The present disclosure relates generally to extruded shapes which may be used as a structural component and more specifically, to an improved metal extrusion.
Extruded metal components, for example aluminum extrusions are typically used to construct a frame or a framework. Over the years, framework assemblies have developed from wooden constructions to more advanced designs employing aluminum (or other light metal) extrusions. As commodity prices have increased the cost of manufacture and the pricing of metal extrusions has increased significantly. There is a need for a lighter and stronger metal extrusion that can be used as a structural component in a framework assembly that is also less expensive.
By the present disclosure an extrusion that may be used in the construction of a framework assembly is provided that is lighter and stronger than previously available extrusions. The present extrusion is also less expensive, using less material to form the extrusion. In various aspects, the extrusion may be a metal extrusion formed from aluminum and/or steel.
Other systems, methods, features, and advantages of the present disclosure for a micro-structural component, in particular a metal extrusion member to be used as a structural component, will be or become apparent to one with skill in the art upon examination of the following drawings and detailed description. It is intended that all such additional systems, methods, features, and advantages be included within this description, be within the scope of the present disclosure, and be protected by the accompanying claims.
Many aspects of the disclosure can be better understood with reference to the following drawings. The components in the drawings are not necessarily to scale, emphasis instead being placed upon clearly illustrating the principles of the present disclosure. Moreover, in the drawings, like reference numerals designate corresponding parts throughout the several views.
Described below are various embodiments of the present systems and methods for a structural component. Although particular embodiments are described, those embodiments are mere exemplary implementations of the system and method. One skilled in the art will recognize other embodiments are possible. All such embodiments are intended to fall within the scope of this disclosure. Moreover, all references cited herein are intended to be and are hereby incorporated by reference into this disclosure as if fully set forth herein. While the disclosure will now be described in reference to the above drawings, there is no intent to limit it to the embodiment or embodiments disclosed herein. On the contrary, the intent is to cover all alternatives, modifications and equivalents included within the spirit and scope of the disclosure.
Shown in
The extrusion 10 further includes a top member 26 extending from and connecting the second ends of each of the side members 22 and 24. The top member, thus, spans the two side members 22 and 24. In any one or more embodiments the first and second side members 22 and 24 may extend perpendicularly from base member 20. Similarly top member 26 may extend perpendicularly from and adjacent to the second ends of the side members 22 and 24. The top member 26 may be parallel to the base member 20. Likewise the side members 22 and 24 may be parallel to each other. In such embodiments the extrusion may be generally quadrangular in cross-section, through it need not be. In various aspects it may be generally square or rectangular in cross-section. In various aspects, extrusion 10 is generally a four-sided structural component.
As depicted, a web member 12 contactably extends between bottom member 20 and top member 26. Web member 12 may bisect the interior of extrusion 10, thus forming a first interior cavity 14 and a second interior cavity 16. As depicted, web member 12 is centrally located along base and top members 20 and 26, equidistant between side members 22 and 24, such that cavities 14 and 16 have approximately the same space or area. Web member 12, however, need not be equidistantly positioned between side members 22 and 24 and may instead be positioned off center or asymmetrically within extrusion 10 such that cavities 14 and 16 are not equally dimensioned. In the extrusion of
The extrusion 10 may include other structural and functional elements. The first and second side members 22 and 24, as well as base member 20 and top member 26 may contain indentations 28 which may serve to longitudinally strengthen extrusion 10. As depicted indentations 28 may be beveled indentations. The indentations, however, need not be beveled. Any one or more of the indentations may have a v-shaped, u-shaped, w-shaped or other shaped cross-section. Moreover, the indentations 28 need not each have the same cross-sectional dimensions.
As depicted in
While the above embodiments disclose specific extrusions with walls that will remain in substantially parallel relationship with each other during bending, numerous other operable variations can be made by modifying, multiplying, adjusting, enhancing and/or otherwise combining the specific elements that provide the structural integrity of each of the disclosed extrusions.
Web member 12 provides various advantages. For example, it may allow a lighter, yet stronger metal extrusion for use in construction of a framework assembly. While the use of a single straight web member 12 may be sufficient for certain, for example bending applications, other situations may require greater bending tolerance, and thus, other additional means of reinforcement. In these embodiments, greater strength may typically be achieved if these additional reinforcement means are closely associated with the web member 12. However, it is not always required.
Another means in addition to web member 12 to maintain the structural integrity of the walls defining extrusion 10 in substantially parallel relationship with each other during bending may involve the use of the indentations 28 (which may be external or internal) in any one or more of the extrusion's side, top and base members. Such indentations may reduce or change the pertinent tensions and shearing forces urging the sidewalls to inwardly collapse upon bending and thus impede the narrowing of the respective channels. A non-limiting example of the use of indentations is seen in the extrusion cross-section illustrated in
Depicted in
Still another means to help maintain the walls defining the channel in substantially parallel relationship with each other during bending, is to incorporate internal longitudinal bracing at the junctures of extrusion components. This bracing can be utilized where the side members meet the base, and/or top member and/or between the web 12. A typical location for this means of reinforcement would be inside all four corners 15a, 15b, 15c, 15d of
It is envisioned that other means of reinforcing extrusions can be derived from the means disclosed herein in accordance with the present disclosure.
It should be emphasized that the above-described embodiments are merely examples of possible implementations. Many variations and modifications may be made to the above-described embodiments without departing from the principles of the present disclosure. All such modifications and variations are intended to be included herein within the scope of this disclosure and protected by the following claims.
Number | Name | Date | Kind |
---|---|---|---|
3391816 | Swett | Jul 1968 | A |
D218295 | Maclillan et al. | Aug 1970 | S |
4275746 | Gruber | Jun 1981 | A |
5044131 | Fisher | Sep 1991 | A |
5076033 | Patsy, Jr. | Dec 1991 | A |
5224306 | Cramer | Jul 1993 | A |
5242004 | Stilling | Sep 1993 | A |
5535565 | Majnaric | Jul 1996 | A |
5545488 | Burke | Aug 1996 | A |
5555695 | Patsy, Jr. | Sep 1996 | A |
5577352 | Fisher | Nov 1996 | A |
5794400 | Fisher et al. | Aug 1998 | A |
5906078 | Cramer | May 1999 | A |
6024241 | Keillor | Feb 2000 | A |
6499655 | Moen | Dec 2002 | B1 |
6668512 | Ray | Dec 2003 | B2 |
7699091 | Fisher et al. | Apr 2010 | B2 |
Number | Date | Country | |
---|---|---|---|
20140272210 A1 | Sep 2014 | US |