The present disclosure relates to display systems, virtual reality, and augmented reality imaging and visualization systems and, more particularly, to depth plane selection based in part on a user's interpupillary distance.
Modern computing and display technologies have facilitated the development of systems for so called “virtual reality”, “augmented reality”, or “mixed reality” experiences, wherein digitally reproduced images or portions thereof are presented to a user in a manner wherein they seem to be, or may be perceived as, real. A virtual reality, or “VR”, scenario typically involves presentation of digital or virtual image information without transparency to other actual real-world visual input; an augmented reality, or “AR”, scenario typically involves presentation of digital or virtual image information as an augmentation to visualization of the actual world around the user; a mixed reality, or “MR”, related to merging real and virtual worlds to produce new environments where physical and virtual objects co-exist and interact in real time. As it turns out, the human visual perception system is very complex, and producing a VR, AR, or MR technology that facilitates a comfortable, natural-feeling, rich presentation of virtual image elements amongst other virtual or real-world imagery elements is challenging. Systems and methods disclosed herein address various challenges related to VR, AR and MR technology.
Various examples of depth plane selection in a mixed reality system are disclosed.
A display system can be configured to project light to an eye of a user to display virtual image content in a vision field of said user. The user's eye may have a cornea, an iris, a pupil, a lens, a retina, and an optical axis extending through said lens, pupil, and cornea. The display system can include a frame configured to be supported on a head of the user, a head-mounted display disposed on the frame, said display configured to project light into said user's eye to display virtual image content to the user's vision field at different amounts of at least one of divergence and collimation and thus the displayed virtual image content appears to originate from different depths at different periods of time, one or more eye tracking cameras configured to image the user's eye, and processing electronics in communication with the display and the one or more eye tracking cameras, the processing electronics configured to obtain an estimate of a center of rotation of said eye based on images of said eye obtained with said one or more eye tracking cameras.
Various examples of display systems that project light to one or more eyes of a user to display virtual image content in a vision field of said user are described herein such as the examples enumerated below:
A display system configured to project light to an eye of a user to display virtual image content in a vision field of said user, said eye having a cornea, an iris, a pupil, a lens, a retina, and an optical axis extending through said lens, pupil, and cornea, said display system comprising:
The display system of Example 1, further comprising one or more light sources disposed on said frame with respect to said user's eye to illuminate said user's eye, said one or more eye tracking cameras forming images of said eye using said light from said one or more light sources.
The display system of Example 1 or 2, wherein said one or more light sources comprises at least two light sources disposed on said frame with respect to said user's eye to illuminate said user's eye.
The display system of Example 1 or 3, wherein said one or more light sources comprises infrared light emitters.
The display system of any of the Examples 1 to 4, wherein one or more light sources form one or more glints on said eye and said processing electronics is configured to determine a location of said cornea based on said one or more glints.
The display system of any of the Examples 1 to 5, wherein said cornea has associated therewith a cornea sphere having a center of curvature and said processing electronics is configured to determine a location of said center of curvature of said cornea sphere.
The display system of Example 5, wherein said cornea has associated therewith a cornea sphere having a center of curvature and said processing electronics is configured to determine a location of said center of curvature of said cornea sphere based on said one or more glints.
The display system of any of the Examples above, wherein said one or more eye tracking camera is configured to image said pupil of said eye.
The display system of any of the Examples above, wherein said processing electronics is configured to determine the location of said center of said pupil.
The display system of any of the Examples above, wherein said processing electronics is configured to determine at least a portion of a boundary between said iris and said pupil.
The display system of Example 10, wherein said processing electronics is configured to determine a center of said boundary between said iris and said pupil.
The display system of any of the Examples above, wherein said processing electronics is configured to determine a location of said center of said pupil in three-dimensional space with respect to a center of curvature of said cornea.
The display system of any of the Examples above, wherein said processing electronics is configured to determine a location and orientation of said optical axis.
The display system of Example 12, wherein said processing electronics is configured to determine a location and orientation of said optical axis based on a location of said center of said pupil in three-dimensional space.
The display system of any of the Examples above, wherein said processing electronics is configured to determine said location and orientation of said optical axis based on a location of said center of said pupil in three-dimensional space with respect to a center of curvature of said cornea.
The display system of any of the Examples above, wherein said processing electronics is configured to determine a location of said center of rotation of said eye based on a center of curvature of said cornea.
The display system of any of the Examples above, wherein said processing electronics is configured to determine a location of said center of rotation of said eye based on a center of curvature of said cornea and a location and orientation of said optical axis.
The display system of Example 17, wherein said processing electronics is configured to determine the location of said center of rotation of said eye by translating a particular distance along said optical axis from said center of curvature of said cornea.
The display system of Example 18, wherein said particular distance from said center of curvature to said center of rotation is between 4.0 mm and 6.0 mm
The display system of Example 18 or 19, wherein said particular distance from said center of curvature to said center of rotation is about 4.7 mm.
The display system of Example 18 or 19, wherein said particular distance is fixed.
The display system of Example 18 or 19, wherein said processing electronics is configured to determine the particular distance based at least on one or more images of said eye previously obtained with said one or more eye tracking cameras.
The display system of any of the Examples above, wherein said processing electronics is configured to determine a location and orientation of a visual axis, offset from said optical axis, based on said location and orientation of said optical axis.
The display system of any of the Examples above, wherein said processing electronics is configured to determine a location and orientation of a visual axis based on an angular rotation with respect to said optical axis.
The display system of any of the Examples above, wherein said processing electronics is configured to determine a location and orientation of a visual axis based on an angular rotation of between 4.0° and 6.5° with respect to said optical axis.
The display system of any of the Examples above, wherein said processing electronics is configured to determine a location and orientation of a visual axis based on an angular rotation of about 5.2° with respect to said optical axis.
The display system of any of the Examples above, wherein said processing electronics are configured to determine a location and orientation of a visual axis based at least on one or more images of said eye previously obtained with said one or more eye tracking cameras.
The display system of any of the Examples above, wherein said processing electronics is configured to determine a center of rotation of said eye based multiple determinations of said location of said optical axis or visual axis over a period of time during which said eye is rotating.
The display system of any of the Examples above, wherein said processing electronics is configured to determine said center of rotation by identifying a region of intersection, convergence, or close proximity of multiple determinations of said location of said optical axis or a visual axis over a period of time during which said eye is rotating.
The display system of any of the Examples above, wherein said processing electronics is configured to determine a vergence distance of said user where left and right eyes of a user are gazing based on a determination of the location and orientation of said optical axes for said left and right eyes of the user.
The display system of any of the Examples above, wherein said processing electronics is configured to determine a vergence distance of said user where left and right eyes of a user are gazing based on a determination of the location and orientation of said visual axes for said left and right eyes of the user.
