or more material inputs may be used to form such polymeric composite materials. In accordance with certain embodiments, a single screw extruder or a twin screw extruder may be used. Each screw of the extruder is mounted on a single shaft that transmits rotary motion to the screw. In embodiments of a twin screw extruder, each screw may be counter rotary to the other screw. The screw may comprise one or more screw elements mounted on the rotating shaft. The screw may alternatively be assembled from several separate screw elements, each of which forms a portion of the screw operated within the extruder. Screw elements may be rotatably disposed in an appropriate sequence of the axial shaft to form multiple segments of the screw. Various screw elements may include one or more of transport screw elements, lobal screw elements, reverse screw elements, slotted screw elements, and kneading block elements. Various screw elements are described in U.S. Pat. Nos. 5,728,337, 6,136,246 and 6,908,573, which are hereby incorporated by reference.


Referring to FIG. 1, an extruder body 12 contains a screw body which includes a screw shaft 22 and a plurality of screw elements 23. The extruder body 12 is outfitted with one or more vents 17 which allow air to escape from composite materials and the extruder body 12. The screw body also includes one or more feed sections 19 where components of the polymeric composite are fed into respective segments of the extruder body 12. The extruder body also includes outlet 18. Outlet 18 may be equipped with a die. Screw elements 23 include a transport screw elements 15, a kneading blocks 16 and 40, a reverse transport screw element 45, a lobal screw element 50, and a slotted screw element 55. While the various screw segments may be connected to or engaged with the screw shaft 22 in any manner, spline fitting grooves may be mated to a spined screw shaft.


In some embodiments, transport screw elements have a flight that is helically wound around the screw. The flight of the transport screw has a positive pitch and therefore transfers materials in the extruder barrel from the feed end to the output end. According to some embodiments, the flight of the transport screw may be made faster or slower, depending on the pitch of the threads of the transport screw element. In a transport screw, a greater pitch (i.e., threads/per unit of length) will result in slower transport of the material, while a lower pitch will result in faster transport of the material. Many different varieties of transport screw elements may be used. In some embodiments, utilizing a twin screw extruder, each screw may contain transport screw elements that are intermeshed. While transport screw elements mix some composite material, the primary function is conveying materials downstream in the extruder.


In some embodiments, the extruder may comprise one or more reverse screw element 45. These are generally utilized to reverse the flow of the composite materials toward the feed end of the extruder. As such, a reverse screw element 45 blocks the flow of components of the composite mixture, thus acting as a temporary seal and promotes added blending of the components and dispersion of fillers and other additives. In some embodiments, such components of the composite mixture may pass the reverse screw element after another shearing force or pressure allows the components to pass the reverse screw element. In some embodiments, the reverse screw element allows for substantial mixing of filler and other polymer composite materials.


As shown in FIG. 2, a kneading block 25 is a screw element that includes a plurality of double-tipped kneading discs having a substantially oval cross section and arranged in the axial direction of the screw shaft. Each kneading disc may be displaced from one another. In twin screw extruders, kneading discs of the first screw are kept staggered at about 90 degrees to the corresponding kneading discs on the second screw. An alternative embodiment of kneading blocks may include the configuration of kneading block 40 as shown in FIG. 1. Kneading blocks typically have from about 4 to about 6 blades per screw element. Kneading blocks are typically used to provide high shear stress and high mixing strengths, particularly when mixing solids with liquids (or melted plastics). Kneading blocks are generally self-wiping.


Lobal screw elements are generally a longer screw element. In some embodiments, a lobal screw element has 2 or 3 or more faces. In some embodiments, the lobal screw may be polygonal. Lobal screw elements do not comprise a plurality of discs like kneading blocks. Instead, lobal screw elements are generally a single structure. However, lobal screw elements may have one or more axial twists. In some embodiments, the axial twist of a lobal screw element is less than 180°. In some embodiments, the axial twist of a lobal screw element is less than 140°. In some embodiments, the axial twist of a lobal screw element is less than 90°. In some embodiments, the axial twist of a lobal screw element is less than 45°. In some embodiments, the axial twist of a lobal screw element is substantially 0°. One purpose of a lobal screw element is to squeeze various composite material in a defined space. Such lobal screw elements cause very high shear in the defined area. It has been discovered that lobal screw elements may force liquids to mix intimately with one another. In additionally embodiments, lobal screw element can provide substantial wetting of inorganic materials such as fibers and fillers by liquid components of the polymeric composite material, such as melted resins or liquid monomers. Lobal screw elements may be neutral or forward moving elements. Lobal screw elements are typically self-wiping in a twin screw extruder configuration as shown in FIG. 3.


Slotted screw elements 55 may include a plurality of blades on all sides of the screw elements. In some embodiments, the blades may be disposed in line with other blades, such as a transfer screw element with spaces or slots between the helically wound flight. However, there is no requirement for the blades to be uniform or to have positive pitch. In some embodiments, a slotted screw blade includes angled ends. In some embodiments, the slotted screws have positive, negative, and neutral pitch (i.e., they may convey or block the composite material according to the type and arrangement of blades). However, some blades with angles ends may produce less conveying effect than a screw such as a transfer screw. In some embodiments, slotted screws are partially self-wiping. In some embodiments, slotted screws are not self wiping in a twin screw arrangement. In some embodiments, the slots of the slotted screw element may be filled with one or more composite materials, such as a hardened urethane. As a result, such slotted screw elements may produces substantial amount of mixing of various components of the mixture and also knead the mixture. In particular embodiments, slotted screws may be placed toward the feed end of an extruder which allows slots not to fill with polymeric resin, such as hardened polyurethane. Example of slotted screw elements may be found in U.S. Pat. No. 6,136,246.


Advantageously, these screw elements may be used to produce a desired amount of blending of components of the polymeric composite system. In certain embodiments, each screw element defines a segment of the extruder. In some embodiments, the segments may have substantially the same length. However, certain segments may have longer lengths than other segments and segments may also contain more than one screw element. In certain embodiments, the extruder may have up to nine extruder segments. However, the extruder may container more or less segments depending on the desired composite material characteristics. In some embodiments, the extruder includes 1, 2, 3, 4, 5, 6, 7, 8, or 9 segments.


Various segments of the extruder may be air or water cooled. Often, exothermic reactions during the production of the polymeric composite material may require sufficient cooling to prevent runaway exotherms. Such temperatures and cooling may be controlled by various means known to persons having ordinary skill in the art.


One or more components of the polymeric composite material may be introduced into one or more segments of the extruder through hoppers, feed chutes, or side feeders. One or more components may also be metered into the extruder through various means. Continuous feeding of the respective components of the polymeric composite material results in a continuous process of extruding the polymeric composite material.


Depending on the exact arrangement of the screw elements, the segments may further be classified into broader sections such as conveying sections and mixing sections. For example, a first composite component may be introduced in a first segment having a first transport screw, and a second composite component may be introduced in a second segment have a second transport screw. If such first and second segments are adjacent to each other, then the first and second segment may be classified as a conveying section. However, classification as a conveying section does not preclude mixing, even intimate mixing, of the various components of the polymeric composite material.


Such composite components may then be further transferred into other segments or sections. The components generally are transferred by the screws from the feed end to the discharge end of the extruder. In one embodiment, components are transferred into a mixing section. A mixing section may include a kneading blocks or reverse screws. Reverse screws have negative pitch. Thus, the reverse screws may block the materials until sufficient shearing forces the various components of the composite material through this barrel segment. Generally, this results in substantial mixing of the various components of the composite material.


It has been discovered that certain embodiments of extruders are able to produce highly filled polyurethane composite materials. Various components of the polymer composite material may include one or more of the following: at least polyol, at least one monomer or oligomeric di- or poly-isocyanates, an inorganic filler, fibrous materials, at least one catalyst, surfactants, colorants, and other various additive. Such components are further described herein.


Described herein are polymeric composite materials. In particular embodiments, the polymeric composite material include polyurethane composite materials. While the embodiments described herein are specifically related to polyurethane composite materials, the technology may also be applicable to many other polymeric resins, particularly those related to highly filled thermosetting polymers. Generally, a polyurethane is any polymer consisting of a chain of organic units joined by urethane linkages. Typically, a polyurethane may be formed by reaction of one or more monomeric or oligomeric poly- or di-isocyanates (sometimes referred to as “isocyanate”) and at least one polyol, such as a polyester polyol or a polyether polyol. These reactions may further be controlled by various additives and reaction conditions. For example, one or more surfactants may be used to control cell structure and one or more catalysts may be used to control reaction rates. Advantageously, the addition of certain polyol and isocyanate monomers and certain additives (e.g., catalysts, crosslinkers, surfactants, blowing agents), may produce a polyurethane material that is suitable for commercial applications.


As is well known to persons having ordinary skill in the art, polyurethane materials may also container other polymeric components by virtue of side reactions of the polyol or isocyanate monomers. For example, a polyisocyanurate may be formed by the reaction of optionally added water and isocyanate. In addition, polyurea polymers may also be formed. In some embodiments, such additional polymer resins may have an effect on the overall characteristics of the polyurethane composite material.


It has further been found that some portion of the polymeric component of polyurethanes may be replaced with one or more fillers such as particulate material and fibrous materials. With the addition of such fillers, the polyurethane composite materials may still retain good chemical and mechanical properties. These properties of the polyurethane composite material allows for its use in building materials and other structural applications. Advantageously, the polyurethane composite material may contain large loadings of filler content without substantially sacrificing the intrinsic structural, physical, and mechanical properties of the polymer. Such building materials would have advantages over composite materials made of less or no filler. For example, the building materials may be produced at substantially decreased cost. Furthermore, decreased complexity of the process chemistry may also lead to decreased capital investment in process equipment.


In one embodiment, the composite materials have a matrix of polymer networks and dispersed phases of particulate or fibrous materials. The polymer matrix includes a polyurethane network formed by the reaction of a poly- or di-isocyanate and one or more polyols. The matrix is filled with a particulate phase, which can be selected from one or more of a variety of components, such as fly ash particles, axially oriented fibers, fabrics, chopped random fibers, mineral fibers, ground waste glass, granite dust, slate dust or other solid waste materials.


Such polyurethane composite materials may be formed with a desired density, even when foamed, to provide structural stability and strength. In addition, the polyurethane composite materials can be easily tuned to modify its properties by, e.g., adding oriented fibers to increase flexural stiffness, or by adding pigment or dyes to hide the effects of scratches. Also, such polyurethane composite materials may also be self-skinning, forming a tough, slightly porous layer that covers and protects the more porous material beneath. Such tough, continuous, highly adherent skin provides excellent water and scratch resistance. In addition, as the skin is forming, an ornamental pattern (e.g., a simulated wood grain) can be impressed on it, increasing the commercial acceptability of products made from the composite.


Described herein are certain improvements that may be used in the production of polyurethane composite materials. Some previously described polyurethane composite material systems are included in U.S. patent application Ser. No. 10/764,012, filed Jan. 23, 2004, and entitled “FILLED POLYMER COMPOSITE AND SYNTHETIC BUILDING MATERIAL COMPOSITIONS,” now published as U.S. Patent Application Publication No. 2005-163969-A1, and U.S. patent application Ser. No. 11/190,760, filed Jul. 27, 2005, and entitled “COMPOSITE MATERIAL INCLUDING RIGID FOAM WITH INORGANIC FILLERS,” now published as U.S. Patent Application Publication No. 2007-0027227 A1, which are both hereby incorporated by reference in their entireties. However, in now way, are such polyurethane composite material systems intended to limit the scope of the improvements described in the present application.


The various components and processes of preferred polyurethane composite materials are further described herein:


Monomeric or Oligomeric Poly or Di-Isocyanates


As discussed above, one of the monomeric components used to form a polyurethane polymer of the polyurethane composite material is one or more monomeric or oligomeric poly or di-isocyanates. The polyurethane is formed by reacting a poly- or di-isocyanate. In some embodiments, an aromatic diisocyanate or polyisocyanate may be used.


In certain embodiments methylene diphenyl diisocyanate (MDI) is used. The MDI can be MDI monomer, MDI oligomer, or mixtures thereof. The particular MDI used can be selected based on the desired overall properties, such as the amount of foaming, strength of bonding to the inorganic particulates, wetting of the inorganic particulates in the reaction mixture, strength of the resulting composite material, and stiffness (elastic modulus). Although toluene diisocyanate can be used, MDI is generally preferable due to its lower volatility and lower toxicity. Other factors that influence the particular MDI or MDI mixture are viscosity (a low viscosity is desirable from an ease of handling standpoint), cost, volatility, reactivity, and content of 2,4 isomer. Color may be a significant factor for some applications, but does not generally affect selection of an MDI for preparing an article.


Light stability is also not a particular concern for selecting MDI for use in the composite material. According to some embodiments, the composite material allows the use of isocyanate mixtures not generally regarded as suitable for outdoor use, because of their limited light stability. When used in to form the polyurethane composite material, such materials surprisingly exhibit excellent light stability, with little or no yellowing or chalking. Suitable MDI compositions include those having viscosities ranging from about 25 to about 200 cp at 25° C. and NCO contents ranging from about 30% to about 35%. Generally, isocyanates are used that provide at least 1 equivalent NCO group to 1 equivalent OH group from the polyols, desirably with about 5% to about 10% excess NCO groups. Useful polyisocyanates also may include aromatic polyisocyanates. Suitable examples of aromatic polyisocyanates include 4,4-diphenylmethane diisocyanate (methylene diphenyl diisocyanate), 2,4- or 2,6-toluene diisocyanate, including mixtures thereof, p-phenylene diisocyanate, tetramethylene and hexamethylene diisocyanates, 4,4-dicyclohexylmethane diisocyanate, isophorone diisocyanate, mixtures of 4,4-phenylmethane diisocyanate and polymethylene polyphenylisocyanate. In addition, triisocyanates such as, 4,4,4-triphenylmethane triisocyanate 1,2,4-benzene triisocyanate; polymethylene polyphenyl polyisocyanate; and methylene polyphenyl polyisocyanate, may be used. Isocyanates are commercially available from Bayer USA, Inc. under the trademarks MONDUR and DESMODUR. Suitable isocyanates include Bayer MRS-4, Bayer MR Light, Dow PAPI 27, Bayer MR5, Bayer MRS-2, and Huntsman Rubinate 9415.


In certain embodiments, the average functionality of the isocyanate component is between about 1.5 to about 4. In other embodiments, the average functionality of the isocyanate component is about 3. In other embodiments, the average functionality of the isocyanate component is less than about 3, including, about 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, and 2.9. In some embodiments, the isocyanate has a functionality of about 2. Some of these embodiments produce polyurethane composite materials with higher mechanical strengths and lower costs than polyurethane composite material comprising more than about 2.


As indicated above, the isocyanate used in the invention is reacted with one or more polyols. In general, the ratio of isocyanate to polyol (isocyanate index), based on equivalent weights (OH groups for polyols and NCO groups for isocyanates) is generally in the range of about 0.5:1 to about 1.5:1, more particularly from about 0.8:1 to about 1.1:1, and in another embodiment, from about 0.8:1 to about 1.2:1. Ratios in these ranges provide good foaming and bonding to inorganic particulates, and yields low water pickup, fiber bonding, heat distortion resistance, and creep resistance properties. However, precise selection of the desired ratio will be affected by the amount of water in the system, including water added per se as a foaming agent, and water introduced with other components as an “impurity.”


In some embodiments, an isocyanate may be selected to provide a reduced isocyanate index. It has been discovered that the isocyanate index can be reduced without compromising the polyurethane composite material's chemical or mechanical properties. It is additionally advantageous according to some embodiments to use an isocyanate with a reduced isocyanate index as isocyanates are generally higher priced than polyols. Thus, a polyurethane system formed by an isocyanate monomer with a reduced isocyanate index may result in reduced cost of producing the total system.