The display system of any of the Examples above, wherein said processing electronics is configured to determine a vergence distance where left and right eyes of a user are gazing based on identifying a region of intersection, convergence, or close proximity of said visual axes for said left and right eyes of the user.
The display system of any of the Examples above, wherein said processing electronics is configured to determine a vergence distance where left and right eyes of a user are gazing by projecting the visual axes for said left and right eyes onto a horizontal plane and identifying a region of intersection, convergence, or close proximity of said projections of the visual axes for said left and right eyes onto a horizontal plane.
The display system of any of the Examples above, wherein said processing electronics is configured to determine the relative amounts of at least one of divergence, and collimation to project image content based on a determination of said vergence distance.
The display system of any of the Examples above, wherein said processing electronics includes electronics on said frame.
The display system of any of the Examples above, wherein said processing electronics includes electronics on said frame and electronics disposed at a location remote from said frame.
The display system of any of the Examples above, wherein said processing electronics includes electronics on said frame and electronics on a belt pack.
The display system of any of the Examples above, wherein at least a portion of said display is transparent and disposed at a location in front of the user's eye when the user wears said head-mounted display such that said transparent portion transmits light from a portion of the environment in front of the user and said head-mounted display to the user's eye to provide a view of said portion of the environment in front of the user and said head-mounted display.
The display system of any of the Examples above, wherein said head-mounted display receives light from a portion of the environment in front of the user at a first amount of divergence and transmits the light from the portion of the environment in front of the user to the user's eye with a second amount of divergence that is substantially similar to the first amount of divergence.
The display system of any of the Examples above, wherein the processing electronics is configured to obtain the estimate of the center of rotation by filtering, averaging, applying a Kalman filter, or any combinations thereof a plurality of estimated center of rotation positions.
The display system of any of the Examples above, wherein said processing electronics is configured to present said virtual image content to said user's eye that is rendered as if captured by a camera having an aperture at the determined position of the center of rotation of said user's eye.
The display system of any of the Examples above, wherein said processing electronics is configured to use a render camera at said center of rotation to render virtual images to be presented to said eye.
The display system of any of the Examples above, wherein said processing electronics is configured to use a render camera configured to render virtual images to be presented to said eye that are rendered as if captured by a camera having an aperture closer to said the center of rotation than said retina of said eye.
The display system of any of the Examples above, wherein said processing electronics is configured to use a render camera configured to render virtual images to be presented to said eye that are rendered as if captured by a camera having an aperture at said the center of rotation of said eye.
The display system of any of the Examples above, wherein said processing electronics is configured to use a render camera at said center of rotation to render virtual images to be presented to said eye, said render camera modeled with an aperture at said center of rotation of said eye.
A display system configured to project light to an eye of a user to display virtual image content in a vision field of said user, said eye having a cornea, an iris, a pupil, a lens, a retina, and an optical axis extending through said lens, pupil, and cornea, said display system comprising:
The display system of any of the Examples above, wherein said processing electronics is configured to present said virtual image content to said user's eye that are rendered as if captured by a camera having an aperture closer to said center of perspective than said retina.
The display system of any of the Examples above, wherein said processing electronics is configured to present said virtual image content to said user's eye that are rendered as if captured by a camera having an aperture closer to said center of perspective than a center of rotation of the eye.
The display system of any of the Examples above, wherein said processing electronics is configured to present said virtual image content to said user's eye that are rendered as if captured by a camera having an aperture at said center of perspective.
The display system of any of the Examples above, wherein said center of perspective is not located at said pupil of said eye.
The display system of any of the Examples above, wherein the processing electronics is configured to obtain an estimate of said user's eye pose over time and wherein the processing electronics adjust the position of the render camera based at least in part upon the user's eye pose.
The display system of any of the Examples above, wherein the processing electronics is configured to track said user's eye pose over time and wherein the position of the render camera is adjusted over time in response to changes in said user's eye pose over time.
The display system of any of the Examples above, wherein the processing electronics is configured to obtain the estimate of the center of perspective by filtering a plurality of estimated center of perspective positions.
The display system of any of the Examples above, wherein the processing electronics is configured to obtain the estimate of the center of perspective by averaging and/or applying a Kalman filter to a plurality of estimated center of perspective positions.
The display system of any of the Examples above, wherein the center of perspective comprises a position within the anterior chamber of said user's eye.
The display system of any of the Examples above, wherein the center of perspective comprises a position in front of said pupil of said user's eye.
The display system of any of the Examples above, wherein the center of perspective comprises a position that is between 1.0 mm and 2.0 mm in front of said pupil of said user's eye.
The display system of any of the Examples above, wherein the center of perspective comprises a position that is about 1.0 mm in front of said pupil of said user's eye.
The display system of any of the Examples above, wherein the center of perspective comprises a position that is between 0.25 mm and 1.0 mm in front of said pupil of said user's eye.
The display system of any of the Examples above, wherein the center of perspective comprises a position that is between 0.5 mm and 1.0 mm in front of said pupil of said user's eye.
The display system of any of the Examples above, wherein the center of perspective comprises a position that is between 0.25 mm and 0.5 mm in front of said pupil of said user's eye.
The display system of any of the Examples above, wherein the center of perspective lies along the optical axis of said eye and wherein said processing electronics are further configured to obtain the position estimate of the center of perspective by obtaining a position estimate of the optical axis of said eye.
The display system of any of the Examples above, wherein the center of perspective lies along the optical axis of said eye at a position between an outer surface of the cornea and the pupil of said eye and wherein said processing electronics are further configured to obtain the position estimate of the center of perspective by obtaining a position estimate of the optical axis of said eye.
The display system of any of the Examples above, wherein the center of perspective lies along the optical axis of said eye at a position between an outer surface of the cornea and the pupil of said eye and wherein said processing electronics are further configured to obtain the position estimate of the center of perspective by obtaining a position estimate of the optical axis of said eye and a position estimate of a center of rotation of said eye, the cornea of said eye, the iris of said eye, the retina of said eye, and the pupil of said eye or any combinations thereof.
The display system of any of the Examples above, wherein said processing electronics includes electronics on said frame.
The display system of any of the Examples above, wherein said processing electronics includes electronics on said frame and electronics disposed at a location remote from said frame.
The display system of any of the Examples above, wherein said processing electronics includes electronics on said frame and electronics on a belt pack.
The display system of any of the Examples above, wherein at least a portion of said display is transparent and disposed at a location in front of the user's eye when the user wears said head-mounted display such that said transparent portion transmits light from a portion of the environment in front of the user and said head-mounted display to the user's eye to provide a view of said portion of the environment in front of the user and said head-mounted display.