Polyols


According to some embodiments, the polyurethane polymer is a reaction product of one or more polyols with an isocyanate. The one or more polyols used may be single monomers, oligomers, or blends. Mixtures of polyols can be used to influence or control the properties of the resulting polymer network and composite material. The properties, amounts, and number of polyols used may be varied to produce a desired polyurethane composite material.


It is generally desirable to use polyols in liquid form, and generally in the lowest viscosity liquid form available, as these can be more easily mixed with the inorganic particulate material. So-called “EO” tipped polyols can be used; however their use is generally avoided where it is desired to avoid “frosting” of the polymer material when exposed to water.


In some embodiments, the at least one polyol include a polyester or polyether polyol. Polyether polyols are commercially available from, for example, Bayer Corporation under the trademark MULTRANOL. In general, desirable polyols include polyether polyols, such as MULTRANOL (Bayer), including MULTRANOL 3400 or MULTRANOL 4035, ethylene glycol, polypropylene glycol, polyethylene glycol, diethylene glycol, triethylene glycol, dipropylene glycol, glycerol, 2-pentane diol, pentaerythritol adducts, 1trimethylolpropane adducts, trimethylolethane adducts, ethylendiamine adducts, and diethylenetriamine adducts, 2-butyn-1,4-diol, neopentyl glycol, 1,2-propanediol, pentaerythritol, mannitol, 1,6-hexanediol, 1,3-butylene glycol, hydrogenated bisphenol A, polytetramethyleneglycolethers, polythioethers, and other di- and multi-functional polyethers and polyester polyethers, and mixtures thereof. The polyols need not be miscible, but should not cause compatibility problems in the polymeric composite.


In some embodiments, plant-based polyols are used as at least one polyol. These polyols are lower in cost, and not dependent on the price and availability of petroleum. In some embodiments, the plant-based polyols provide a polyurethane system that is substantially identical to that provided by oil-based polyols. In other embodiments, plant-based polyols can be used to replace at least a portion of the oil-based polyols. By employing plant-based polyols, the polyurethane composite material is more environmentally safe and friendly. In addition, certain equipment used to handle and dispose of oil-based polyols may be costly.


In some embodiments, the at least one polyol is a polyester polyol that is substantially resistant to water soaking and swelling. Thus, these polyols can be used in the formation of polyurethane composite materials which, when cured, attracts less water. In certain cases, the polyester polyols absorb less water than polyether polyols. However, in some embodiments, polyester polyols and polyether polyols can be mixed in the formation of polyurethane composite material to provide better water resistance.


Some embodiments of the polyurethane composite material comprise at least one polycarbonate polyol. These embodiments provide higher impact and/or chemical resistance, as compared to polyurethane composite material made from polyester and/or polyether polyols. However, combinations of polycarbonate polyols, polyester polyols, and polyether polyols can be used in systems with high inorganic fillers to provide the desired mechanical and physical property of the polyurethane composite material. In some embodiments, building products comprising the polyurethane composite materials which employ at least one polyester polyol demonstrate improved water resistance.


In some embodiments, at least some phenolic polyols are used to make polyurethane composite materials which have improved flame retardancy as compared to those polyurethane composite materials that are not made from phenolic polyols. Such polyurethane composite materials may also be fire and smoke resistance.


In other embodiments, the polyurethane composite materials are made from at least one acrylic polyol. In some embodiments, the polyurethane composite materials made from the at least one acrylic polyol demonstrate improved weathering as compared to those that are not made from at least one acrylic polyol. In other embodiments, the polyurethane composite materials are made from at least one acrylic polyol exhibit substantially no discoloration when exposed to sunlight.


In one embodiment, a first polyol having a first hydroxyl number and a second polyol having a second hydroxyl number less than the first hydroxyl number may be used. Such combination of polyols form a first polyurethane that is less rigid than a second polyurethane that would be formed by the reaction of the first polyol in the absence of the second polyol. In some embodiments, the first polyol has a hydroxyl number ranging from about 250 to about 500 mg KOH/g. In some embodiments, the first polyol has a hydroxyl number ranging from about 300 to about 450 mg KOH/g. In some embodiments, the first polyol has a hydroxyl number ranging from about 320 to about 400 mg KOH/g. In some embodiments, the first polyol has a hydroxyl number ranging from about 350 to about 500 mg KOH/g. In some embodiments, the first polyol has a hydroxyl number ranging from about 370 to about 600 mg KOH/g. In some embodiments, the second polyol has a hydroxyl number less than the first polyol. In some embodiments, the second polyol has a hydroxyl number ranging from about 20 to about 120 mg KOH/g. In some embodiments, the second polyol has a hydroxyl number ranging from about 20 to about 70 mg KOH/g. In some embodiments, the second polyol has a hydroxyl number ranging from about 30 to about 60 mg KOH/g. In some embodiments, the second polyol has a hydroxyl number ranging from about 50 to about 75 mg KOH/g. In some embodiments, the second polyol has a hydroxyl number ranging from about 40 to about 60 mg KOH/g. In some embodiments, the second polyol has a hydroxyl number ranging from about 30 to about 50 mg KOH/g.


For example, a first polyol such as Bayer's MULTRANOL 4500 may be used in combination with Bayer's ARCOL LG-56 and MULTRANOL 3900. In this case, the first polyol has a hydroxyl number ranging from 365-395 mg KOH/g. For ARCOL LG-56, the second polyol has a hydroxyl number ranging from 56.2 to 59.0 mg KOH/g. For MULTRANOL 3900 has a hydroxyl number ranging from 33.8 to 37.2 mg KOH/g. However, these examples are not intended to be limiting. Any number of polyol as described above may be selected for the hydroxyl number in controlling the flexibility or rigidity of a polyurethane product.


In one embodiment, mixture of polyols can be used to achieve the desired mechanical strength and rigidity of the final polyurethane composite material. In some embodiments, polyols with OH functionality between about 2 to about 7 can be used. In other embodiments, the average functionality of the polyols is between about 4 to about 7. The polyurethane composite materials become less expensive because the amount of isocyanate needed to react with the polyols to substantially form the desired polyurethane decreases. While this in some case may increase the rubberiness, non-brittleness, or flexibility of the polyurethane composite material, the correct balance of these functional polyols with OH functionality, between about 4 to about 8, maintains the mechanical properties of the polyurethane composite material, as compared to a polyurethane composite material made from polyols with an average functionality less than 4.


In some embodiments, the polyurethane composite material is made by using higher functional polyols in place of polyols having an average functionality of 2 or 3. In these embodiments, the polyurethane composite material has more cross linking. Some embodiments have higher impact strength, flexural strength, flexural modulus, chemical resistance, and water resistance as compared to the polyurethane composite material formed by polyols having a functionality of about 2 to about 3.


In some embodiments, the polyurethane composite material is made by using more than one polyol with different OH numbers to give the same weighted average OH number. Such polyurethane composite materials yield a more segmented polymer. By allowing many polyols of different functionality and/or molecular weight to be mixed together to make the needed OH number to balance the number of isocyanate groups, the orderliness of the resulting polymer chain is more segmented and less likely to align together. In some embodiments, the polyurethane composite material comprises three, four, five, or six types of polyols of different functionality and/or molecular weight. For example, a polyurethane system can be made from combination of multiple types of polyols, wherein at least one first polyol has an average functionality of about 2, wherein at least one second polyol has an average functionality of about 4, and wherein at least one third polyol has an average functionality of about 6. In one embodiment, the overall number of hydroxyl groups may be adjusted with varying polyols. In some embodiments, combinations of polyols with great number of hydroxyl groups may be blended with smaller quantities of polyols with less hydroxyl groups in order to produce a desired overall number of hydroxyl groups, which will react with the isocyanate.


In some embodiments, impact strength of the polyurethane composite material is greater than polyurethane composite materials comprising polyols of the same or substantially similar functionality and/or molecular weight. Although the two polyurethane compositions may comprise polyols with substantially similar average functionality and/or molecular weight, the polyurethane composition comprising polyols with substantially different functionality may exhibit improved mechanical properties such as impact strength. In some embodiments, polyurethane composite materials comprising polyols of multiple functionalities are more resistant to stress cracking.


Other embodiments of the polyurethane composite material are made from at least one polyol with a molecular weight from about 2000 to about 8000. These polyurethane composite materials exhibit an integral skin. In some embodiments, the skin is thicker. In other embodiments, the skin is less porous and harder. In some embodiments, the use of at least one polyol with a molecular weight from about 2000 to about 8000 results in the migration of the at least one polyol to migrate to the outer surface of the polyurethane composite material, thus allowing more outer skin to be formed.


In one embodiment, mixtures of two or more polyols may be used. In some embodiments, each polyol of a multi-polyol polyurethane system may be chosen for the various mechanical and chemical properties that result in the polyurethane composite produced as a result of using the polyol. For example, it is known to persons having ordinary skill in the art that polyols are often classified as rigid or flexible polyols based on various properties of the individual polyol and the overall flexibility of a polyurethane polymer produced from the respective polyols. Typically, the rigidity or flexibility of the polyurethane formed from any single polyol may be governed by one or more of the hydroxyl number, functionality, and molecular weight of the polyol. As such, one or more polyols with different characteristics may be used to control the physical and mechanical characteristics of the polyurethane composite material.


In one embodiment, the amount of rigid polyol is carefully controlled in order to avoid making the composite too brittle. In some embodiments, the weight ratio of rigid to flexible polyol ranges from about 0.5 to about 20. In other embodiments, the ratio of rigid to flexible polyol is about 1 to about 15. In other embodiments, the ratio of rigid to flexible polyol is about 4 to about 15. In other embodiments, the ratio of rigid to flexible polyol is about 3 to about 10. In other embodiments, the ratio of rigid to flexible polyol is about 6 to about 12.


If more than one polyol is used to form the polyurethane composition, mixtures of polyols can be used. In certain embodiments, the polyurethane is formed by reaction of a first polyol and a second polyol. In some of these embodiments, the first polyols has a functionality of at least three and a hydroxyl number of about 250 to about 800, and more preferably about 300 to about 400. In some embodiments, the first polyol hydroxyl number is about 350 to about 410. In some of these embodiments, the molecular weight of the first polyol ranges from about 200 to about 1000. In other embodiments, the molecular weight of the first polyol ranges from about 300 to about 600. In other embodiments, the molecular weight of the first polyol ranges from about 400 to about 500. Still, in some embodiments, the molecular weight of the first polyol is about 440.


A second polyol can be used which produces a less rigid polyurethane compared to a polyurethane produced if only the first polyol is used. In some embodiments, the second polyol has a functionality of about 3. In some embodiments, the functionality of the second polyol is not greater than three. In these embodiments, the second polyol can have a molecular weight of about 1000 to about 6000. In other embodiments, the second polyol has a molecular weight of about 2500 to about 5000. In some embodiments, the second polyol has a molecular weight of about 3500 to about 5000. In some embodiments, the molecular weight is about 4800. In other embodiments, the molecular weight of the second polyol is about 3000. In some of these embodiments, the second polyol has a hydroxyl number of about 25 to about 70, and more preferably about 50 to about 60.


Fillers


As discussed above, one or more filler materials may be included in the polyurethane composite material. In some embodiments, it is generally desirable to use particulate materials with a broad particle size distribution, because this provides better particulate packing, leading to increased density and decreased resin level per unit weight of composite. Since the inorganic particulate is typically some form of waste or scrap material, this leads to decreased raw material cost as well. In certain embodiments, particles having size distributions ranging from about 0.0625 inches to below 325 mesh have been found to be particularly suitable. In other embodiments, particles having size distribution range from about 5 μm to about 200 μm, and in another embodiment, from about 20 μm to about 50 μm.


Suitable inorganic particulates can include ground glass particles, fly ash, bottom ash, sand, granite dust, slate dust, and the like, as well as mixtures of these. Fly ash is desirable because it is uniform in consistency, contains some carbon (which can provide some desirable weathering properties to the product due to the inclusion of fine carbon particles which are known to provide weathering protection to plastics, and the effect of opaque ash particles which block UV light, and contains some metallic species, such as metal oxides, which are believed to provide additional catalysis of the polymerization reactions. Ground glass (such as window or bottle glass) absorbs less resin, decreasing the cost of the composite.


In general, fly ash having very low bulk density (e.g., less than about 40 lb/ft3) and/or high carbon contents (e.g., around 20 wt % or higher) are less suitable, since they are more difficult to incorporate into the resin system, and may require additional inorganic fillers that have much less carbon, such as foundry sand, to be added. Fly ash produced by coal-fueled power plants, including Houston Lighting and Power power plants, fly and bottom ash from Southern California Edison plants (Navajo or Mohave), fly ash from Scottish Power/Jim Bridger power plant in Wyoming, and fly ash from Central Hudson Power plant have been found to be suitable for use in the invention.


Some embodiments of the polyurethane composite materials additionally comprise blends of various fillers. In some of these embodiments, the polyurethane composite materials exhibit better mechanical such as impact strength, flexural modulus, and flexural strength. One advantage in using blends of such systems is higher packing ability of blends of fillers. For example, a 1:1 mixture of coal fly ash and bottom ash has also been found to be suitable as the inorganic particulate composition.


Example in Table 1: The examples below were all mixed in a thermoset aromatic polyurethane system made with Hehr 1468 polyether polyol (15% of the total weight of the non-ash portion), water (0.2%), Air Products DC-197 (1.5%), Air Products 33LV amine catalyst (0.06%), Witco Fomrez UL28 tin catalyst (0.02%), and Hehr 1426A isocyanate (15%). 1.5×3.5×24 inch boards were made.













TABLE 1






Ash % by






Weight



of Total

Flexural
Flexural



Resin
Density,
strength,
Modulus,


Coal Ash Type
System
lbs/cu ft
psi
Ksi



















Mohave bottom ash
65%
70
1911
421


Mohave bottom ash +
65%
74
2349
466


Mohave fly ash (50/50)


Mohave bottom ash
75%
68
930
266


Mohave bottom ash +
75%
79
2407
644


Mohave fly ash (50/50)


Navajo bottom ash
65%
69
2092
525


Navajo bottom ash +
65%
74
2540
404


Navajo fly ash (50/50)


Navajo bottom ash
75%
70
1223
377


Navajo bottom ash +
75%
84
2662
691


Navajo fly ash (50/50)









Thus, embodiments of the polyurethane composite material which comprise bottom and fly ash exhibit increased flexural strength and flexural modules as compared to polyurethane composite material comprising bottom ash alone. Some of these embodiments have a density of about 65 lbs/ft3 to about 85 lbs/ft3, including about 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, or 85 lbs/ft3.


In some of embodiments, the polyurethane composite material comprising about 65% ash filler of which about 32.5 wt % was bottom ash and about 32.5% was fly ash had a flexural strength of at least about 2300 psi, more preferably at least about 2400 psi, and even more preferably at least about 2500 psi. In some of embodiments, the polyurethane composite material comprising about 75% ash filler of which about 37.5 wt % was bottom ash and about 37.5% was fly ash had a flexural strength of at least about 2400 psi, more preferably at least about 2500 psi, and even more preferably at least about 2650 psi.


In some of embodiments, the polyurethane composite material comprising about 65% ash filler of which about 32.5 wt % was bottom ash and about 32.5% was fly ash had a flexural modulus of at least about 400 Ksi, more preferably at least about 440 Ksi, and even more preferably at least about 460 Ksi. In some of embodiments, the polyurethane composite material comprising about 75% ash filler of which about 37.5 wt % was bottom ash and about 37.5% was fly ash had a flexural modulus of at least about 640 Ksi, more preferably at least about 660 Ksi, and even more preferably at least about 690 Ksi.


In some embodiments, slate dust can be added to the polyurethane composite material to provide UV protection to the polyurethane composite material. Some of these embodiments additionally comprise one or more of pigments, light stabilizers, and combinations thereof. In some embodiments, polyurethane composite materials comprising slate dust exhibit substantially improved weathering. In some embodiments, the polyurethane composite material comprises a dust. A dust may be selected from at least one of slate dust, granite dust, marble dust, other stone-based dusts, and combinations thereof. In some embodiments, the polyurethane composite material comprises about 0.2 to about 70 wt % dust. In other embodiments, the polyurethane composite materials comprise about 10 to about 50 wt % of dust. In other embodiments, the polyurethane composite materials comprise about 20 to about 60 wt % of dust. In other embodiments, the polyurethane composite materials comprise about 30 to about 55 wt % of dust. In some embodiments, dust may be added to the composite material as additional filler. In this embodiment, the filler that is not dust may be present in the composite in amounts from about 10 to about 70 weight percent and the dust may be added in amounts of about 5 to about 35 weight percent.


The following is an example of a polyurethane composite material that comprises dust. The example should be in no way limiting, as other embodiments will be readily understood by a person having ordinary skill in the art.


Example from Table 2: In a blend of Cook Composites 5180 MDI (13.1% by weight), 5205 polyol (3.91%), Dow DER (1.98%), antimony trioxide flame retardant (3.52%), with Air Products DC-197 silicone surfactant (0.23%), benzoyl peroxide (0.55%), and chipped slate (59.5%), with the added pigments, carbon black and slate dust, all acting as UV inhibitors. The light exposure was to a high fusion (UV light) chamber at AlliedSignal Aerospace. Usually a 10 minute exposure in this chamber would deeply discolor this resin system due to the yellowing of the MDI-based ingredients in the resin system.















TABLE 2





Sample #



Green




(Numbers


Red Iron
Chromium

Time for Slight


are


Oxide
Oxide
Carbon
Change in


purposely
Coal

Pigment,
Pigment,
Black,
Sheen or Slight


not in
Fly
Slate
Cardinal
Cardinal
Chroma-
Discoloration,


order)
Ash
Dust
Color Co.
Color Co.
Tek Co.
minutes







1
16.7%




10


2
16.7%

0.58%


10


3
16.6%


0.58%

10


4
16.7%



0.58%
10


5

16.6%



20


7

16.6%
0.58%


20


8

16.6%

0.58%

20


6

16.6%


0.58%
20+ (Test








Ended)









In the above test, clearly slate dust provided better light stability than coal ash, and the combination of slate dust plus carbon black provided the best UV resistance, and had not failed yet in the 20 minute test (the only sample to not fail). The effect of the slate dust was far more influential for UV stability then the various pigments tested, including carbon black plus fly ash.


In some embodiments, the polyurethane composite material composition comprises about 20 to about 95 weight percent of inorganic filler, which includes, for example, approximately 20, 25, 30, 35, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, or 94 weight percent of filler. These amounts may be based on the total of all of the fillers, such as one or more of fly ash, dust, and fibrous material. However, the filler values may also be representative of only one type of filler, e.g, fly ash. In certain embodiments, the polymeric composite material may contain the filler in an amount within a range formed by the two of the foregoing approximate weight percent. In other embodiments, the polyurethane composite material comprises about 40 to about 85 weight percent of the filler. In other embodiments, the polyurethane composite material comprises about 55 to about 80 weight percent of the filler. In other embodiments, the polyurethane composite material comprises about 65 to about 85 weight percent of the filler. In other embodiments, the polyurethane composite material comprises about 40 to about 60 weight percent of the filler. In other embodiments, the polyurethane composite material comprises about 55 to about 70 weight percent of the filler. Here, the unit “weight percent” refers to the relative weight of the filler component compared to the total weight of the composite material.


Fibers


In some embodiments, reinforcing fibers can also be introduced into the polyol mixture prior to introduction of the isocyanate. In some embodiments, reinforcing fibers may be introduced after the at least one polyol and the isocyanate are mixed. These can include fibers per se, such as chopped fiberglass (chopped before or during mixing process such as extrusion), or fabrics or portions of fabrics, such as rovings or linear tows, or combinations of these. Typically, the reinforcing fibers range from about 0.125 in. to about 1 in, more particularly from about 0.25 in to about 0.5 in. The reinforcing fibers give the material added strength (flexural, tensile, and compressive), increase its stiffness, and provide increased toughness (impact strength or resistance to brittle fracture). Fabrics, rovings, or tows increase flexural stiffness and creep resistance. The inclusion of the particular polyurethane networks of the invention, together with the optional surfactants, and the inorganic particulate sizes used make the composite of the invention particularly and surprisingly well suited for inclusion of reinforcing fibers in foamed material, which normally would be expected to rupture or distort the foam bubbles and decrease the strength of the composite system.


In addition to inclusion of reinforcing fibers into the polyol mixture prior to polymerization, oriented axial fibers can also be introduced into the composite after extrusion, as the polymer exits the extruder and prior to any molding. The fibers (e.g., glass strings) can desirably be wetted with a mixture of polyol (typically a higher molecular weight, rigid polyol) and isocyanate, but without catalyst or with a slow cure catalyst, or with other rigid or thermosetting resins, such as epoxies. This allows the wetted fiber to be incorporated into the composite before the newly added materials can cure, and allows this curing to be driven by the exotherm of the already curing polymer in the bulk material.


Whether added before or after polymerization and/or other mixing processing such as extrusion, the dispersed reinforcing fibers may be bonded to the polymeric matrix phase, thereby increasing the strength and stiffness of the resulting material. This enables the material to be used as a structural synthetic lumber, even at relatively low densities (e.g., about 20 to about 60 lb/ft3).


According to certain embodiments, many types of fibers may be suitable for use in the polyurethane composite material. In some embodiments, the polyurethane composite materials comprise at least one of basalt, Wollastinite, other mineral fibers, or combinations thereof. In some embodiments, these components may be used in place of or in combination with glass fibers


Example from Table 3: In a mixture of Hehr 1468 polyether polyol (500 grams), Hehr 1468 MDI (432 g), water (3 g), Air Products 33LV amine catalyst (1 g), Mohave coal fly ash (800 g), and the following reinforcing fibers, all made in 1.5×3.5×24 inch lumber samples:













TABLE 3








Flexural
Flexural



Fiber
Strength,
Modulus,



Added
psi
Ksi





















None

1239
68



¼ inch long chopped
1%
1587
92



fiberglass



¼ inch long chopped
2.5%  
1436
91



fiberglass



¼ inch long chopped
5%
1887
125



fiberglass



¼ inch long chopped



fiberglass



¼ inch long chopped
1%
2241
97



basalt fiber



¼ inch long chopped
2.5%  
2646
131



basalt fiber



¼ inch long chopped
5%
3516
174



basalt fiber



¼ inch long chopped



basalt fiber



Fiberglass + basalt
2.5%  
2732
135



(1.25% each)










In some embodiments, basalt fibers provide more flexural strength, and flexural modulus to the highly-filled polyurethane composite materials than fiberglass, and the combination of the two fibers gives a synergistic effect on both measured properties.


In some of embodiments, the polyurethane composite material comprising about 1.25% of chopped fiber glass and about 1.25% of basalt had a flexural strength of at least about 2650 psi, more preferably at least about 2700 psi, and even more preferably at least about 2730 psi.


Axial fibers or fabrics can also be added to the polyurethane composite material. These fiber and/or fabric typically increase the rigidity of the polyurethane composite material, and increase the mechanical strength. Using thicker fibers, rovings, tows, fabrics or rebar in the axial or stressed direction of the product can eliminate or reduce the tendency of the plastic to creep with time or higher temperature. These reinforcements also give higher initial tensile and flexural strength, and higher flexural and tensile stiffness of the polyurethane composite material. One advantage of using axial fibers or fabrics is that the fibers or fabrics are oriented in a direction that supports the polyurethane composite material. Unlike axial fibers, randomly chopped fibers are less structurally supportive.


In some embodiments, the axial fibers or fabrics may be added while dry (no resin on them). In other embodiments, the fibers or fabrics may be “wet” with resin when mixed with the polyurethane composite material. In some embodiments, the axial fibers or fabrics are added to the polyol and catalyst premix. In other embodiments, the axial fibers or fabrics are added to the isocyanate premix. Still, other embodiment may include adding the axial fibers of fabric together with a slow or delayed reaction polyol, catalyst, and isocyanate. Thus, the axial fibers can be added with multiple components of the polyurethane composite material.


In some embodiments, the axial fibers or fabrics may be added to the polyurethane composite material under tension, as is done with steel rebar in structural concrete. This provides additional strength in the tension direction, and in bending, as well as higher stiffness in the tension and bending directions.


Example in Table 4: Glass and basalt fibers were implanted in a highly-filled coal ash-thermosetting polyurethane mixture while still uncured, and the fibers laid lengthwise down the urethane in a box mold, and only on the top of the board (on one face). The fibers were laid in the urethane mixture about ⅛ inch below the surface of the mix, but frequently the fibers moved during the subsequent foaming and cure in the closed box mold, and sometimes showed on the board surface.


The flexural properties were unaffected by this fiber movement. The glass fibers from rovings were 0.755 g/ft, the basalt rovings from Ahlstrom (Canada) were 0.193 g/ft. The boards were 1.5×3.5×24 inches. During flexural testing the boards were tested so that the rovings were on the tensile side of the boards (not the compression side). Some of the rovings were pre-wetted with the same resin system as in the boards, but without the coal ash filler. The resin system was: Bayer Multranol 4035 polyether polyol (16.6% by weight), Bayer Multranol 3900 polyether polyol (5.5%), Air products DC-197 silicone surfactant (0.16%), water (0.07%), Witco Fomrez UL-28 tin catalyst (0.03%), Air Products 33LV amine catalyst (0.10%), Coal fly ash (49%), Bayer MRS4 MDI isocyanate (20.4%).















TABLE 4






Number of








Rovings








Inserted in

Total %






Board, on 1

Fiber
Board
Flexural
Flexural



face, spread
Wetted with
on Board
Density,
Strength,
Modulus,


Fiber Type
evenly on face
Resin?
Weight
lbs/cu ft
psi
Ksi





















None



45
1319
82


(Resin Alone)








Glass
10
No
0.77%
32
2717
37


Glass:
10
Yes
1.43%
36
3533
77


Glass
10
Yes, but
0.73%
58
4000
188




pre-cured







20
Yes
2.72%
35
4356
84


Basalt fiber
10
No
0.26%
41
1191
73



40
No
0.79%
49
2465
96









By wetting the glass fibers with uncured resin or cured resin, the boards are considerably stronger—even stronger than basalt reinforced boards with the same weight of fiber. By wetting the glass roving with polyurethane resin, the strength of the glass roving exceeds that of the unwetted basalt fiber.


In some embodiments, polyurethane composite materials comprising less than about 1.5 wt % of glass fiber rovings prewet with resin had a flexural strength of at least about 3500 psi and more preferably at least about 4000 psi. In embodiments wherein the prewet glass fiber rovings were procured with the polyurethane resin, the flexural strength was at least about 150 Ksi, and more preferably at least about 180 Ksi.


Chain Extenders & Cross Linkers


In some embodiments of the polyurethane composite material, low molecular weight reactants such as chain extenders or cross linkers provide a more polar area in the polyurethane composite material. These reactants allow the polyurethane system to more readily bind the inorganic filler and/or inorganic or organic fibers in the polyurethane composite material.


In some embodiments, the polyurethane composite material comprises one or more selected from chain extenders, crosslinkers, and combinations thereof. In some embodiments, the chain extenders can be selected one or more from the group comprising ethylene glycol, glycerin, 1,4-butane diol, trimethylolpropane, glycerol, or sorbitol. In some embodiments, at least one cross linker may be used to replace at least a portion of the at least one polyol in the polyurethane composite material. In some cases, this results in reduced costs of the overall product.


In some embodiments which comprise chain extenders, the mechanical properties of the polyurethane composite material are improved. In some embodiments, chain extenders are not blocked from reacting with the isocyanate by the filler. This is due to the molecular size of the chain extenders. In some embodiments, the chain extenders result in better mechanical properties as compared to polyurethane composite materials with high filler inorganic loads, which do not use chain extenders. These mechanical properties include flexural strength and modulus, impact strength, surface hardness, and scratch resistance.


In other embodiments, polyurethane composite material comprising chain extenders traps metals and metal oxides. This is advantageous in highly filled polyurethane composite materials when the filler is coal or other ashes, including fly ash and bottom ash, which can contain hazardous heavy metals. In some embodiments, the polyurethane composite material substantially prevents leaching of heavy metals in the polyurethane composite material.


In some embodiments, a highly filled polymer composition comprising chain extenders provides faster curing and less need for post-curing of the polyurethane composite materials. In some embodiments, the chain extenders provide better water resistance for the polyurethane composite material. These chain extenders include diamine chain extenders, such as MBOCA and DETDA. However, other embodiments of the polyurethane composite material may comprise glycol extenders.


Blowing Agents


Foaming agent may also be added to the reaction mixture if a foamed product is desired. While these may include organic blowing agents, such as halogenated hydrocarbons, hexanes, and other materials that vaporize when heated by the polyol-isocyanate reaction, it has been found that water is much less expensive, and reacts with isocyanate to yield CO2, which is inert, safe, and need not be scrubbed from the process. In addition, CO2 provides the type of polyurethane cells desirable in a foamed product (i.e., mostly closed, but some open cells), is highly compatible with the use of most inorganic particulate fillers, particularly at high filler levels, and is compatible with the use of reinforcing fibers.


If water is not added to the composition, some foaming may still occur due to the presence of small quantities of water (around 0.2 wt %, based on the total weight of the reaction mixture) introduced with the other components as an “impurity.” Such water-based impurities may be removed by drying of the components prior to blending. On the other hand, excessive foaming resulting from the addition of too much water (either directly or through the introduction of “wet” reactants or inorganic particulate materials) can be controlled by addition of an absorbent, such as UOP “T” powder.


The amount of water present in the system will have an important effect on the density of the resulting composite material. This amount generally ranges from about 0.10 wt % to about 0.40 wt %, based on the weight of polyol added, for composite densities ranging from about 20 lb/ft3 to about 90 lb/ft3. However, polyurethane composite material densities may be controlled by varying one or more other components as well. In some embodiments, the overall density of the polyurethane composite material may range from about 30 lb/ft3 to about 80 lb/ft3. In some embodiments, the overall density of the polyurethane composite material may range from about 40 lb/ft3 to about 60 lb/ft3.


In some embodiments, the addition of excess blowing agent or water above what is needed to complete the foam reaction adds strength and stiffness to the polyurethane composite material, if the material is restrained during the forming of the composite material. Typically, excess blowing agent may be added to the polyol premixture. Such excessive blowing agent may produce a vigorously foaming reaction product. To contain such reaction product, a forming device that contains the pressure or restrains the materials from expanding may be used. Such forming devices are further described herein. The restraint of the material or the higher pressure created by a mold or restraining forming belts, causes higher pressure within the material which modifies the foam cell structure, thus allowing higher mechanical properties of the resulting cured material.


According to certain embodiments, use of excess blowing agent in formation of the polyurethane composite material may also improves the water resistance of the polyurethane composite material. In some embodiments, use of excessive blowing agent may also increase the thickness and durability of the outer skin of the self skinning polyurethane composite material.


Solvents


The addition of solvents to the reaction mixture may also provide certain advantages. In some embodiments of the polyurethane composite materials, solvents can be added to the polyol premix prior to or during the formation of the polyurethane. While it is described that solvents are added to the polyol premix, solvents may also be added at other stages of mixing of various components of the polyurethane composite material. In some embodiments, the solvent may be added with any one or more components of the reaction mixture which produces the polyurethane composite material.