The display system of any of the Examples above, further comprising one or more light sources disposed on said frame with respect to said user's eye to illuminate said user's eye, said one or more eye tracking cameras capturing images of said eye using said light from said one or more light sources.
The display system of any of the Examples above, wherein said one or more light sources comprises at least two light sources disposed on said frame with respect to said user's eye to illuminate said user's eye.
The display system of any of the Examples above, wherein said one or more light sources comprises at least three light sources disposed on said frame with respect to said user's eye to illuminate said user's eye.
The display system of any of the Examples above, wherein said one or more light sources comprises infrared light emitters.
The display system of any of the Examples above, wherein said one or more light sources form one or more glints on said eye and said processing electronics is configured to determine the position of the center of curvature of said cornea based on said one or more glints.
The display system of any of the Examples above, wherein said one or more light sources form one or more glints on said eye and said processing electronics is configured to determine a three-dimensional position of the center of curvature of said cornea based on said one or more glints.
The display system of any of the Examples above, wherein said one or more eye-tracking cameras are further configured to image said pupil of the user's eye and wherein said processing electronics are further configured to determine the position of said pupil of said eye based at least on the image of said pupil from the one or more eye-tracking cameras.
The display system of any of the Examples above, wherein said one or more eye-tracking cameras are further configured to image said pupil of the user's eye and wherein said processing electronics are further configured to determine a three-dimensional position of said pupil of said eye based at least on the image of said pupil from the one or more eye-tracking cameras.
The display system of any of the Examples above, wherein said one or more eye-tracking cameras are further configured to image said pupil of the user's eye and wherein said processing electronics are further configured to determine the position of said pupil of said eye based on the position of the center of curvature of said cornea and based on the image of said pupil from the one or more eye-tracking cameras.
The display system of any of the Examples above, wherein said processing electronics is configured to determine the optical axis of said eye based on the three-dimensional position of the center of curvature of said cornea and based on the three-dimensional position of said pupil.
The display system of any of the Examples above, wherein said processing electronics is configured to determine a visual axis of said eye based on the optical axis.
The display system of any of the Examples above, wherein said processing electronics is configured to determine the visual axis of said eye based on the optical axis and the three-dimensional position of at least one of the center of curvature of said cornea, said pupil or both.
The display system of any of the Examples above, wherein said processing electronics is configured to determine a three-dimensional position of the center of rotation of said eye based on the three-dimensional position of the center of curvature of said cornea.
The display system of any of the Examples above, wherein said processing electronics is configured to determine a three-dimensional position of the center of rotation of said eye based on the three-dimensional position of the center of curvature of said cornea and based on said optical axis.
The display system of any of the Examples above, wherein said processing electronics is configured to determine the distance between said eye and the additional eye of said user based at least on the three-dimensional position of the center of rotation of said eye.
The display system of any of the Examples above, wherein said processing electronics is configured to determine an interpupillary distance between said eye and the additional eye of said user based at least on the three-dimensional position of the center of rotation of said eye.
The display system of any of the Examples above, wherein said processing electronics is configured to determine the vergence distance of said user based at least on the optical axis of said eye.
The display system of any of the Examples above, wherein said processing electronics is configured to determine the vergence distance of said user based at least on the optical axis of said eye and on a determined optical axis of the additional eye of said user.
The display system of any of the Examples above, wherein said processing electronics is configured to determine the vergence distance of said user based at least on the visual axis of said eye and on a determined visual axis of the additional eye of said user.
The display system of any of the Examples above, wherein said display is configured to project collimated light into said user's eye.
The display system of any of the Examples above, wherein said display is configured to project collimated light corresponding to an image pixel into said user's eye at a first period of time and divergent light corresponding to said image pixel into said user's eye at a second period of time.
The display system of any of the Examples above, wherein said display is configured to project light corresponding to an image pixel having a first amount of divergence into said user's eye at a first period of time and to project light corresponding to said image pixel having a second amount of divergence, greater than the first amount of divergence, into said user's eye at a second period of time.
A method of rendering virtual image content in a display system configured to project light to an eye of a user to display the virtual image content in a vision field of said user, said eye having a cornea, an iris, a pupil, a lens, a retina, and an optical axis extending through said lens, pupil, and cornea, said method comprising:
The method of any of the Examples above, wherein said render camera is configured to render virtual images to be presented to said eye that are rendered as if captured by a camera having an aperture closer to said the center of rotation than said retina of said eye.
The method of any of the Examples above, wherein said render camera is configured to render virtual images to be presented to said eye that are rendered as if captured by a camera having an aperture at said the center of rotation.
The method of any of the Examples above, wherein said render camera is modeled with an aperture at said center of rotation of said eye.
The method of any of the Examples above, wherein said render camera is modeled with an aperture, a lens, and a detector.
The method of any of the Examples above, wherein said render camera has an aperture at a position along a line between (i) the determined position of the center of rotation of said eye and (ii) the determined position of the at least one of said iris or pupil.
The method of any of the Examples above, further comprising:
The method of any of the Examples above, further comprising:
The method of any of the Examples above, further comprising:
The method of any of the Examples above, further comprising:
The method of any of the Examples above, further comprising:
The method of any of the Examples above, further comprising:
The method of any of the Examples above, further comprising:
The method of any of the Examples above, further comprising:
The method of any of the Examples above, further comprising:
The method of any of the Examples above, further comprising:
The method of any of the Examples above, further comprising:
The method of any of the Examples above, further comprising:
The method of any of the Examples above, further comprising:
The method of any of the Examples above, further comprising:
The method of any of the Examples above, further comprising:
A display system configured to project light to an eye of a user to display virtual image content in a vision field of said user, said eye having a cornea, an iris, a pupil, a lens, and a retina, and an optical axis extending through said lens, pupil, and cornea, said display system comprising:
The display system of any of the Examples above, wherein at least a portion of said display is transparent and disposed at a location in front of the user's eye when the user wears said head-mounted display such that said transparent portion transmits light from a portion of the environment in front of the user and said head-mounted display to the user's eye to provide a view of said portion of the environment in front of the user and said head-mounted display.
The display system of any of the Examples above, wherein said processing electronics is further configured to, based on images of said eye obtained with said one or more eye tracking cameras, detect a blink of said eye.
The display system of any of the Examples above, wherein said processing electronics is further configured to, based on images of said eye obtained with said one or more eye tracking cameras, detect a saccade of said eye.
The display system of any of the Examples above, wherein said processing electronics is configured to shift from projecting light into said user's eye at the first amount of divergence to projecting light into said user's eye at the second amount of divergence based on the determined vergence distance of said user and based on whether the processing electronics have detected the blink of said eye.