In some embodiments, addition of a solvent to a polyol premix results in a polyurethane composite material that is more scratch and mar resistance as compared to the same polyurethane composition made without the solvent added to the polyol premix. Additional properties that result in some embodiments include a harder skin. In addition, solvents may cause a higher concentration of resin material to be in the self skinning layer, as opposed to the fillers and reinforcing fibers. In some materials, this provides a polyurethane composite material having a higher concentration of ultraviolet stabilizers, antioxidants, and other additives are closer to the outside of the composite material. In some embodiments, use of solvent produces a polyurethane composite material with an increases skin thickness. In other embodiments, the skin density may also be increased. Still, in other embodiments, the addition of solvents may decrease the interior density of the polyurethane composite material.


In some embodiments, the addition of solvent to the polyol premix substantially improves the weathering of the polyurethane composite material due to the higher density and thickness of the outer skin, which can contain more concentrated antioxidants, pigments, fillers and UV inhibitors. In other embodiments, the addition of the solvent to the polyol premix substantially prevents discoloration of the polyurethane composite material when a sample of the material is exposed to sunlight or UV radiation. In other embodiments, the addition of the solvent to the polyol premix provides a polyurethane composite material (upon mixing of the rest of the components) which has improved anti-static properties.


For example, the addition of about 2 to about 10 wt % of a solvent selected from the group consisting of a hydrocarbon solvent (pentane, hexane), carbon tetrachloride, trichloroethylene, methylene chloride, chloroform, methyl chloroform, perchloroethylene, or ethyl acetate to a polyol premix, the resulting self-skinning polyurethane composite material has a thicker skin as compared to polyurethane composite materials which are not create by the addition of a solvent to the polyol premix. As a result, the outer skin is much thicker, including greater than about 100, 200, 500, and about 1500% thicker as compared to a polyurethane made without adding solvent to the polyol premix. In some embodiments, the polyurethane composite material made by the addition of solvent to the polyol premix may have an increase outer density skin, thus making the skin harder, where the skin is greater than about 50, 75 and about 150% harder as compared to a polyurethane made without adding the solvent to the polyol premix. Furthermore, some embodiments of the polyurethane composite material have an interior density that is less than between about 10 and about 50% as compared as compared to a polyurethane made without adding the solvent to the polyol.


Additional Components


The polyurethane composite materials can contain one or more compounds or polymers in addition to the foregoing components. Additional components or additives may be added to provide additional properties or characteristics to the composition or to modify existing properties (such as mechanical strength or heat deflection temperature) of the composition. For example, the polyurethane composite material may further include a heat stabilizer, an anti-oxidant, an ultraviolet absorbing agent, a light stabilizer, a flame retardant, a lubricant, a pigment and/or dye. One having ordinary skill in the art will appreciate that various additives may be added to the polymer compositions according to embodiments of the invention. Some of these additional additives are further described herein.


UV Light Stabilizers, Antioxidants, Pigments


Ultraviolet light stabilizers, such as UV absorbers, can be added to the polyurethane composite material prior to or during its formation. Hindered amine type stabilizers, and opaque pigments like carbon black powder, can greatly increase the light stability of plastics and coatings. In some embodiments, phenolic antioxidants are provided. These antioxidants provide increased UV protection, as well as thermal oxidation protection.


In some embodiments, the polyurethane composite material comprises one or more selected from the group consisting of light stabilizers and antioxidants. In combination, the light stabilizers and antioxidants provide a synergistic effect of reducing the detrimental effects of UV light as compared to either component used alone in the polyurethane composite material. According to certain embodiments, the effect is non-additive.


For example, in aromatic thermosetting polyurethanes, using 0.5 wt % Tinuvin 328 light absorber alone provides some resistance to UV, such as reduced yellowing, less chalking, and less embrittlement. Adding Irganox 1010 antioxidant at 0.5 wt % greatly improves the resistance to UV, and even using 0.2 wt % of each provides better stability than either of the stabilizers at 0.5 wt % alone.


Pigment or dye can be added to the polyol mixture or can be added at other points in the process. The pigment is optional, but can help make the composite material more commercially acceptable, more distinctive, and help to hide any scratches that might form in the surface of the material. Typical examples of pigments include iron oxide, typically added in amounts ranging from about 2 wt % to about 7 wt %, based on the total weight of the reaction mixture.


Surfactants and Catalysts


One or more catalysts are generally added to control the curing time of the polymer matrix (upon addition of the isocyanate), and these may be selected from among those known to initiate reaction between isocyanates and polyols, such as amine-containing catalysts, such as DABCO and tetramethylbutanediamine, tin-, mercury- and bismuth-containing catalysts. To increase uniformity and rapidity of cure, it may be desirable to add multiple catalysts, including a catalyst that provides overall curing via gelation, and another that provides rapid surface curing to form a skin and eliminate tackiness. For example, a liquid mixture of 1 part tin-containing catalyst to 10 parts amine-containing catalyst can be added in an amount greater than 0 wt % and below about 0.10 wt % (based on the total reaction mixture) or less, depending on the length of curing time desired. Too much catalyst can result in overcuring, which could cause buildup of cured material on the processing equipment, or too stiff a material which cannot be properly shaped, or scorching; in severe cases, this can lead to unsaleable product or fire. Curing times generally range from about 5 seconds to about 2 hours.


A surfactant may optionally be added to the polyol mixture to function as a wetting agent and assist in mixing of the inorganic particulate material. The surfactant also stabilizes and controls the size of bubbles formed during foaming (if a foamed product is desired) and passivates the surface of the inorganic particulates, so that the polymeric matrix covers and bonds to a higher surface area. Surfactants can be used in amounts below about 0.5 wt %, desirably about 0.3 wt %, based on the total weight of the mixture. Excess amount of surfactant can lead to excess water absorption, which can lead to freeze/thaw damage to the composite material. Silicone surfactants have been found to be suitable for use in the invention. Examples include DC-197 and DC-193 (silicone-based, Air Products), and other nonpolar and polar (anionic and cationic) products.


Other Additives


In some embodiments, the filled polyurethane composite material additionally comprises at least one coupling agent. Coupling agents and other surface treatments such as viscosity reducers or flow control agents can be added directly to the filler or fiber, and incorporated prior to, during, and after the mixing and reaction of the polyurethane composite material. In some embodiments, the polyurethane composite materials comprise pre-treated fillers and fibers.


In some embodiments, the coupling agents allow higher filler loadings of an inorganic filler such as fly ash. In embodiments, these ingredients may be used in small quantities. For example, the polyurethane composite material may comprises about 0.01 wt % to about 0.5 wt % of at least one coupling agent. In some of these embodiments, the polyurethane composite materials exhibit greater impact strength, as well as greater flexural modulus and strength, as compared to those materials without at least one coupling agent. Coupling agents reduce the viscosity of the resin/filler mixture. In some embodiments, coupling agents increase the wetting of the fibers and fillers by the resin components during the mixing the components.


In other embodiments, coupling agents reduce the need for colorants by improving the dispersion of the colorants, and the break up of colorant clumps. Thus, the polyurethane composite material which comprises coupling agents and a colorant may exhibit substantially uniform coloration throughout the polyurethane composite material.


Example in Table 5: The following flow control agents were tested in a urethane polyol with a high loading of filler, such that the combination would flow through a Zahn #5 cup viscometer. The polyol was Bayer Multranol 4035 polyether used at 70 g, with 30 g of two different fillers—tested separately. The polyol+filler were hand mixed and put into the Zahn Cup with the bottom port closed with tape. When the Zahn cup was full, the tape was removed and the time for the mixture to flow out of the Cup was measured. All tests at 65° F. (18° C.). The agents were: Air Products DABCO DC197 silicone-based surfactant, Kenrich Petrochemicals Ken-React LICA 38, and Ken-React KR 55 organo-titanates, Shin-Etsu Chemical KBM-403 organo-silane.


These tests show that even 0.1% of the flow control agent on the weight of the filler can markedly improve the flow of the mixture. This flow improvement allows higher levels of filler to be used in urethane mixtures, better wetting of the filler by the polyol, and more thorough mixing of all the components. The DC-197 surfactant works well, but only at much higher concentrations.













TABLE 5







Flow
Time to Flow out
%




Improver
of #5 Zahn
Improvement




Weight,
Cup, & stop
(Faster Flow)


Filler Type
Flow Improver
grams
dripping, seconds
Over Control







Ground
None (Control)

60



waste bottle


glass


Ground
KBM 403
0.14
50
15%


waste bottle


glass


Ground
KBM 403 0.51 g +
1.34
53
18%


waste bottle
DC-197 0.83 g


glass


Ground
KBM 403 0.15 g +
0.75
56
 7%


waste bottle
DC-197 0.60 g


glass


Ground
DC-197
0.67
50
13%


waste bottle


glass


Cinergy fly
None (Control)

46



ash


Cinergy fly
KBM 403
0.21
38
17%


ash


Cinergy fly
KR 55
0.06
41
11%


ash


Cinergy fly
LICA 38
0.04
42
13%


ash


Cinergy fly
KBM 403
0.03
40
16%


ash










Ratios of the Components Used to Make the Polyurethane Composite Material


Variations in the ratio of the at least one polyol to the isocyanate have various changes on the overall polyurethane product and the process for making the polyurethane composites with high inorganic filler loads. High filler in such systems typically inhibit or physically block the reaction or action of the various polyurethane composite components, including the at least one polyol, the di- or polyisocyanate, the surfactants, flow modifiers, cell regulators and the catalysts. In addition, the heat that is released during the course of the exothermic reaction in forming the polyurethane composite is much higher in an unfilled polyurethane system. A larger isocyanate index gives higher temperature exotherms during the process of making the polyurethane composite material. By adding, 5 to 20 wt % excess, and more preferably 5 to 10 wt % excess, of the isocyanate to the otherwise chemically balanced at least one polyol that may comprise chain extenders with additional OH groups (thus, measuring the balance by the overall OH numbers).


Higher temperature exotherms result in more cross linking of the polyol and isocyanate, and/or a more complete reaction of the hydroxyl groups and isocyanate groups. In some embodiments, a higher isocyanate index also causes much higher cross link densities. In other embodiments, the higher isocyanate index provides a more “thermoset” type of polyurethane composite. In other embodiments, the higher isocyanate index provides a polyurethane with a more chemically resistant polyurethane composite material when exposed to chemicals. In some cases, these chemicals are solvents and water. In certain embodiments, the higher isocyanate index provides a polyurethane composite system with a higher heat distortion temperature. The heat distortion temperature or its effects may be determined by elevated temperature creep tests, standard ASTM heat distortion testing, surface hardness variations with increased temperature, for example, in an oven, and changes in mechanical properties at increasing temperature.


Representative suitable compositional ranges for synthetic lumber, in percent based on the total composite composition, are provided below:


At least one polyol: about 6 to about 28 wt %


Surfactant: about 0.2 to about 0.5 wt %


Skin forming catalyst about 0.002 to about 0.01 wt %


Gelation catalyst about 0.02 to about 0.1 wt %


Water 0 to about 0.5 wt %


Chopped fiberglass 0 to about 10 wt %


Pigments 0 to about 6 wt %


Inorganic particulates about 60 to about 85 wt %


Isocyanate about 6 to about 20 wt %


Axial tows 0 to about 6 wt %.


Additional components described herein can be added in various amounts. Such amount may be determined by persons having ordinary skill in the art.


Mixing and Reaction of the Components of the Polyurethane Composite Material


The polyurethane composite material can be prepared by mixing the various components described above including the isocyanate, the polyol, the catalyst, the inorganic filler, and various other additives. In some embodiments, one or more other additives may be mixed together with the components of the polyurethane composition. One or more component resins can be heated to melt prior to the mixing or the composition may be heated during the mixing. However, the mixing can occur when each components is in a solid, liquid, or dissolved state, or mixtures thereof. In one embodiment, the above components are mixed together all at once. Alternatively, one or more components are added individually. Formulating and mixing the components may be made by any method known to those persons having ordinary skill in the art, or those methods that may be later discovered. The mixing may occur in a pre-mixing state in a device such as a ribbon blender, followed by further mixing in a Henschel mixer, Banbury mixer, a single screw extruder, a twin screw extruder, a multi screw extruder, or a cokneader.


In some preferred embodiments, the polyurethane composite material can be prepared by mixing the polyols together (if multiple polyols are used), and then mixing them with various additives, such as catalysts, surfactants, and foaming agent, and then adding the inorganic particulate phase, then any reinforcing fiber, and finally the isocyanate. While mixing of some of the components can occur prior to extrusion, all of the components may alternatively be mixed in a mixer such as an extruder.


In one embodiment, it has been found that this order of blending results in the manufacture of polyurethane composite materials suitable for building material applications. Thus, it has been discovered that the order of mixing, as well as other reaction conditions may impact the appearance and properties of the resulting polyurethane composite material, and thus its commercial acceptability.


One particular embodiment relates to a method of producing a polymer matrix composite, by (1) mixing a first polyol and a second polyol with a catalyst, optional water, and optional surfactant; (2) optionally introducing reinforcing fibrous materials into the mixture; (3) introducing inorganic filler into the mixture; (4) introducing poly- or di-isocyanate into the mixture; and (5) allowing the exothermic reaction to proceed without forced cooling except to control runaway exotherms.


The process for producing the composite material may be operated in a batch, semibatch, or continuous manner. Mixing may be conducted using conventional mixers, such as Banbury type mixers, stirred tanks, and the like, or may be conducted in an extruder, such as a twin screw, co-rotating extruder. When an extruder is used, additional heating is generally not necessary, especially if liquid polyols are used. In addition, forced cooling is not generally required, except for minimal cooling to control excessive or runaway exotherms.


For example, a multi-zone extruder can be used, with polyols and additives introduced into the first zone, inorganic particulates introduced in the second zone, and chopped fibers, isocyanate, and pigments introduced in the fifth zone. A twin screw, co-rotating, extruder (e.g. 100 mm diameter, although the diameter can be varied substantially) can be used, with only water cooling (to maintain substantially near room temperature), and without extruder vacuum (except for ash dust). Liquid materials can be pumped into the extruder, while solids can be added by suitable hopper/screw feeder arrangements. Internal pressure build up in such an exemplary arrangement is not significant.


Although gelation occurs essentially immediately, complete curing can take as long as 48 hours, and it is therefore desirable to wait at least that long before assessing the mechanical properties of the composite, in order to allow both the composition and the properties to stabilize.


Extrusion


As discussed above, particular methods related to extruding polyurethane composite materials. One particular method includes extruding the polyurethane composite materials as described herein through an extruder having various segments and multiple screw elements


Referring to FIG. 4, one example of an extruder suitable for forming polyurethane composite materials may include up to nine barrel segments. As shown, each barrel segment includes at least one screw element. In addition, some or all of the barrel segments have a material input port.


In a first segment of the extruder, the at least one polyol may be introduced to the extruder. In some embodiments, the at least one polyol may include a blend of one or more polyols. Additionally, the at least one polyol may be blended with one or more of the catalyst, surfactants, blowing agents and other components described herein. In some embodiment, each components may be added individually or together. In some embodiments, the components are preblended prior to introduction to the extruder. As shown in FIG. 4, a first segment of the extruder includes a transport screw. As the transport screw is driven, the at least one polyol and optional other components are transported by the screw toward the output end of the extruder


In a second segment of the extruder, inorganic filler material such as ash may be introduced to the extruder. The inorganic filler material is blended with the components from the first segment. As shown in FIG. 4, a second segment of the extruder includes a transport screw. The transport screw may further transfer the components from the first and second segments of the extruder toward the output end of the extruder. As the first and second segment include a transport screw, the first and second segment may be classified as a first conveying section.