The display system of any of the Examples above, wherein said processing electronics is configured to shift from projecting light into said user's eye at the first amount of divergence to projecting light into said user's eye at the second amount of divergence based on the determined vergence distance of said user and based on whether the processing electronics have detected the saccade of said eye.
The display system of any of the Examples above, wherein said processing electronics is configured to shift from projecting light into said user's eye at the first amount of divergence to projecting light into said user's eye at the second amount of divergence based on the determined vergence distance of said user and based on whether the processing electronics have detected at least one of the saccade or the blink of said eye.
The display system of any of the Examples above, wherein said first amount of divergence is associated with vergence distances in a first range and wherein said second amount of divergence is associated with vergence distances in a second range.
The display system of any of the Examples above, wherein said first amount of divergence is associated with vergence distances in a first range, wherein said second amount of divergence is associated with vergence distances in a second range and wherein the first and second ranges overlap but are not equal.
The display system of any of the Examples above, wherein said processing electronics is configured to shift from projecting light into said user's eye at the first amount of divergence to projecting light into said user's eye at the second amount of divergence upon determining the vergence distance of said user lies outside the first range and lies within the second range.
The display system of any of the Examples above, wherein said processing electronics is configured to shift from projecting light into said user's eye at the first amount of divergence to projecting light into said user's eye at the second amount of divergence upon determining the vergence distance of said user lies outside the second range and lies within the first range.
The display system of any of the Examples above, wherein said processing electronics is configured to shift from projecting light into said user's eye at the first amount of divergence to projecting light into said user's eye at the second amount of divergence upon determining the vergence distance of said user lies outside the first range and lies within the second range and also detecting a blink of said eye.
The display system of any of the Examples above, wherein said processing electronics is configured to shift from projecting light into said user's eye at the first amount of divergence to projecting light into said user's eye at the second amount of divergence upon determining the vergence distance of said user lies outside the first range and lies within the second range and also detecting a saccade of said eye.
The display system of any of the Examples above, wherein said processing electronics is configured to shift from projecting light into said user's eye at the first amount of divergence to projecting light into said user's eye at the second amount of divergence upon determining the vergence distance of said user has been outside the first range and within the second range for longer than a predetermined period of time.
The display system of any of the Examples above, wherein said processing electronics is configured to shift from projecting light into said user's eye at the first amount of divergence to projecting light into said user's eye at the second amount of divergence upon determining the vergence distance of said user has been outside the first range and within the second range for longer than a predetermined period of time of at least 10 seconds.
The display system of any of the Examples above, wherein said head-mounted display comprises a first display element configured to project light having the first amount of divergence and a second display element configured to project light having the second amount of divergence.
The display system of any of the Examples above, wherein said display is configured to project light into said user's eye to display virtual image content in a discrete display mode in which the display is configured to project light associated with a plurality of sequential frames using only one of the first display element.
The display system of any of the Examples above, wherein said display is configured to project light into said user's eye to display virtual image content in a blended display mode in which the display is configured to project light associated with a plurality of sequential frames using both of the first and second display elements for each of the frames.
The display system of any of the Examples above, wherein said display is configured to project light into said user's eye to display virtual image content in a blended display mode in which the display is configured to project light associated with a plurality of sequential frames using both of the first and second display elements for each of the frames and wherein, in the blended display mode, the display is configured to project light, using the first and second display elements, that is perceived by a user as having a given amount of divergence that is between the first and second amounts of divergence.
The display system of any of the Examples above, wherein said display is configured to project light into said user's eye to display virtual image content in a multi-focus display mode in which the display is configured to project light associated with a plurality of sequential frames using both of the first and second display elements for each of the frames, wherein, in the multi-focus display mode, the display is configured to project light associated with first virtual image content at a third amount of divergence and to project light associated with second virtual image content at a fourth amount of divergence, and wherein the third amount of divergence is different from the fourth amount of divergence.
The display system of any of the Examples above, wherein third and fourth amounts of divergence are each between the first and second amounts of divergence.
The display system of any of the Examples above, wherein at least one of the third and fourth amounts of divergence are between the first and second amounts of divergence.
The display system of any of the Examples above, wherein the third and fourth amounts of divergence are respectively equal to the first and second amounts of divergence.
The display system of any of the Examples above, wherein the display is configured to project light associated with the first virtual image in a first region of the user's vision field and to project light associated with the second virtual image in a second region of the user's vision field and wherein the first and second regions are different.
The display system of any of the Examples above, wherein the display is configured to project light associated with the first virtual image in a first region of the user's vision field and to project light associated with the second virtual image in a second region of the user's vision field and wherein the first and second regions do not overlap.
A display system configured to project light to left and right eyes of a user to display virtual image content in a vision field of said user, each of said eyes having a cornea, an iris, a pupil, a lens, a retina, and an optical axis extending through said lens, pupil, and cornea, said display system comprising:
The display system of any of the Examples above, further comprising one or more light sources disposed on said frame with respect to said user's eye to illuminate said user's eye, said one or more eye tracking cameras forming images of said eye using said light from said one or more light sources.
The display system of any of the Examples above, wherein said one or more light sources comprises at least two light sources disposed on said frame with respect to said user's eye to illuminate said user's eye.
The display system of any of the Examples above, wherein said one or more light sources comprises infrared light emitters.
The display system of any of the Examples above, wherein one or more light sources form one or more glints on said eye and said processing electronics is configured to determine a location of said cornea based on said one or more glints.
The display system of any of the Examples above, wherein said cornea has associated therewith a cornea sphere having a center of curvature and said processing electronics is configured to determine a location of said center of curvature of said cornea sphere.
The display system of any of the Examples above, wherein said cornea has associated therewith a cornea sphere having a center of curvature and said processing electronics is configured to determine a location of said center of curvature of said cornea sphere based on said one or more glints.
The display system of any of the Examples above, wherein said one or more eye tracking camera is configured to image said pupil of said eye.
The display system of any of the Examples above, wherein said processing electronics is configured to determine the location of said center of said pupil.
The display system of any of the Examples above, wherein said processing electronics is configured to determine at least a portion of a boundary between said iris and said pupil.
The display system of any of the Examples above, wherein said processing electronics is configured to determine a center of said boundary between said iris and said pupil.
The display system of any of the Examples above, wherein said processing electronics is configured to determine a location of said center of said pupil in three-dimensional space with respect to a center of curvature of said cornea.
The display system of any of the Examples above, wherein said processing electronics is configured to determine a location and orientation of said optical axis.
The display system of any of the Examples above, wherein said processing electronics is configured to determine a location and orientation of said optical axis based on a location of said center of said pupil in three-dimensional space.
The display system of any of the Examples above, wherein said processing electronics is configured to determine said location and orientation of said optical axis based on a location of said center of said pupil in three-dimensional space with respect to a center of curvature of said cornea.
The display system of any of the Examples above, wherein said processing electronics is configured to determine a location of said center of rotation of said eye based on a center of curvature of said cornea.
The display system of any of the Examples above, wherein said processing electronics is configured to determine a location of said center of rotation of said eye based on a center of curvature of said cornea and a location and orientation of said optical axis.
The display system of any of the Examples above, wherein said processing electronics is configured to determine the location of said center of rotation of said eye by translating a particular distance along said optical axis from said center of curvature of said cornea.
A method of rendering virtual image content in a display system configured to project light to left and right eyes of a user to display the virtual image content in a vision field of said user, each of said eyes having a cornea, an iris, a pupil, a lens, a retina, and an optical axis extending through said lens, pupil, and cornea, said method comprising:
The method of any of the Examples above, wherein determining said current left and right eye poses comprises, with the one or more eye tracking cameras, estimating a position of said pupil of said user's left eye and a position of said pupil of said user's right eye.
The method of any of the Examples above, wherein determining said current left and right eye poses comprises, with the one or more eye tracking cameras, estimating a position of said cornea of said user's left eye and a position of said cornea of said user's right eye.
The method of any of the Examples above, wherein determining said current left and right eye poses comprises, with the one or more eye tracking cameras, estimating a position of said iris of said user's left eye and a position of said iris of said user's right eye.
The method of any of the Examples above, wherein determining said current left and right eye poses comprises, with the one or more eye tracking cameras, estimating a position of said lens of said user's left eye and a position of said lens of said user's right eye.
The method of any of the Examples above, wherein estimating said user's current vergence distance comprises:
The method of any of the Examples above, further comprising: with a head-mounted display, projecting light into said user's eye to display the rendered virtual image content to the user's vision field at different amounts of divergence such that the virtual image content appears to originate from different depths at different periods of time.
The method of any of the Examples above, further comprising: with at least a portion of said display, said portion being transparent and disposed at a location in front of the user's eye when the user wears said head-mounted display, transmitting light from a portion of the environment in front of the user and said head-mounted display to the user's eye to provide a view of said portion of the environment in front of the user and said head-mounted display.
A display system configured to project light to an eye of a user to display virtual image content in a vision field of said user, said eye having a cornea, an iris, a pupil, a lens, a retina, and an optical axis extending through said lens, pupil, and cornea, said display system comprising:
The display system of any of the Examples above, wherein said processing electronics is configured to present said virtual image content to said user's eye that are rendered as if captured by a camera having an aperture disposed along the optical axis and spaced apart from the estimated position of the center of rotation of said eye by between 7.0 mm and 12.0 mm in a direction away from said retina.
The display system of any of the Examples above, wherein said processing electronics is configured to present said virtual image content to said user's eye that are rendered as if captured by a camera having an aperture disposed along the optical axis and spaced apart from the estimated position of the center of rotation of said eye by between 8.0 mm and 11.0 mm in a direction away from said retina.
The display system of any of the Examples above, wherein said processing electronics is configured to present said virtual image content to said user's eye that are rendered as if captured by a camera having an aperture disposed along the optical axis and spaced apart from the estimated position of the center of rotation of said eye by between 9.0 mm and 10.0 mm in a direction away from said retina.
The display system of any of the Examples above, wherein said processing electronics is configured to present said virtual image content to said user's eye that are rendered as if captured by a camera having an aperture disposed along the optical axis and spaced apart from the estimated position of the center of rotation of said eye by between 9.5 mm and 10.0 mm in a direction away from said retina.
The display system of any of the Examples above, wherein said processing electronics is configured to present said virtual image content to said user's eye that are rendered as if captured by a camera having an aperture disposed along the optical axis and spaced apart from the estimated position of the center of rotation of said eye by approximately 9.7 mm.
The display system of any of the Examples above, wherein said processing electronics includes electronics on said frame.
The display system of any of the Examples above, wherein said processing electronics includes electronics on said frame and electronics disposed at a location remote from said frame.
The display system of any of the Examples above, wherein said processing electronics includes electronics on said frame and electronics on a belt pack.
The display system of any of the Examples above, wherein at least a portion of said display is transparent and disposed at a location in front of the user's eye when the user wears said head-mounted display such that said transparent portion transmits light from a portion of the environment in front of the user and said head-mounted display to the user's eye to provide a view of said portion of the environment in front of the user and said head-mounted display.
The display system of any of the Examples above, further comprising one or more light sources disposed on said frame with respect to said user's eye to illuminate said user's eye, said one or more eye tracking cameras capturing images of said eye using said light from said one or more light sources.
The display system of any of the Examples above, wherein said one or more light sources comprises at least two light sources disposed on said frame with respect to said user's eye to illuminate said user's eye.
The display system of any of the Examples above, wherein said one or more light sources comprises at least three light sources disposed on said frame with respect to said user's eye to illuminate said user's eye.
The display system of any of the Examples above, wherein said one or more light sources comprises infrared light emitters.
A display system configured to project light to an eye of a user to display virtual image content in a vision field of said user, said eye having a cornea, an iris, a pupil, a lens, a retina, and an optical axis extending through said lens, pupil, and cornea, said display system comprising:
The display system of any of the Examples above, wherein the render camera is located at a position that is between 1.0 mm and 2.0 mm in front of said pupil of said user's eye.
The display system of any of the Examples above, wherein the render camera is located a position that is about 1.0 mm in front of said pupil of said user's eye.
The display system of any of the Examples above, wherein the render camera is located at a position that is between 0.25 mm and 1.0 mm in front of said pupil of said user's eye.
The display system of any of the Examples above, wherein the render camera is located at a position that is between 0.5 mm and 1.0 mm in front of said pupil of said user's eye.
The display system of any of the Examples above, wherein the render camera is located at position that is between 0.25 mm and 0.5 mm in front of said pupil of said user's eye.
The display system of any of the Examples above, wherein the render camera is located at the pupil of the eye.
The display system of any of the Examples above, wherein the render camera is not located at the pupil of the eye.
Any of the Examples above, wherein the camera comprises a pinhole camera.
Any of the Examples above, wherein the aperture comprises a pinhole of a pinhole camera.
A method of rendering virtual image content in a display system configured to project light to an eye of a user to display the virtual image content in a vision field of said user, said eye having a cornea, an iris, a pupil, a lens, a retina, and an optical axis extending through said lens, pupil, and cornea, said method comprising:
The method of any of the Examples above, wherein said position is a center of rotation of said eye.
The method of any of the Examples above, wherein said location of said render camera is at said center of rotation of said eye.
The method of any of the Examples above, wherein said position is a center of perspective of said eye.