Components inputted in a first or second segment may be transferred to a third segment of the extruder by the screw. In a third segment of the extruder, previously inputted components may be mixed further by slotted screws. A third segment may also include lobal screws. In some embodiments, the mixing provides a substantially uniform mixture of one or more of least one polyol, at least one catalyst, a surfactant, an optional blowing agent, pigment, and filler. These components experience more shearing forces created by the slotted screw. The previous introduced components may then be further transferred toward the output end of the extruder. In some embodiments, the components are transferred to a fourth segment of the extruder. As shown in FIG. 4, a fourth segment may contain one or more of lobal and slow transport screws. As the third and fourth segments may contain mixing elements, such segments may be classified as a first mixing section. This screw provides additional mixing to provide a more homogenous mixture of the components. This screw also may provide good wetting of the fillers and fibers. It has been discovered that lobal screws provide a more homogeneous mixture of the previously introduced components.


In some embodiments, the isocyanate components may be introduced subsequent to the polyol component. As shown in FIG. 4, the isocyanate component (monomeric or oligomeric di- or polyioscyanate) is introduced in a subsequent segment of extruder related to the segment in which the at least one polyol was introduced. More specifically, the isocyanate component is introduced in a fifth segment of the extruder. In some embodiments, a reaction may begin to occur between the at least one polyol and the at least one isocyanate. However, a delayed action catalyst may used to substantially prevent overreaction of the components until the composite material has exited the extruder. As the reaction between the at least one polyol and the at least one isocyanate is exothermic, cooling may be required. Cooling may also be required in subsequent barrel segments. In previous barrel segments, cooling is generally not required as no reaction has occurred. However, cooling may be provided to previous barrel segments according to some embodiments.


As shown in FIG. 4, the fifth segment may contain a screw element such as a transport screw element. The transport screw may provide mixing of the isocyanate and previously added components including at least one polyol and the inorganic filler. To allow substantially thorough mixing of these components, one or more mixing screw elements may be used. The transport screw of the fifth segment may transfer the at least one polyol, the inorganic filler, and the isocyanate (and optional other additives) to a subsequent segment. Such subsequent segment may be all or a portion of a second mixing section. In some embodiments, these components are transferred to a sixth segment as shown in FIG. 4.


In a sixth barrel segment or in the second mixing section, a reverse screw provides a substantial amount of mixing to the previous added components of the composite mixture. In some embodiments, substantial shearing is provided to the composite mixture. As a reverse screw has negative pitch, the components of the composite material may be block from being transferred through such a segment until sufficient shearing forces and pressure allow the mixture to pass through this segment. In some embodiments, the reverse screw is configured to block the mixture back to a subsequent segment or section. For example, the entire mixture may be blocked to one or more of the first segment, second segment, third segment, fourth segment, or fifth segment. In another embodiment, the components of the mixture are blocked to one or more of the first conveying section, second conveying section, or the first mixing section. Such shearing together with the exothermic reaction of the polyol and the isocyanate may require cooling in the segment or section.


Vents may be disposed on either side of the second mixing section. As large amounts of mixing may release entrained air in the one or more components of the polyurethane composite mixture, such air must be released. Additionally, gas produced by the blowing agent may be required to be released. In some embodiments, a vacuum may be used to remove the entrained air and/or gas from the blowing agent. In some embodiments, the removed air or gas results in the formation of a more dense and uniform polyurethane composite material.


In optional embodiments, fiber rovings may be added to the composite mixture in a subsequent segment. This segment may be found in a third conveying section. As shown in FIG. 4, fibrous material may be introduced in a seventh segment of the extruder. Such a segment may also contain a transport screw. In particular embodiments, the transport screw may be a fast transport screw. In some embodiments, the fast transport screw has fewer screw threads per unit of length as compared to a slow transport screw. The transport screw of the segment may introduce, chop up, and mix the fiber rovings.


In subsequent segments, the mixture may be further mixed and transported toward the output end of the extruder. Such subsequent segments may constitute a second or third mixing section, depending on the embodiment. For example, in an eighth segment, lobal screws may provide further mixing to the composite mixture. In addition, a reverse screw may be provided in this or subsequent segments to provide substantial mixing and/or shearing of the components of the composite mixture.


As mentioned above a mixing section adjacent to the output end of the extruder may include one or more reverse screws and lobal screws. In some embodiments, a reverse screw is in the last segment of the extruder. In some embodiments, the reverse screw is a reverse slotted screw. As enough shearing forces and/or pressure transfer the mixture past the reverse screw, the mixture is extruded through a die.


In some embodiments, the extruder has a L/D of about 10 to about 40. In some embodiments, the extruder has a L/D of about 10 to about 15. In some embodiments, the extruder has a L/D of about 20 to about 40. In some embodiments, the extruder has a L/D that is greater than about 24. In some embodiments, the extruder may operate from between about 200 to about 2000 rpm.



FIG. 5 represents one configuration of an extruder for the introduction of the components materials as described above. This extruder includes a first conveying section C1, a first mixing section M1, a second conveying section C2, and a second mixing section M2. A feed end is shown on the right and an output end on the left.


In accordance with some embodiments, foaming of the polyurethane composite materials occurs after the die. In some embodiments, some foaming and reaction of the composite mixture may occur prior to or during extrusion.


Other alternatives may be used when providing the mixed polyurethane composite material. For example the extruder may have more than or less than nine barrel segments. In some embodiments, certain types of screws can be replaced by a different type of screw. These variations should be apparent to a person having ordinary skill in the art.


Forming


In some embodiments, the process of forming the highly filled polyurethane composite material comprises providing the components of the polyurethane composite material, mixing the components together, extruding the components through a die, adding any other additional components after the extrusion, and forming a shaped article of the polyurethane composite material. As the polyurethane composite material exits the die, the composite material may be placed in a mold for post-extrusion curing and shaping. In one embodiment, the composite material is allowed to cure in a box or bucket.


In one embodiment the formation of the shaped articles comprises injecting the extruded polyurethane composite material in a mold cavity and curing the shaped article. However, some embodiments require that the extruded polyurethane composite material be placed in a mold cavity secured on all sides, and exerting pressure on the polyurethane composite material. In some of these embodiments, the polyurethane composite material will be foaming or will already be foamed. However, it is preferred that the material is placed under the pressure of the mold cavity prior to or at least during at least some foaming of the polyurethane composite material.


A shaped article can be made using the polyurethane composite materials according to the foregoing embodiments. In some embodiments, this article is molded into various shapes. In some embodiments, the polyurethane composite material is extruded, and then injected into a continuous production system. Suitable systems for forming the composite materials of some embodiments are described in U.S. patent application Ser. No. 10/764,013 filed Jan. 23, 2004 and entitled “CONTINUOUS FORMING SYSTEM UTILIZING UP TO SIX ENDLESS BELTS,” now published as U.S. Patent Application Publication No. 2005-0161855-A1, and U.S. patent application Ser. No. 11/165,071, filed Jun. 23, 2005, entitled “CONTINUOUS FORMING APPARATUS FOR THREE-DIMENSIONAL FOAMED PRODUCTS,” now published as U.S. Patent Application Publication No. 2005-0287238-A1, both of which are hereby incorporated by reference in their entireties.


The polyurethane composite material of certain embodiments may exert certain pressures on the walls of any mold, such as that found in the forming devices as described above. While the amount of pressure may vary according to the amount of foaming and gas production, it is preferred that such forming devices may exert or hold pressures by the mold cavity ranging from about 35 to about 75 psi. In some embodiments, the pressure is from about 45 to about 65 psi. In some embodiments, the pressure is about 50 psi. However, mold pressures in any embodiment of a method of making the polyurethane composite material can be higher than or less than the specified values. The exact pressure required in the formation of the desired shaped article depends on the density, color, size, shape, physical properties, and the mechanical properties of the article comprising the polyurethane composite material.


When foaming polyurethane is formed by belts into a product shape, the pressure that the belts exert on the foamed part is related to the resulting mechanical properties. For example, as the pressure of the foaming increases and the belt system can hold this pressure without the belts separating, then the product may have higher flexural strength, then if the belts allowed leaking, or pressure drop. In some embodiments, pressures about 50 to about 75 psi have been used to obtain high mechanical properties in the polyurethane composite material. In one example, an increase in the flexural strength of 50 psi results from the higher pressure in the belts, versus using a lower pressure.


In some embodiments, a shaped article comprising the polyurethane composite material as described herein is roofing material such as roof tile shingles, etc., siding material, carpet backing, synthetic lumber, building panels, scaffolding, cast molded products, decking materials, fencing materials, marine lumber, doors, door parts, moldings, sills, stone, masonry, brick products, post, signs, guard rails, retaining walls, park benches, tables, slats and railroad ties.


Other shaped articles may comprise a portion of which comprises the polyurethane composite material. In some embodiments, the polyurethane composite material is coated or molded on one side of an article. For example, the polyurethane composite material may be coated or molded onto one side of a flat or S-shaped clay roof tile, which has been cut thinner than normal, and laid on a conveyor belt, followed by extrusion of the polyurethane composite material onto at least a portion of the tile. Such portion may be shaped by a mold which is adapted to shape the polyurethane composite material deposited on the tile. For example, the forming unit may operate with two mold belts which are adapted to shape the polyurethane composite material on one side of the portion. In some embodiments, the composite material may provide backing to an article. In one embodiment, the composite material may be foamed sufficient to provide insulation to an article.


In some embodiments, the polyurethane composite material can reinforce an article. For example, by placing a coating or molding of the polyurethane composite material on a roof tile, the impact strength of the roof tile is increased. Thus one embodiment comprises a method of substantially reducing the fracture of an article by depositing the polyurethane composite on a solid surface article, shaping the composite on the solid surface article by methods described herein, and curing the composite on the solid surface article. Such method may produce a one or more of a reinforced, backed, or insulated article. Such article may also have increased physical and mechanical properties. Additionally, a reinforcing layer may be used to prevent water weeping, and increases the overall thickness of a solid surface article.


In some embodiments, the polyurethane composite material can bond directly to an article solid surface article such as a tile. Alternatively, an adhesive can be applied to the solid surface article and a shaped polyurethane composite article can be attached thereto. A solid surface article such as a tile may include at least one or more of cement, slate, granite, marble, and combinations thereof; and the polyurethane composite material as described in embodiments herein. Such tiles may be used as roofing or siding tiles.


In some embodiments, the composite material may be used as reinforcement of composite structural members including building materials such as doors, windows, furniture and cabinets and for well and concrete repair. In some embodiments, the composite material may be used to fill any unintended gaps, particularly to increase the strength of solid surface articles and/or structural components. Structural components may formed from a variety of materials such as wood, plastic, concrete and others, whereas the defect to be repaired or reinforced can appear as cuts, gaps, deep holes, cracks.


Optional Additional Mixing Process


One of the most difficult problems in forming polyurethane composite materials which have large amounts of filler is getting intimate mixing—blending the polyols and the isocyanate. In some embodiments, an ultrasound device may be used to cause better mixing of the various components of the polyurethane composite material. In these embodiments, the ultrasound mixing may also result in the enhanced mixing and/or wetting of the components. In some embodiments, the enhanced mixing and/or wetting allows a high concentration of filler, such as coal ash to be mixed with the polyurethane matrix, including about 40, 50, 60, 70, 80, and about 85 wt % of the inorganic filler.


In some embodiments, the ultrasound device produces an ultrasound of a certain frequency. In some embodiments, the frequency of the ultrasound device is varied during the mixing and/or extrusion process. In some embodiments, the components are mixed in a continuous mixer, such as an extruder, equipped with an ultrasound device. In some embodiments, an ultrasound device is attached to or is adjacent to the extruder and/or mixer. In other embodiments, an ultrasound device is attached to the die of the extruder. In other embodiments, the ultrasound device is placed in a port of the mixer. In further embodiments, an ultrasound device provides vibrations at the location where the isocyanate and polyol meet as the screw delivers the polyol to the isocyanate.


In addition, an ultrasound device may provide better mixing for the other components, such as blowing agents, surfactants, catalysts. In embodiments where additional components are added to the polyol prior to mixing the polyol with the isocyanate, the additional components are also exposed to ultrasound vibration. In some embodiments, an ash selected from fly ash, bottom ash, or combinations thereof, is mixed using an ultrasound device. In some embodiments, ultrasound vibrations breaks up filler and fiber bundles to allow more thorough wetting of these components to provide a polyurethane composite material with better mechanical properties, such as flexural modulus and flexural strength, as compared to polyurethane composite materials which are created without the use of ultrasound vibration. The wetting of fibers and fillers could also be increased by the use of ultrasound at or near the die of the extruder, thus forcing resin to coat the fibers and fillers better, and even breaking up fiber bundles and filler lumps. The sound frequency and intensity would be adjusted to give the best mixing, and what frequency is best for the urethane raw materials, may not be best for the filler and fibers.


Unless otherwise noted, all percentages and parts are by weight.


The skilled artisan will recognize the interchangeability of various features from different embodiments. Similarly, the various features and steps discussed above, as well as other known equivalents for each such feature or step, can be mixed and matched by one of ordinary skill in this art to perform compositions or methods in accordance with principles described herein. Although the invention has been disclosed in the context of certain embodiments and examples, it will be understood by those skilled in the art that the invention extends beyond the specifically disclosed embodiments to other alternative embodiments and/or uses and obvious modifications and equivalents thereof. Accordingly, the invention is not intended to be limited by the specific disclosures of embodiments herein. Rather, the scope of the present invention is to be interpreted with reference to the claims that follow.

Claims
  • 1. A method of forming a polymeric composite material in an extruder, the method comprising: introducing at least one polyol and inorganic filler to a first conveying section of the extruder, wherein the inorganic filler comprises about 60 to about 85 weight percent of the polymeric composite material;transferring the at least one polyol and inorganic filler to a first mixing section of an extruder;mixing the at least one polyol and the inorganic filler in the first mixing section;transferring the mixed at least one polyol and inorganic filler to a second conveying section of the extruder;introducing a di- or poly-isocyanate to the second conveying section, wherein the ratio of the di- or poly-isocyanate to the at least one polyol, based on equivalent weight, is about 0.5:1 to about 1.5:1;transferring the mixed at least one polyol and inorganic filler and the di- or poly-isocyanate to a second mixing section;mixing the mixed at least one polyol and inorganic filler with the di- or poly-isocyanate in the second mixing section of the extruder to provide a composite mixture; andtransferring the composite mixture to an output end of the extruder,wherein the method further comprises introducing fibrous material in the second conveying section or in a third conveying section, the third conveying section being located between the second mixing section and a third mixing section.
  • 2. The method of claim 1, wherein the extruder is a twin screw extruder.
  • 3. The method of claim 1, wherein the inorganic filler is fly ash.
  • 4. The method of claim 1, wherein the first conveying section comprises one or more transfer screws.
  • 5. The method of claim 1, wherein the first mixing section comprises a slotted screw.
  • 6. The method of claim 1, wherein the first mixing section comprises a lobal screw.
  • 7. The method of claim 1, wherein the first mixing section comprises a lobal screw and a slotted screw.
  • 8. The method of claim 1, wherein the second conveying section comprises a transfer screw.
  • 9. The method of claim 1, wherein the second mixing section comprises a reverse screw.
  • 10. The method of claim 9, wherein the reverse screw comprises a reverse slotted screw.
  • 11. The method of claim 1, further comprising adding one or more components of the composite mixture in the first conveying section of the extruder, the one or more components being selected from the group consisting of a catalyst, a surfactant, and a blowing agent.
  • 12. The method of claim 11, further comprising blending the one or more components with the at least one polyol prior to introduction to the first conveying section.
  • 13. The method of claim 1, further comprising mixing the mixed at least one polyol and inorganic filler and the di- or poly-isocyanate in the third mixing section subsequent to the second conveying section and prior to the second mixing section.
  • 14. The method of claim 13, wherein the third mixing section comprises a reverse screw.
  • 15. The method of claim 1, wherein the method further comprises introducing fibrous material in the second conveying section, and mixing the fibrous material with the mixed at least one polyol and inorganic filler and the di- or poly-isocyanate in the second mixing section.
  • 16. The method of claim 1, wherein the inorganic filler comprises a particulate inorganic filler.
  • 17. A method of forming a polymeric composite material in an extruder, the method comprising: introducing at least one polyol, inorganic filler, and one or more additional components to a first conveying section of the extruder, wherein the inorganic filler comprises about 60 to about 85 weight percent of the polymeric composite material, wherein the one or more additional components is selected from the group consisting of a catalyst, a surfactant, and a blowing agent, wherein the extruder is a twin screw extruder, and wherein the first conveying section comprises one or more transfer screws;transferring the at least one polyol, the inorganic filler, and the one or more additional components to a first mixing section of an extruder, wherein the first mixing section comprises a lobal screw;mixing the at least one polyol, the inorganic filler, and the one or more additional components in the first mixing section;transferring the at least one polyol, the inorganic filler, and the one or more additional components to a second conveying section of the extruder, wherein the second conveying section comprises a transfer screw;introducing a di- or poly-isocyanate and a fibrous material to the second conveying section, wherein the ratio of the di- or poly-isocyanate to the at least one polyol, based on equivalent weight, is about 0.5:1 to about 1.5:1;transferring the at least one polyol, the inorganic filler, the one or more additional components, the di- or poly-isocyanate, and the fibrous material to a second mixing section, wherein the second mixing section comprises a reverse screw;mixing the mixed at least one polyol, the inorganic filler, the one or more additional components, the di- or poly-isocyanate, and the fibrous material in the second mixing section of the extruder to provide a composite mixture; andtransferring the composite mixture to an output end of the extruder.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 13/687,987, filed Nov. 28, 2012, which is a continuation of U.S. patent application Ser. No. 13/170,932, filed Jun. 28, 2011, which is a continuation of U.S. patent application Ser. No. 12/710,472, filed on Feb. 23, 2010, which is a continuation of U.S. patent application Ser. No. 11/691,456, filed on Mar. 26, 2007, which claims the priority benefit of provisional applications 60/785,726, filed Mar. 24, 2006 and 60/785,749, filed Mar. 24, 2006. All of these documents are hereby incorporated by reference in their entireties.

US Referenced Citations (401)
Number Name Date Kind
529535 Smith Nov 1894 A
529538 Vaughn Nov 1894 A
2526033 Lyon Oct 1950 A
2817875 Harris et al. Dec 1957 A
2983693 Sievers May 1961 A
3065500 Berner Nov 1962 A
3071297 Lee Jan 1963 A
3078512 De Haven Feb 1963 A
3223027 Soda et al. Dec 1965 A
3262151 Oxel Jul 1966 A
3269961 Bruson et al. Aug 1966 A
3308218 Weigand et al. Mar 1967 A
3466705 Richie Sep 1969 A
3528126 Ernst et al. Sep 1970 A
3566448 Ernst Mar 1971 A
3619268 Robertson et al. Nov 1971 A
3642964 Rausch, Jr. et al. Feb 1972 A
3644168 Bonk et al. Feb 1972 A
3698731 Jost et al. Oct 1972 A
3726624 Schwarz Apr 1973 A
3736081 Yovanovich May 1973 A
3738895 Paymal Jun 1973 A
3764247 Garrett et al. Oct 1973 A
3768937 Haga et al. Oct 1973 A
3774428 Derry et al. Nov 1973 A
3802582 Brock Apr 1974 A
3816043 Snelling et al. Jun 1974 A
3819574 Brown et al. Jun 1974 A
3824057 Kornylak et al. Jul 1974 A
3830776 Carsion et al. Aug 1974 A
3832429 Charpentier Aug 1974 A
3841390 DiBenedetto et al. Oct 1974 A
3843757 Ehrenfreund et al. Oct 1974 A
3852387 Bortnick et al. Dec 1974 A
3867494 Rood et al. Feb 1975 A
3878027 Troutner Apr 1975 A
3890077 Holman Jun 1975 A
3910179 Troutner Oct 1975 A
3917547 Massey Nov 1975 A
3917774 Sagane et al. Nov 1975 A
3928258 Alexander Dec 1975 A
3963679 Ullrich et al. Jun 1976 A
3981654 Rood et al. Sep 1976 A
3991005 Wallace Nov 1976 A
3999230 Bruning et al. Dec 1976 A
4005035 Deaver Jan 1977 A
4042314 Bruning et al. Aug 1977 A
4051742 Johansson et al. Oct 1977 A
4060579 Schmitzer et al. Nov 1977 A
4065410 Schäfer et al. Dec 1977 A
4073840 Saidla Feb 1978 A
4078032 Wenner Mar 1978 A
4092276 Narayan May 1978 A
4104094 Peterson Aug 1978 A
4107248 Schlieckmann Aug 1978 A
4120626 Keller Oct 1978 A
4127040 Moore et al. Nov 1978 A
4128369 Kemerer et al. Dec 1978 A
4137200 Wood et al. Jan 1979 A
4141862 Raden Feb 1979 A
4143759 Paradis Mar 1979 A
4149840 Tippmann Apr 1979 A
4153768 Blount May 1979 A
4160749 Schneider et al. Jul 1979 A
4163824 Saidla Aug 1979 A
4164439 Coonrod Aug 1979 A
4164526 Clay et al. Aug 1979 A
4165414 Narayan et al. Aug 1979 A
4180538 Morikawa et al. Dec 1979 A
4209605 Hoy et al. Jun 1980 A
4210572 Herman et al. Jul 1980 A
4214864 Tabler Jul 1980 A
4221877 Cuscurida et al. Sep 1980 A
4243755 Marx et al. Jan 1981 A
4247656 Janssen Jan 1981 A
4248975 Satterly Feb 1981 A
4251428 Recker et al. Feb 1981 A
4254002 Sperling et al. Mar 1981 A
4254176 Müller et al. Mar 1981 A
4256846 Ohashi et al. Mar 1981 A
4260538 Iseler et al. Apr 1981 A
4261946 Goyert et al. Apr 1981 A
4272377 Gerlach et al. Jun 1981 A
4275033 Schulte et al. Jun 1981 A
4276337 Coonrod Jun 1981 A
4282988 Hulber, Jr. Aug 1981 A
4284826 Aelony Aug 1981 A
4290248 Kemerer et al. Sep 1981 A
4300776 Taubenmann Nov 1981 A
4330494 Iwata et al. May 1982 A
4331726 Cleary May 1982 A
4338422 Jackson, Jr. et al. Jul 1982 A
4339366 Blount Jul 1982 A
4342847 Goyert et al. Aug 1982 A
4344873 Wick Aug 1982 A
4347281 Futcher et al. Aug 1982 A
4359359 Gerlach et al. Nov 1982 A
4359548 Blount Nov 1982 A
4366204 Briggs Dec 1982 A
4367259 Fulmer et al. Jan 1983 A
4376171 Blount Mar 1983 A
4381352 McBrayer Apr 1983 A
4382056 Coonrod May 1983 A
4383818 Swannell May 1983 A
4390581 Cogswell et al. Jun 1983 A
4395214 Phipps et al. Jul 1983 A
4396791 Mazzoni Aug 1983 A
4397983 Hill et al. Aug 1983 A
4412033 LaBelle et al. Oct 1983 A
4439548 Weisman Mar 1984 A
4450133 Cafarelli May 1984 A
4460737 Evans et al. Jul 1984 A
4465500 Motsinger et al. Aug 1984 A
4483727 Eickman Nov 1984 A
4489023 Proksa Dec 1984 A
4512942 Babbin et al. Apr 1985 A
4514162 Schulz Apr 1985 A
4532098 Campbell et al. Jul 1985 A
4540357 Campbell et al. Sep 1985 A
4568702 Mascioli Feb 1986 A
4576718 Reischi et al. Mar 1986 A
4581186 Larson Apr 1986 A
4595709 Reischi Jun 1986 A
4597927 Zeitler et al. Jul 1986 A
4600311 Mourrier Jul 1986 A
4604410 Altenberg Aug 1986 A
4649162 Roche et al. Mar 1987 A
4661533 Stobby Apr 1987 A
4677157 Jacobs Jun 1987 A
4680214 Frisch et al. Jul 1987 A
4714778 Burgoyne, Jr. et al. Dec 1987 A
4717027 Laure et al. Jan 1988 A
4780484 Schubert et al. Oct 1988 A
4780498 Goerrissen et al. Oct 1988 A
4795763 Gluck et al. Jan 1989 A
4802769 Tanaka Feb 1989 A
4826944 Hoefer et al. May 1989 A
4832183 Lapeyre May 1989 A
4835195 Rayfield et al. May 1989 A
4855184 Klun et al. Aug 1989 A
4892891 Close Jan 1990 A
4895352 Stumpf Jan 1990 A
4948859 Echols et al. Aug 1990 A
4995801 Hehi Feb 1991 A
5001165 Canaday et al. Mar 1991 A
5010112 Glicksman et al. Apr 1991 A
5028648 Famili et al. Jul 1991 A
5051222 Marten et al. Sep 1991 A
5053274 Jonas Oct 1991 A
5091436 Frisch et al. Feb 1992 A
5094798 Hewitt Mar 1992 A
5096993 Smith et al. Mar 1992 A
5102918 Moriya Apr 1992 A
5102969 Scheffler et al. Apr 1992 A
5114630 Newman et al. May 1992 A
5149722 Soukup Sep 1992 A
5149739 Lee Sep 1992 A
5159012 Doesburg et al. Oct 1992 A
5166301 Jacobs Nov 1992 A
5167899 Jezic Dec 1992 A
5185420 Smith et al. Feb 1993 A
5229138 Carotti Jul 1993 A
5252697 Jacobs et al. Oct 1993 A
5271699 Barre et al. Dec 1993 A
5296545 Heise Mar 1994 A
5300531 Weaver Apr 1994 A
5302634 Mushovic Apr 1994 A
5330341 Kemerer et al. Jul 1994 A
5331044 Lausberg et al. Jul 1994 A
5340300 Saeki et al. Aug 1994 A
5344490 Roosen et al. Sep 1994 A
5361945 Johanson Nov 1994 A
5369147 Mushovic Nov 1994 A
5375988 Klahre Dec 1994 A
5424013 Lieberman Jun 1995 A
5424014 Glorioso et al. Jun 1995 A
5432204 Farkas Jul 1995 A
5439711 Vu et al. Aug 1995 A
5453231 Douglas Sep 1995 A
5455312 Heidingsfeld et al. Oct 1995 A
5458477 Kemerer et al. Oct 1995 A
5491174 Grier et al. Feb 1996 A
5495640 Mullet et al. Mar 1996 A
5505599 Kemerer et al. Apr 1996 A
5508315 Mushovic Apr 1996 A
5522446 Mullet et al. Jun 1996 A
5527172 Graham, Jr. Jun 1996 A
5532065 Gubitz et al. Jul 1996 A
5536781 Heidingsfeld et al. Jul 1996 A
5554713 Freeland Sep 1996 A
5562141 Mullet et al. Oct 1996 A
5565497 Godbey et al. Oct 1996 A
5566740 Mullet et al. Oct 1996 A
5567791 Brauer et al. Oct 1996 A
5569713 Lieberman Oct 1996 A
5582840 Pauw et al. Dec 1996 A
5582849 Lupke Dec 1996 A
5604266 Mushovic Feb 1997 A
5611976 Kiler et al. Mar 1997 A
5621024 Eberhardt et al. Apr 1997 A
5631103 Eschbach et al. May 1997 A
5631319 Reese et al. May 1997 A
5643516 Raza et al. Jul 1997 A
5681915 Lechner et al. Oct 1997 A
5688890 Ishiguro et al. Nov 1997 A
5696205 Muller et al. Dec 1997 A
5700495 Kemerer et al. Dec 1997 A
5710231 Fogg et al. Jan 1998 A
5723506 Glorioso et al. Mar 1998 A
5728337 Yoshikawa et al. Mar 1998 A
5759695 Primeaux, II Jun 1998 A
5760133 Heidingsfeld et al. Jun 1998 A
5782283 Kendall Jul 1998 A
5783125 Bastone et al. Jul 1998 A
5783629 Srinivasan et al. Jul 1998 A
5795949 Daute et al. Aug 1998 A
5811506 Slagel Sep 1998 A
5817402 Miyake et al. Oct 1998 A
5836499 Mullet et al. Nov 1998 A
5844015 Steilen et al. Dec 1998 A
5908573 Chiles et al. Jun 1999 A
5908701 Jennings et al. Jun 1999 A
5929153 Mori et al. Jul 1999 A
5934352 Morgan Aug 1999 A
5945460 Ekart et al. Aug 1999 A
5952053 Colby Sep 1999 A
5962144 Primeaux, II Oct 1999 A
5981655 Heidingsfeld et al. Nov 1999 A
6000102 Lychou Dec 1999 A
2019269 Mullet et al. Feb 2000 A
6020387 Downey et al. Feb 2000 A
6040381 Jennings et al. Mar 2000 A
6051634 Laas et al. Apr 2000 A
6055781 Johanson May 2000 A
6062719 Busby et al. May 2000 A
6086802 Levera et al. Jul 2000 A
6096401 Jenkines Aug 2000 A
6103340 Kubo et al. Aug 2000 A
6107355 Horn et al. Aug 2000 A
6107433 Petrovic et al. Aug 2000 A
6120905 Figovsky Sep 2000 A
6136246 Rauwendaal et al. Oct 2000 A
6136870 Triolo et al. Oct 2000 A
6140381 Rosthauser et al. Oct 2000 A
6166109 Spitler et al. Dec 2000 A
6177232 Melisaris et al. Jan 2001 B1
6180192 Smith et al. Jan 2001 B1
6180686 Kurth Jan 2001 B1
RE37095 Glorioso et al. Mar 2001 E
6204312 Taylor Mar 2001 B1
6211259 Borden et al. Apr 2001 B1
6224797 Franzen et al. May 2001 B1
6234777 Sperry et al. May 2001 B1
6252031 Tsutsumi et al. Jun 2001 B1
6257643 Young Jul 2001 B1
6257644 Young Jul 2001 B1
6258310 Sardanopoli et al. Jul 2001 B1
6258917 Slagel Jul 2001 B1
6264462 Gallagher Jul 2001 B1
6284841 Friesner Sep 2001 B1
6294637 Braüer et al. Sep 2001 B1
6297321 Onder et al. Oct 2001 B1
6309507 Morikawa et al. Oct 2001 B1
6312244 Levera et al. Nov 2001 B1
6321904 Mitchell Nov 2001 B1
6329448 Gutsche et al. Dec 2001 B1
6343924 Klepsch Feb 2002 B1
6348514 Calabrese et al. Feb 2002 B1
6383599 Bell et al. May 2002 B1
6387504 Mushovic May 2002 B1
6409949 Tanaka et al. Jun 2002 B1
6429257 Buxton et al. Aug 2002 B1
6432335 Ladang et al. Aug 2002 B1
6433032 Hamilton Aug 2002 B1
6433121 Petrovic et al. Aug 2002 B1
6455605 Giorgini et al. Sep 2002 B1
6455606 Kaku et al. Sep 2002 B1
6458866 Oppermann et al. Oct 2002 B1
6465569 Kurth Oct 2002 B1
6467610 MacLachlan Oct 2002 B1
6469667 Fox et al. Oct 2002 B2
6485665 Hermanutz et al. Nov 2002 B1
6486224 Lin et al. Nov 2002 B2
6534617 Batt et al. Mar 2003 B1
6541534 Allen et al. Apr 2003 B2
6552660 Lisowski Apr 2003 B1
6555199 Jenkines Apr 2003 B1
6571935 Campbell et al. Jun 2003 B1
6573309 Reitenbach et al. Jun 2003 B1
6573354 Petrovic et al. Jun 2003 B1
6578619 Wright Jun 2003 B2
6579932 Schipper et al. Jun 2003 B1
6604848 Tanaka et al. Aug 2003 B2
6605343 Motoi et al. Aug 2003 B1
6613823 Battiste et al. Sep 2003 B1
6613827 Lundgard et al. Sep 2003 B2
6616886 Peterson et al. Sep 2003 B2
6617009 Chen et al. Sep 2003 B1
6624244 Kurth Sep 2003 B2
6641384 Bosler et al. Nov 2003 B2
6649084 Morikawa et al. Nov 2003 B2
6649667 Clatty Nov 2003 B2
6686435 Petrovic et al. Feb 2004 B1
6695902 Hemmings et al. Feb 2004 B2
6706774 Münzenberger et al. Mar 2004 B2
6767399 Peev et al. Jul 2004 B2
6769220 Friesner Aug 2004 B2
6832430 Ogawa et al. Dec 2004 B1
6849676 Shibano et al. Feb 2005 B1
6864296 Kurth Mar 2005 B2
6867239 Kurth Mar 2005 B2
6871457 Quintero-Flores et al. Mar 2005 B2
6881763 Kurth Apr 2005 B2
6881764 Doesburg et al. Apr 2005 B2
6903156 Müller et al. Jun 2005 B2
6908573 Hossan Jun 2005 B2
6916863 Hemmings et al. Jul 2005 B2
6962636 Kurth et al. Nov 2005 B2
6971495 Hedrick et al. Dec 2005 B2
6979477 Kurth et al. Dec 2005 B2
6979704 Mayer et al. Dec 2005 B1
6989123 Lee et al. Jan 2006 B2
6997346 Landers et al. Feb 2006 B2
7063877 Kurth et al. Jun 2006 B2
7132459 Buchel Nov 2006 B1
7160976 Lühmann et al. Jan 2007 B2
7188992 Mattingly, Jr. Mar 2007 B2
7196124 Parker et al. Mar 2007 B2
7211206 Brown et al. May 2007 B2
7267288 Wheeler, Jr. et al. Sep 2007 B2
7316559 Taylor Jan 2008 B2
7491351 Taylor et al. Feb 2009 B2
7651645 Taylor Jan 2010 B2
7763341 Brown Jul 2010 B2
7794224 Butteriss Sep 2010 B2
7794817 Brown Sep 2010 B2
20010009683 Kitahama et al. Jul 2001 A1
20020034598 Bonk et al. Mar 2002 A1
20020040071 Lin et al. Apr 2002 A1
20020045048 Bonk et al. Apr 2002 A1
20020048643 Bonk et al. Apr 2002 A1
20020086913 Roels et al. Jul 2002 A1
20020098362 Mushovic Jul 2002 A1
20020171164 Halterbaum et al. Nov 2002 A1
20020192456 Mashburn et al. Dec 2002 A1
20030004232 Ruede Jan 2003 A1
20030021915 Rohatgi et al. Jan 2003 A1
20030065045 Falke et al. Apr 2003 A1
20030083394 Clatty May 2003 A1
20030090016 Petrovic et al. May 2003 A1
20030143910 Mashburn et al. Jul 2003 A1
20030158365 Brauer et al. Aug 2003 A1
20030232933 Lagneaux et al. Dec 2003 A1
20040048055 Branca Mar 2004 A1
20040049002 Andrews et al. Mar 2004 A1
20040121161 Shugert et al. Jun 2004 A1
20040144287 Tardif et al. Jul 2004 A1
20040198900 Madaj Oct 2004 A1
20040266993 Evans Dec 2004 A1
20050011159 Standal et al. Jan 2005 A1
20050031578 Deslauriers et al. Feb 2005 A1
20050079339 Riddle Apr 2005 A1
20050131092 Kurth et al. Jun 2005 A1
20050131093 Kurth et al. Jun 2005 A1
20050161855 Brown et al. Jul 2005 A1
20050163969 Brown Jul 2005 A1
20050171243 Hemmings et al. Aug 2005 A1
20050182228 Kurth Aug 2005 A1
20050222303 Cernohous Oct 2005 A1
20050260351 Kurth et al. Nov 2005 A1
20050281999 Hoffman et al. Dec 2005 A1
20050287238 Taylor Dec 2005 A1
20060014891 Yang et al. Jan 2006 A1
20060041155 Casper Feb 2006 A1
20060041156 Casper et al. Feb 2006 A1