The method of any of the Examples above, wherein said location of said render camera is at said center of perspective of said eye.
The method of any of the Examples above, wherein said render camera is configured to render virtual images to be presented to said eye that are rendered as if captured by a camera having an aperture closer to said the center of rotation than said retina of said eye.
The method of any of the Examples above, wherein said render camera is configured to render virtual images to be presented to said eye that are rendered as if captured by a camera having an aperture at said the center of rotation.
The method of any of the Examples above, wherein said render camera is modeled with an aperture at said center of rotation of said eye.
The method of any of the Examples above, wherein said render camera is modeled with an aperture, a lens, and a detector.
The method of any of the Examples above, wherein said render camera has an aperture at a position along a line between (i) the determined position of the center of rotation of said eye and (ii) the determined position of the at least one of said iris or pupil.
The method of any of the Examples above, further comprising:
The method of any of the Examples above, further comprising:
The method of any of the Examples above, further comprising:
The method of any of the Examples above, further comprising:
The method of any of the Examples above, further comprising:
The method of any of the Examples above, further comprising:
The method of any of the Examples above, further comprising:
The method of any of the Examples above, further comprising:
The method of any of the Examples above, further comprising:
The method of any of the Examples above, further comprising:
The method of any of the Examples above, further comprising:
The method of any of the Examples above, wherein with said head-mounted display, projecting light into said user's eye to display the rendered virtual image content to the user's vision field comprises projecting light into said user's eye to display the rendered virtual image content to the user's vision field at different amounts of divergence such that the virtual image content appears to originate from different depths at different periods of time.
The method of any of the Examples above, wherein said different amount of divergence includes zero divergence.
The method of any of the Examples above, wherein said different amount of divergence includes collimation.
A display system configured to project light to an eye of a user to display virtual image content in a vision field of said user, said eye having a cornea, an iris, a pupil, a lens, a retina, and an optical axis extending through said lens, pupil, and cornea, said display system comprising:
The display system of any of the Examples above, wherein said position is an estimate of a center of rotation of said eye.
The display system of any of the Examples above, wherein said location of said render camera is at said estimated center of rotation of said eye.
The display system of any of the Examples above, wherein said position is an estimate of a center of perspective of said eye.
The display system of any of the Examples above, wherein said location of said render camera is at said estimated center of perspective of said eye.
The display system of any of the Examples above, wherein said processing electronics is configured to present said virtual image content to said user's eye that are rendered as if captured by a camera having an aperture closer to said center of perspective than said retina.
The display system of any of the Examples above, wherein said processing electronics is configured to present said virtual image content to said user's eye that are rendered as if captured by a camera having an aperture closer to said center of rotation than said retina.
The display system of any of the Examples above, wherein said processing electronics is configured to present said virtual image content to said user's eye that are rendered as if captured by a camera having an aperture at said center of rotation.
The display system of any of the Examples above, wherein said processing electronics is configured to present said virtual image content to said user's eye that are rendered as if captured by a camera having an aperture closer to said center of rotation than said center of perspective.
The display system of any of the Examples above, wherein said processing electronics is configured to present said virtual image content to said user's eye that are rendered as if captured by a camera having an aperture closer to said center of perspective than said retina.
The display system of any of the Examples above, wherein said processing electronics is configured to present said virtual image content to said user's eye that are rendered as if captured by a camera having an aperture closer to said center of perspective than a center of rotation of the eye.
The display system of any of the Examples above, wherein said processing electronics is configured to present said virtual image content to said user's eye that are rendered as if captured by a camera having an aperture at said center of perspective.
The display system of any of the Examples above, wherein said center of perspective is not located at said pupil of said eye.
The display system of any of the Examples above, wherein the processing electronics is configured to obtain an estimate of said user's eye pose over time and wherein the processing electronics adjust the position of the render camera based at least in part upon the user's eye pose.
The display system of any of the Examples above, wherein the processing electronics is configured to track said user's eye pose over time and wherein the position of the render camera is adjusted over time in response to changes in said user's eye pose over time.
The display system of any of the Examples above, wherein the processing electronics is configured to obtain the estimate of the center of perspective by filtering a plurality of estimated center of perspective positions.
The display system of any of the Examples above, wherein the processing electronics is configured to obtain the estimate of the center of perspective by averaging and/or applying a Kalman filter to a plurality of estimated center of perspective positions.
The display system of any of the Examples above, wherein the center of perspective comprises a position within the anterior chamber of said user's eye.
The display system of any of the Examples above, wherein the center of perspective comprises a position in front of said pupil of said user's eye.
The display system of any of the Examples above, wherein the center of perspective comprises a position that is between 1.0 mm and 2.0 mm in front of said pupil of said user's eye.
The display system of any of the Examples above, wherein the center of perspective comprises a position that is about 1.0 mm in front of said pupil of said user's eye.
The display system of any of the Examples above, wherein the center of perspective comprises a position that is between 0.25 mm and 1.0 mm in front of said pupil of said user's eye.
The display system of any of the Examples above, wherein the center of perspective comprises a position that is between 0.5 mm and 1.0 mm in front of said pupil of said user's eye.
The display system of any of the Examples above, wherein the center of perspective comprises a position that is between 0.25 mm and 0.5 mm in front of said pupil of said user's eye.
The display system of any of the Examples above, wherein the center of perspective lies along the optical axis of said eye and wherein said processing electronics are further configured to obtain the position estimate of the center of perspective by obtaining a position estimate of the optical axis of said eye.
The display system of any of the Examples above, wherein the center of perspective lies along the optical axis of said eye at a position between an outer surface of the cornea and the pupil of said eye and wherein said processing electronics are further configured to obtain the position estimate of the center of perspective by obtaining a position estimate of the optical axis of said eye.
The display system of any of the Examples above, wherein the center of perspective lies along the optical axis of said eye at a position between an outer surface of the cornea and the pupil of said eye and wherein said processing electronics are further configured to obtain the position estimate of the center of perspective by obtaining a position estimate of the optical axis of said eye and a position estimate of a center of rotation of said eye, the cornea of said eye, the iris of said eye, the retina of said eye, and the pupil of said eye or any combinations thereof.
The display system of any of the Examples above, wherein said processing electronics includes electronics on said frame.
The display system of any of the Examples above, wherein said processing electronics includes electronics on said frame and electronics disposed at a location remote from said frame.
The display system of any of the Examples above, wherein said processing electronics includes electronics on said frame and electronics on a belt pack.
The display system of any of the Examples above, wherein at least a portion of said display is transparent and disposed at a location in front of the user's eye when the user wears said head-mounted display such that said transparent portion transmits light from a portion of the environment in front of the user and said head-mounted display to the user's eye to provide a view of said portion of the environment in front of the user and said head-mounted display.