20060045899 Sarangapani Mar 2006 A1
20060071369 Butteriss Apr 2006 A1
20060105145 Brown May 2006 A1
20060115625 Brown Jun 2006 A1
20060186571 Brown Aug 2006 A1
20060186572 Brown Aug 2006 A1
20060217517 Daly Sep 2006 A1
20060270747 Griggs Nov 2006 A1
20060273486 Taylor et al. Dec 2006 A1
20070027227 Shutov Feb 2007 A1
20070037953 Geiger et al. Feb 2007 A1
20070052128 Taylor Mar 2007 A1
20070066697 Gilder et al. Mar 2007 A1
20070222105 Brown Sep 2007 A1
20070222106 Brown Sep 2007 A1
20070225391 Brown Sep 2007 A1
20070225419 Brown Sep 2007 A1
20080029925 Brown Feb 2008 A1
20080132611 Brown Jun 2008 A1
20090295021 Brown Dec 2009 A1
20100025882 Taylor et al. Feb 2010 A1
20100201014 Taylor Aug 2010 A1
20100230852 Brown Sep 2010 A1
20100264559 Brown Oct 2010 A1
20100292397 Brown Nov 2010 A1
20100296361 Brown Nov 2010 A1
Foreign Referenced Citations (53)
Number Date Country
2037130 Jan 2006 CA
1251596 Apr 2000 CN
1052991 May 2000 CN
1926282 Mar 2007 CN
2351844 Apr 1975 DE
1152306 May 1969 GB
1246940 Sep 1971 GB
2347933 Sep 2000 GB
51-89597 Aug 1976 JP
55-80456 Jun 1980 JP
355080456 Jun 1980 JP
58-132533 Aug 1983 JP
63-022819 Jan 1988 JP
63-202408 Aug 1988 JP
05-285941 Nov 1993 JP
06-322819 Nov 1994 JP
07-076395 Mar 1995 JP
07-313941 Dec 1995 JP
08-188634 Jul 1996 JP
11-171960 Jun 1999 JP
2001-326361 Nov 2001 JP
2004-131654 Apr 2004 JP
2005-138567 Jun 2005 JP
2002-0086327 Nov 2002 KR
226301 Mar 1990 NZ
124156 Dec 2008 SG
8103026 Oct 1981 WO
8705541 Sep 1987 WO
9100304 Jan 1991 WO
9207892 May 1992 WO
9319110 Sep 1993 WO
9324549 Dec 1993 WO
9425529 Nov 1994 WO
9427697 Dec 1994 WO
9711114 Mar 1997 WO
9744373 Nov 1997 WO
9808893 Mar 1998 WO
9939891 Aug 1999 WO
0017249 Mar 2000 WO
0172863 Oct 2001 WO
0201530 Jan 2002 WO
2004078900 Sep 2004 WO
2004113248 Dec 2004 WO
2005053938 Jun 2005 WO
2005056267 Jun 2005 WO
2005072187 Aug 2005 WO
2005072188 Aug 2005 WO
2005094255 Oct 2005 WO
2005123798 Dec 2005 WO
2006012149 Feb 2006 WO
2006137672 Dec 2006 WO
2007112104 Oct 2007 WO
2007112105 Oct 2007 WO
Non-Patent Literature Citations (183)
Entry
Bledzki, Andrzej K., et al., Impact Properties of Natural Fiber-Reinforced Epoxy Foams, Journal of Cellular Plastics, vol. 35, Nov. 1999, pp. 550-562.
Brydson, “Plastics Materials,” Butterworth-Heinermann, 7th ed., (1999), pp. 778-809.
Certel, G., Editor: Polyurethane Handbook 2nd Edition: 1994: pp. 136-137, 182-183, 252-253; Carl Hanser Verlag, Munich.
Chawla, K. K., Excerpts from “Composite Materials: Science and Engineering”, pp. 89-92, Spring Verlag, New York, NY (1987).
Elias, H., Excerpts from “An Introduction to Polymer Science”, 1997, pp. 408-409, VCH Publishers, Inc., New York, NY.
Frisch, K.C., et al., Hybrid IPN-Foam Composites, Cellular Polymers, Papers from a Three-day International Conference organized by Rapra Technology Limited, Mar. 20-22, 1991.
Guo et al., “Polyols and Polyurethanes from Hydroformylation of Soybean Oil,” Journal of Polymers and the Environment 10(1-2):49-52 (Apr. 2002).
Guo et al., “Rigid Urethane Foams from a Soy Polyol-Dod Hybrid,” USDA Agricultural Research Service, http://ars.usda.gov/research/publications/publications.htm?SEQ—NO—115=145249 (May 9, 2003).
Ionescu, “Chemistry and Technology of Polyols for Polyurethanes,” Rapra Technology Ltd,. (2005), pp. 535-550.
Klempner, D., ed., et al., Excerpts from Handbook of Polymeric Foams and Foam Technology, 2d ed., 2004, pp. 121-124, 126, 128, 129, Hanser Publishers, Munich.
Krishnamurthi, B, et al., Nano- and Micro-Fillers for Polyurethane Foams: Effect on Density and Mechanical Properties, Symposium, Sep. 30-Oct. 3, 2001, pp. 239-244, Polyurethanes Expo 2001, Columbus, OH.
Nosker, Thomas, J., et al., Fiber Orientation and Creation of Structural Plastic Lumber, Plastics Engineering, Jun. 1999, pp. 53-56.
Oertel, G., ed., Polyurethane Handbook Second Edition, pp. 136, 182-83, 252-53; Carl Hanser, Verlag, Munich (1994).
Petrovic et al., “Industrial Oil Products Program,” AOCS Archives (2007).
Pollack, “Soy vs. Petro Polyols a Life-Cycle Comparison,” Omni Tech International, Ltd. (Feb. 2004).
Randall et al., Excerpts from “The polyurethanes book”, pp. 1, 166-167, 210-213, 229-231, 263-264, Dunholm Publicity Ltd., United Kingdom (2002).
Shutov, F.A., Excerpts from Integral/Structural Polymer Foams: Technology, Properties and Applications, 1986, Pages including preface, 3-4, 8-9, 13, 23-25, 131-134, 153-158, 167, 171, 176-179, 256.
Woods, G., Excerpts from “The ICI Polyurethanes Book”, 1987, pp. 119-120, 127, 135-140, 158-159, The Netherlands.
Wypych, G., Excerpts from “Fillers”, 1993, pp. 4, 48, 57, ChemTech Publishing, Ontario Canada.
“Achieving a Wood Grain Finish Effect,” dated Dec. 11, 2003, http://www.sculpt.com/technogtes/woodgrainfinsih.htm.
Bayer AG, Bayferrox Iron Oxide Pigments: Manufacturing, Properties and Application Recommendations (date note available).
Bayer Material Science Product Information, ARCOL LG-56, Sep. 2003.
Bayer Material Science Product Information, MULTRANOL 3900, Jan. 2006.
Bayer Material Science Product Information, MULTRANOL 4035, Jan. 1997.
Bayer Material Science, Product Index—Polyurethane Raw Materials Prepolymers and Systems (2006).
Cleated Belt Puller, http://www.esi-extrusion.com/cbpuller.htm, Aug. 5, 2002.
Custom Downstream Systems, Excerpts from Catalog, 6 pages including cover page (date not available).
Deposition of Wade Brown vol. 1, pp. 1-212 (Nov. 17, 2005)—Redacted.
Deposition of Wade Brown vol. 2, pp. 1-256 (Nov. 18, 2005)—Redacted.
Deposition of Wade Brown vol. 3, pp. 1-302 (Nov. 21, 2005).
Deposition of Edward J. Butteriss vol. 1, pp. 1-501 (Dec. 16, 2005).
Deposition of Edward J. Butteriss vol. 2, pp. 1-195 (Dec. 28, 2005).
Deposition of Thomas E. Jurgensen, pp. 1-407 (Jan. 9, 2006).
Deposition of Daniel Klempner, pp. 1-120 (Jan. 6, 2006)—Redacted.
Deposition of Fyodor Shutov vol. 1, pp. 1-312 (Dec. 15, 2005)—Redacted.
Deposition of Fyodor Shutov vol. 2, pp. 1-182 (Dec. 28, 2005).
Deposition of John R. Taylor, pp. 1-388 (Dec. 7, 2005)—Redacted.
Deposition of Zachary R. Taylor vol. 1, pp. 1-221 (Dec. 29, 2005)—Redacted.
Deposition of Zachary R. Taylor vol. 2, pp. 1-285 (Jan. 5, 2006)—Redacted.
Energy Efficient Building Products from Waste Materials, Development and Demonstration Project, Proposal, Sep. 10, 1999, NYS Energy Research & Development Authority.
Foamed Recyclables: New Process Efficiently Transforms Solid Waste into Synthetic Building Materials, Jan. 2002, United States Department of Energy, Office of Industrial Technologies, Inventions and Innovations Program.
McMaster-Carr, Excerpts from Catalog, pp. 1052-1053 (date not available).
National Center for Environmental Research and Quality Assurance, Office of Research and Development, U.S. Environmental Protection Agency, Abstract of “The Use of Multi-Component Waste Products for Use in Roofing Materials,” May 9, 1998.
OSi Specialties, “Fomrez Tin Catalysts”, 3 pages (date not available).
“PVC Double Wall Corrugated Pipe Manufacturing Plant”, Korea Association of Machinery Industry (date not available).
RDN Manufacturing Co., Inc., 140, 148 & 160 Belt Pullers, http://www.rdnmfg.com/products/pull140—160.htm, Aug. 5, 2002.
Soyol Polyols and Systems Product Descriptions, www.soyoyl.com (26 pates) downloaded Apr. 26, 2007.
Summary of Opinions, Daniel Klempner, pp. 1-11 (Jan. 4, 2006).
Tenibac-Graphion, Inc., Texturing Technologists, Brochure, Oct. 1, 1997.
Urethane Soy Systems Company, Material Safety Data Sheet, SoyTherm 50 A-side, pp. 1-8, Jul. 29, 2005.
Urethane Soy Systems Company, Material Safety Data Sheet, SoyTherm 50 B-side, pp. 1-8, Jul. 29, 2005.
Past and present office actions, amendments, arguments, and other relevant documents or materials in the file history of co-pending U.S. Appl. No. 10/764,012, filed Jan. 23, 2004, entitled Filled Polymer Composite and Synthetic Building Material Compositions.
Past and present office actions, amendments, arguments, and other relevant documents or materials in the file history of co-pending U.S. Appl. No. 10/764,013, filed Jan. 23, 2004 entitled Continuous Forming System Utilizing Up to Six Endless Belts.
Past and present office actions, amendments, arguments, and other relevant documents or materials in the file history of co-pending U.S. Appl. No. 10/952,186, filed Sep. 28, 2004, entitled Apparatus for the Continuous Production of Plastic Composites.
Past and present office actions, amendments, arguments, and other relevant documents or materials in the file history of co-pending U.S. Appl. No. 11/065,171, filed Jun. 23, 2005, entitled Continuous Forming Apparatus for Three-Dimensional Foam Products.
Past and present office actions, amendments, arguments, and other relevant documents or materials in the file history of co-pending U.S. Appl. No. 11/317,494, filed Dec. 22, 2005, entitled Filled Polymer Composite and Synthetic Building Material Compositions.
Past and present office actions, amendments, arguments, and other relevant documents or materials in the file history of co-pending U.S. Appl. No. 11/317,958, filed Dec. 22, 2005, entitled Filled Polymer Composite and Synthetic Building Material Compositions.
Past and present office actions, amendments, arguments, and other relevant documents or materials in the file history of co-pending U.S. Appl. No. 11/407,416, filed Apr. 20, 2006, entitled Filled Polymer Composite and Synthetic Building Material Compositions.
Past and present office actions, amendments, arguments, and other relevant documents or materials in the file history of co-pending U.S. Appl. No. 11/407,661, filed Apr. 20, 2006, entitled Filled Polymer Composite and Synthetic Building Material Compositions.
Past and present office actions, amendments, arguments, and other relevant documents or materials in the file history of co-pending U.S. Appl. No. 11/417,385, filed May 4, 2006, entitled Continuous Forming System Utilizing Up to Six Endless Belts.
Past and present office actions, amendments, arguments, and other relevant documents or materials in the file history of co-pending U.S. Appl. No. 11/593,316, filed Nov. 6, 2006, entitled Method for Molding Three-Dimensional Foam Products Using a Continuous Forming Apparatus.
Past and present office actions, amendments, arguments, and other relevant documents or materials in the file history of co-pending U.S. Appl. No. 11/691,438, filed Mar. 26, 2007, entitled Polyurethane Composite Materials.
Past and present office actions, amendments, arguments, and other relevant documents or materials in the file history of co-pending U.S. Appl. No. 11/691,446, filed Mar. 26, 2007, entitled Extrusion of Polyurethane Composite Materials.
Past and present office actions, amendments, arguments, and other relevant documents or materials in the file history of co-pending U.S. Appl. No. 11/691,449, filed Mar. 26, 2007, entitled Polyurethane Composite Materials.
Past and present office actions, amendments, arguments, and other relevant documents or materials in the file history of co-pending U.S. Appl. No. 11/691,451, filed Mar. 26, 2007, entitiled Polyurethane Composite Materials.
Past and present office actions, amendments, arguments, and other relevant documents or materials in the file history of co-pending U.S. Appl. No. 11/691,456, filed Mar. 26, 2007, entitled Extrusion of Polyurethane Composite Materials.
Past and present office actions, amendments, arguments, and other relevant documents or materials in the file history of co-pending U.S. Appl. No. 11/841,901, filed Aug. 20, 2007, entitled Filled Polymer Composite and Synthetic Building Material Compositions.
Past and present office actions, amendments, arguments, and other relevant documents or materials in the file history of co-pending U.S. Appl. No. 12/361,488, filed Jan. 28, 2009, entitled Continuous Forming System Utilizing Up to Six Endless Belts.
Past and present office actions, amendments, arguments, and other relevant documents or materials in the file history of co-pending U.S. Appl. No. 12/473,138, filed May 27, 2009, entitled Extrusion of Polyurethane Composite Materials.
Past and present office actions, amendments, arguments, and other relevant documents or materials in the file history of co-pending U.S. Appl. No. 12/692,241, filed Jan. 22, 2010, entitled Method for Molding Three-Dimensional Foam Products Using a Continuous Forming Apparatus.
Past and present office actions, amendments, arguments, and other relevant documents or materials in the file history of co-pending U.S. Appl. No. 12/710,472, filed Feb. 23, 2010, entitled Extrusion of Polyurethane Composite Materials.
Past and present office actions, amendments, arguments, and other relevant documents or materials in the file history of co-pending U.S. Appl. No. 12/727,365, filed Mar. 19, 2010, entitled Filled Polymer Composite and Synthetic Building Material Compositions.
Past and present office actions, amendments, arguments, and other relevant documents or materials in the file history of co-pending U.S. Appl. No. 12/786,206, filed May 24, 2010, entitled Extrusion of Polyurethane Composite Materials.
Past and present office actions, amendments, arguments, and other relevant documents or materials in the file history of co-pending U.S. Appl. No. 12/843,265, filed Jul. 26, 2010, entitled Filled Polymer Composite and Synthetic Building Material Compositions.
Past and present office actions, amendments, arguments, and other relevant documents or materials in the file history of co-pending U.S. Appl. No. 13/010,646, filed Jan. 20, 2011, entitled Extrusion of Polyurethane Composite Materials.
Past and present office actions, amendments, arguments, and other relevant documents or materials in the file history of co-pending U.S. Appl. No. 13/112,670, filed May 20, 2011, entitled Continuous Forming System Utilizing Up to Six Endless Belts.
Past and present office actions, amendments, arguments, and other relevant documents or materials in the file history of co-pending U.S. Appl. No. 12/786,203, filed May 24, 2010, entitled Extrusion of Polyurethane Composite Materials.
Past and present office actions, amendments, arguments, and other relevant documents or materials in the file history of co-pending U.S. Appl. No. 13/152,190, filed Jun. 2, 2011, entitled Extrusion of Polyurethane Composite Materials.
Past and present office actions, amendments, arguments, and other relevant documents or materials in the file history of co-pending U.S. Appl. No. 13/155,066, filed Jun. 7, 2011, entitled Extrusion of Polyurethane Composite Materials.
Past and present office actions, amendments, arguments, and other relevant documents or materials in the file history of co-pending U.S. Appl. No. 13/170,932, filed Jun. 28, 2011, entitled Extrusion of Polyurethane Composite Materials.
Co-pending U.S. Appl. No. 11/417,385, filed May 4, 2006, titled Continuous Forming System Utilizing Up to Six Endless Belts, and assigned to the assignee of this application.
Co-pending U.S. Appl. No. 11/593,316, filed Nov. 6, 2006, titled Method for Molding Three-Dimensional Foam Products Using a Continuous Forming Apparatus, and assigned to the assignee of this application.
Office Action issued in U.S. Appl. No. 10/764,012 on Nov. 15, 2005.
Office Action issued in U.S. Appl. No. 10/764,012 on May 31, 2006.
Supplemental Information Disclosure Statement filed in U.S. Appl. No. 10/764,012 on Apr. 19, 2007.
Supplemental Information Disclosure Statement filed in U.S. Appl. No. 10/764,012 on Apr. 23, 2007.
Final Office Action issued in U.S. Appl. No. 10/764,012 on Jul. 31, 2007.
Office Action issued in U.S. Appl. No. 10/764,012 on Jan. 7, 2008.
Final Office Action issued in U.S. Appl. No. 10/764,012 on Jan. 13, 2009.
Office Action issued in U.S. Appl. No. 10/764,012 on Aug. 20, 2009.
Notice of Allowance issued in U.S. Appl. No. 10/764,012 on Apr. 21, 2010.
Office Action issued in U.S. Appl. No. 10/764,013 on Dec. 5, 2005.
Office Action issued in U.S. Appl. No. 10/764,013 on Jun. 7, 2006.
Office Action issued in U.S. Appl. No. 10/952,186 on Oct. 2, 2008.
Final Office Action issued in U.S. Appl. No. 10/952,186 on Apr. 16, 2009.
Office Action issued in U.S. Appl. No. 10/952,186 on Dec. 10, 2009.
Notice of Allowance issued in U.S. Appl. No. 10/952,186 on May 5, 2010.
Office Action issued in U.S. Appl. No. 11/165,071 on Aug. 7, 2006.
Notice of Allowance issued in U.S. Appl. No. 11/165,071 on Apr. 5, 2007.
Supplemental Information Disclosure Statement filed in U.S. Appl. No. 11/165,071 on Apr. 19, 2007.
Supplemental Information Disclosure Statement filed in U.S. Appl. No. 11/165,071 on Apr. 23, 2007.
Notice of Allowance issued in U.S. Appl. No. 11/165,071 on Aug. 16, 2007.
Office Action issued in U.S. Appl. No. 11/317,494 on Mar. 26, 2009.
Office Action issued in U.S. Appl. No. 11/317,494 on Sep. 21, 2009.
Notice of Allowance issued in U.S. Appl. No. 11/317,494 on May 6, 2010.
Notice of Allowance issued in U.S. Appl. No. 11/317,494 on Aug. 6, 2010.
Office Action issued in U.S. Appl. No. 11/317,958 on Oct. 6, 2008.
Final Office Action issued in U.S. Appl. No. 11/317,598 on May 28, 2009.
Office Action issued in U.S. Appl. No. 11/317,598 on Dec. 21, 2009.
Office Action issued in U.S. Appl. No. 11/407,416 on Nov. 7, 2008.
Office Action issued in U.S. Appl. No. 11/407,416 on Aug. 20, 2009.
Final Office Action issued in U.S. Appl. No. 11/407,416 on May 25, 2010.
Notice of Allowance issued in U.S. Appl. No. 11/407,416 on Apr. 4, 2011.
Office Action issued in U.S. Appl. No. 11/407,661 on Nov. 7, 2008.
Office Action issued in U.S. Appl. No. 11/407,661 on Aug. 20, 2009.
Final Office Action issued in U.S. Appl. No. 11/407,661 on May 27, 2010.
Notice of Allowance issued in U.S. Appl. No. 11/407,661 on Mar. 29, 2011.
Office Action issued in U.S. Appl. No. 11/417,385 on Aug. 24, 2007.
Final Office Action issued in U.S. Appl. No. 11/417,385 on Jul. 11, 2008.
Notice of Allowance issued in U.S. Appl. No. 11/417,385 on Oct. 8, 2008.
Office Action issued in U.S. Appl. No. 11/593,316 on Jun. 3, 2008.
Final Office Action issued in U.S. Appl. No. 11/593,316 on Feb. 5, 2009.
Notice of Allowance issued in U.S. Appl. No. 11/593,316 on Sep. 10, 2009.
Office Action issued in U.S. Appl. No. 11/691,438 on Jun. 10, 2009.
Final Office Action issued in U.S. Appl. No. 11/691,438 on Jun. 11, 2010.
Office Action issued in U.S. Appl. No. 11/691,438 on Feb. 18, 2011.
Office Action issued in U.S. Appl. No. 11/691,446 on Jul. 23, 2009.
Final Office Action issued in U.S. Appl. No. 11/691,446 on Feb. 24, 2010.
Office Action issued in U.S. Appl. No. 11/691,449 on Jun. 30, 2008.
Office Action issued in U.S. Appl. No. 11/691,449 on Apr. 17, 2009.
Office Action issued in U.S. Appl. No. 11/691,449 on Dec. 30, 2009.
Final Office Action issued in U.S. Appl. No. 11/691,449 on Jul. 23, 2010.
Office Action issued in U.S. Appl. No. 11/691,449 on Feb. 24, 2011.
Office Action issued in U.S. Appl. No. 11/691,449 on Nov. 9, 2011.
Winkler, Non-Final Rejection of U.S. Appl. No. 11/691,451, Jun. 27, 2008.
Office Action issued in U.S. Appl. No. 11/691,451 on Jul. 27, 2008.
Final Office Action issued in U.S. Appl. No. 11/691,451 on May 12, 2009.
Office Action issued in U.S. Appl. No. 11/691,451 on Dec. 30, 2009.
Office Action issued in U.S. Appl. No. 11/691,451 on Feb. 4, 2011.
Office Action issued in U.S. Appl. No. 11/691,456 on Sep. 23, 2009.
Office Action issued in U.S. Appl. No. 11/841,901 on Jul. 9, 2009.
Final Office Action issued in U.S. Appl. No. 11/841,901 on Mar. 17, 2010.
Office Action issued in U.S. Appl. No. 12/361,488 on Jun. 30, 2010.
Final Office Action issued in U.S. Appl. No. 12/361,488 on Nov. 23, 2010.
Office Action issued in U.S. Appl. No. 12/473,138 on Dec. 8, 2010.
Office Action issued in U.S. Appl. No. 12/692,241 on Aug. 5, 2011.
Office Action issued in U.S. Appl. No. 12/710,472 on Dec. 29, 2010.
Office Action issued in U.S. Appl. No. 12/727,365 on Oct. 21, 2010.
Final Office Action issued in U.S. Appl. No. 12/727,365 on Jul. 12, 2011.
Office Action issued in U.S. Appl. No. 12/786,206 on Dec. 3, 2010.
Office Action issued in U.S. Appl. No. 12/843,265 on Nov. 26, 2010.
Final Office Action issued in U.S. Appl. No. 12/843,265 on Jul. 18, 2011.
International Preliminary Report on Patentability and Written Opinion of the International Searching Authority issued in International Application No. PCT/US2005/001569 on Aug. 3, 2006.
International Search Report for PCT/US05/01570 mailed on Jan. 25, 2006.
International Preliminary Report on Patentability and Written Opinion of the International Searching Authority for PCT/US05/01570, mailed Aug. 3, 2006.
International Search Report and Written Opinion of the International Searching Authority for International Application No. PCT/US05/22076, mailed Aug. 29, 2006.
International Preliminary Report on Patentability and Written Opinion of the International Searching Authority for International Application No. PCT/US05/22076, mailed Jan. 11, 2007.
International Search Report and Written Opinion of the International Searching Authority for International Application No. PCT/US2007/007468 mailed Nov. 19, 2007.
International Preliminary Report on Patentability and Written Opinion of the International Searching Authority for International Application No. PCT/US2007/007468 mailed Oct. 9, 2008.
Partial International Search Report issued in International Application No. PCT/US2007/007470 on Nov. 19, 2007.
International Search Report and Written Opinion of the International Searching Authority for International Application No. PCT/US2007/007470, mailed Feb. 26, 2008.
International Preliminary Report on Patentability and Written Opinion of the International Searching Authority for International Application No. PCT/US2007/007470, mailed Oct. 9, 2008.
Office Action issued in Australian Application No. 2005208713 on May 6, 2009.
Office Action issued in Australian Application No. 2005208714 on Jun. 26, 2009.
Office Action issued in Australian Application No. 2005267399 on Oct. 6, 2009.
Office Action issued in Chinese Application No. 20058000030186 on Apr. 4, 2008.
Office Action issued in Chinese Application No. 20058000030186 on Oct. 31, 2008.
Office Action issued in Chinese Application No. 20058000030186 on Apr. 24, 2009.
Notification of Decision of Rejection issued in Chinese Application No. 20058000030186 on Sep. 11, 2009.
Office Action issued in Chinese Application No. 2005800206677 on Aug. 7, 2009.
Office Action issued in Chinese Application No. 2005800206677 on Mar. 3, 2011.
European Supplemental Search Report for European Application No. 05711595.8 dated Jan. 22, 2009.
Office Action issued in European Application No. 05711595.8 on May 11, 2009.
European Search Report for EP Patent App. No. 05762651.7 dated Feb. 24, 2009.
European Search Report for EP Patent App. No. 05762651.7 dated Mar. 11, 2009.
Office Action issued in European Application No. 05762651.7 on Oct. 2, 2009.
Extended European Search Report and European Search Opinion for European Patent Application No. 11165942.1 dated Jul. 21, 2011.
Office Action issued in Indonesian Application No. W-00 2006 02034 on May 26, 2008.
Office Action issued in Japanese Application No. 2006-551203 on Nov. 29, 2010.
Office Action issued in New Zealand Application No. 548626 on Feb. 23, 2009.
Office Action issued in New Zealand Application No. 548628 on Jan. 26, 2009.
Written Opinion issued by the Austrian Patent Office on Jul. 31, 2007 in Singapore Application No. 200604927-4.
Examination Report issued by the Austrian Patent Office on Jun. 20, 2008 in Singapore Application No. 200604927-4.
Related Publications (1)
Number Date Country
20140155504 A1 Jun 2014 US
Provisional Applications (2)
Number Date Country
60785749 Mar 2006 US
60785726 Mar 2006 US
Continuations (4)
Number Date Country
Parent 13687987 Nov 2012 US
Child 14180805 US
Parent 13170932 Jun 2011 US
Child 13687987 US
Parent 12710472 Feb 2010 US
Child 13170932 US
Parent 11691456 Mar 2007 US
Child 12710472 US