The display system of any of the Examples above, further comprising one or more light sources disposed on said frame with respect to said user's eye to illuminate said user's eye, said one or more cameras capturing images of said eye using said light from said one or more light sources.
The display system of any of the Examples above, wherein said one or more light sources comprises at least two light sources disposed on said frame with respect to said user's eye to illuminate said user's eye.
The display system of any of the Examples above, wherein said one or more light sources comprises at least three light sources disposed on said frame with respect to said user's eye to illuminate said user's eye.
The display system of any of the Examples above, wherein said one or more light sources comprises infrared light emitters.
The display system of any of the Examples above, wherein said one or more light sources form one or more glints on said eye and said processing electronics is configured to determine the position of the center of curvature of said cornea based on said one or more glints.
The display system of any of the Examples above, wherein said one or more light sources form one or more glints on said eye and said processing electronics is configured to determine a three-dimensional position of the center of curvature of said cornea based on said one or more glints.
The display system of any of the Examples above, wherein said one or more cameras are further configured to image said pupil of the user's eye and wherein said processing electronics are further configured to determine the position of said pupil of said eye based at least on the image of said pupil from the one or more cameras.
The display system of any of the Examples above, wherein said one or more cameras are further configured to image said pupil of the user's eye and wherein said processing electronics are further configured to determine a three-dimensional position of said pupil of said eye based at least on the image of said pupil from the one or more cameras.
The display system of any of the Examples above, wherein said one or more cameras are further configured to image said pupil of the user's eye and wherein said processing electronics are further configured to determine the position of said pupil of said eye based on the position of the center of curvature of said cornea and based on the image of said pupil from the one or more cameras.
The display system of any of the Examples above, wherein said processing electronics is configured to determine the optical axis of said eye based on the three-dimensional position of the center of curvature of said cornea and based on the three-dimensional position of said pupil.
The display system of any of the Examples above, wherein said processing electronics is configured to determine a visual axis of said eye based on the optical axis.
The display system of any of the Examples above, wherein said processing electronics is configured to determine the visual axis of said eye based on the optical axis and the three-dimensional position of at least one of the center of curvature of said cornea, said pupil or both.
The display system of any of the Examples above, wherein said processing electronics is configured to determine a three-dimensional position of the center of rotation of said eye based on the three-dimensional position of the center of curvature of said cornea.
The display system of any of the Examples above, wherein said processing electronics is configured to determine a three-dimensional position of the center of rotation of said eye based on the three-dimensional position of the center of curvature of said cornea and based on said optical axis.
The display system of any of the Examples above, wherein said processing electronics is configured to determine the distance between said eye and the additional eye of said user based at least on the three-dimensional position of the center of rotation of said eye.
The display system of any of the Examples above, wherein said processing electronics is configured to determine an interpupillary distance between said eye and the additional eye of said user based at least on the three-dimensional position of the center of rotation of said eye.
The display system of any of the Examples above, wherein said processing electronics is configured to determine the vergence distance of said user based at least on the optical axis of said eye.
The display system of any of the Examples above, wherein said processing electronics is configured to determine the vergence distance of said user based at least on the optical axis of said eye and on a determined optical axis of the additional eye of said user.
The display system of any of the Examples above, wherein said processing electronics is configured to determine the vergence distance of said user based at least on the visual axis of said eye and on a determined visual axis of the additional eye of said user.
The display system of any of the Examples above, wherein said display is configured to project collimated light into said user's eye.
The display system of any of the Examples above, wherein said display is configured to project collimated light corresponding to an image pixel into said user's eye at a first period of time and divergent light corresponding to said image pixel into said user's eye at a second period of time.
The display system of any of the Examples above, wherein said display is configured to project light corresponding to an image pixel having a first amount of divergence into said user's eye at a first period of time and to project light corresponding to said image pixel having a second amount of divergence, greater than the first amount of divergence, into said user's eye at a second period of time.
The display system of any of the Examples above, wherein center of perspective is estimated to be proximal said pupil of said eye
The display system of any of the Examples above, wherein center of perspective is estimated to be between said cornea and said pupil of said eye.
The display system of any of the Examples above, wherein said display is configured to project light into said user's eye to display virtual image content to the user's vision field at different amounts of at least one of divergence and collimation and thus the displayed virtual image content appears to originate from different depths at different periods of time.
A display system configured to project light to an eye of a user to display virtual image content in a vision field of said user, said eye having a cornea, an iris, a pupil, a lens, a retina, said display system comprising:
The display system of Examples 267, wherein said head-mounted display is configured to project light into said user's eye having a first amount of divergence at a first period of time and is configured to project light into said user's eye having a second amount of divergence at a second period of time, wherein the first amount of divergence is different from the second amount of divergence, and wherein the processing electronics are further configured to obtain an estimate of a vergence distance of said user based on images of said eye obtained with said one or more eye tracking cameras, and shift from projecting light into said user's eye at the first amount of divergence to projecting light into said user's eye at the second amount of divergence based on the estimated vergence distance of said user.
The display system of Examples 267, wherein said head-mounted display is configured to project light into said user's eye having a first amount of divergence at a first period of time and is configured to project light into said user's eye having a second amount of divergence at a second period of time, wherein the first amount of divergence is different from the second amount of divergence, and wherein the processing electronics are further configured to obtain an estimate of a vergence distance of said user based on images of said eye obtained with said one or more eye tracking cameras, and shift from projecting light into said user's eye at the first amount of divergence to projecting light into said user's eye at the second amount of divergence based on the estimated vergence distance of said user.
The display system of Example 267, wherein the processing electronics are further configured to determine a position along the optical axis at which a center of rotation of said eye is estimated to be located based on images of said eye obtained with one or more eye tracking cameras, and wherein the processing electronics are configured to identify the particular location along the axis in render space that is registered to said optical axis of said eye based on said position along the optical axis at which the center of rotation of said eye is estimated to be located.
The display system of Examples 267, wherein the particular location along the axis in render space comprises a location along the axis in render space at which parallax shifts in the render space are determined to be reduced.
The display system of Examples 267, wherein the particular location along the axis in render space comprises a location along the axis in render space at which parallax shifts in the render space are determined to be minimized.
The display system of any of the Examples above, wherein said processing electronics are configured to obtain the estimate of the center of rotation of said eye based on determination of multiple gaze directions of the user's eye over a period of time during which said eye is rotating based on images of said eye obtained by said one or more eye tracking cameras.
The display system of Example 273, wherein said processing electronics are configured to determine said gaze direction based on variations of the shape of one or more of the pupil, iris, or limbus of the user's eye in images obtained with said one or more eye tracking cameras over a period of time during which said eye is rotating.
The display system of any of the Examples above, wherein said processing electronics are configured to determine an array of positions based on a plurality of spatial locations on an image of the user's eye obtained with said one or more eye tracking cameras.
The display system of Example 275, wherein said array of positions corresponds to at least a portion of an ellipse.
The display system of any of Examples 275 or 276, wherein said processing electronics are configured to determine said array of positions by fitting a curve to said plurality of spatial locations on said image of the user's eye.
The display system of Example 277, wherein said curve comprises an ellipse.
The display system of any of Examples 275 to 278, wherein said plurality of spatial locations on said image comprises spatial locations on the limbus of said user's eye in said image.
The display system of any of Examples 275 to 279, wherein said plurality of spatial locations on said image comprises spatial locations on a boundary between the iris and the sclera of said user's eye in said image.
The display system of any of Examples 275 to 279, wherein said plurality of spatial locations on said image comprises spatial locations on a boundary between the cornea and the sclera of said user's eye in said image obtained with said one or more eye tracking cameras.
The display system of any of Examples 275 to 281, wherein said processing electronics are configured to determine a plurality of linear paths extending from a location on a first side of said array of positions through said array of positions to a second opposite side of said array of positions.
The display system of Example 282, wherein said processing electronics are configured to determine a circular region based on said plurality of linear paths, said circular region having a radius, R.
The display system of Example 283, wherein said radius, R, corresponds to an average radius of a limbus.
The display system of Example 283, wherein said radius, R, corresponds to a measured radius of the limbus of the user's eye.
The display system of Example 283, wherein said radius, R, corresponds to an average radius of a pupil.
The display system of Example 283, wherein said radius, R, corresponds to a measured radius of the pupil of the user's eye.
The display system of any of Examples 282 to 287, wherein said processing electronics are configured to determine the location and direction of a normal through a central portion of said circular region.
The display system of any of Examples 282 to 288, wherein said processing electronics are configured to determine respective locations and directions of a plurality of normals through central portions of respective circular regions based on a plurality of images of said eye previously obtained with said one or more eye tracking cameras.
The display system of Example 289, wherein said processing electronics are configured to determine a position where said plurality of normals converge or intersect.
The display system of Example 289, wherein said processing electronics are configured to obtain the estimate of the center of rotation of said user's eye by identifying a region of intersection, convergence, or close proximity of multiple of said normals determined based on images of the user's eye obtained over a period of time during which said eye is rotating.
The display system of Example 289, wherein said processing electronics are configured to obtain the estimate of the center of rotation of said user's eye based on the locations and directions of multiple of said plurality of normals determined based on images of the user's eye obtained over a period of time during which said eye is rotating.
The display system of any of Examples 282-292, wherein the location on the first side of said array positions corresponds to an origin of a coordinate system of one of said one or more eye tracking cameras.
The display system of any of the Examples above, wherein the processing electronics is configured to obtain the estimate of the center of rotation by filtering, averaging, applying a Kalman filter, or any combinations thereof to a plurality of estimated center of rotation positions.
Various additional examples of display systems that project light to one or more eyes of a user to display virtual image content in a vision field of said user are described herein such as the additional examples enumerated below:
A display system configured to project light to an eye of a user to display virtual image content in a vision field of said user, said eye having a cornea, an iris, a pupil, a lens, a retina, and an optical axis extending through said lens, pupil, and cornea, said display system comprising:
The display system of Additional Example 1, wherein reduced variation is used to identify said statistically determined center of rotation.
The display system of Additional Example 1 or 2, wherein a first set of estimates of center of rotation are calculated based on a first value of a parameter used to calculate the center of rotation and a first variation is determined from said first set of estimates.
The display system of Additional Example 3, wherein a second set of estimates of center of rotation are calculated based on a second value of said parameter and a second variation is determined from said second set of estimates.
The display system of Additional Example 4, wherein said first and second variations are compared to determine which set has reduced variation, said determination of said statistically determined estimate of the center of rotation being based on this comparison.
The display system of Additional Example 1 or 2, wherein multiple sets of values of centers of rotation are calculated based on multiple respective values of a parameter and respective variations determined for the different respective sets.
The display system of Additional Example 6, wherein the respective variations are compared to determine which set has reduced variation and said determination of said statistically determined estimate of said center of rotation is based on said comparison.
The display system of Additional Example 6 or 7, wherein the value of the parameter for said set having the lowest variation is used in calculating said statistically determined estimate of said center of rotation.
The display system of Additional Example 6, 7, or 8, wherein said set having the lowest the variation is used in calculating said statistically determined estimate of said center of rotation.
The display system of any of Additional Examples 3 to 9, wherein said parameter comprises distance to said center of rotation from the center of curvature of said cornea.
The display system of any of Additional Examples 3 to 9, wherein said parameter comprises distance along the optical axis from the center of curvature of said cornea to said center of rotation.
The display system of any of the Additional Examples above, wherein said variation comprises variance and/or standard deviation.
The display system of any of the Additional Examples above, further comprising one or more light sources disposed on said frame with respect to said user's eye to illuminate said user's eye, said inward-facing imaging system forming images of said eye using said light from said one or more light sources.
The display system of Additional Example 13, wherein said one or more light sources comprises at least two light sources disposed on said frame with respect to said user's eye to illuminate said user's eye.
The display system of Additional Example 13 or 14, wherein said one or more light sources comprises infrared light emitters.
The display system of any of the Additional Examples 13 to 15, wherein one or more light sources form one or more glints on said eye and said processing electronics is configured to determine a location of said cornea based on said one or more glints.
The display system of any of the Additional Examples 13 to 16, wherein said cornea has associated therewith a cornea sphere having a center of curvature and said processing electronics is configured to determine a location of said center of curvature of said cornea sphere.
The display system of Additional Example 17, wherein said cornea has associated therewith a cornea sphere having a center of curvature and said processing electronics is configured to determine a location of said center of curvature of said cornea sphere based on said one or more glints.
The display system of any of the Additional Examples above, wherein said inward-facing imaging system is configured to image said pupil of said eye.
The display system of any of the Additional Examples above, wherein said processing electronics is configured to determine the location of said center of said pupil.
The display system of any of the Additional Examples above, wherein said processing electronics is configured to determine at least a portion of a boundary between said iris and said pupil.
The display system of Additional Example 21, wherein said processing electronics is configured to determine a center of said boundary between said iris and said pupil.
The display system of any of the Additional Examples above, wherein said processing electronics is configured to determine a location of said center of said pupil in three-dimensional space with respect to a center of curvature of said cornea.
The display system of any of the Additional Examples above, wherein said processing electronics is configured to determine a location and orientation of said optical axis.
The display system of Additional Example 24, wherein said processing electronics is configured to determine a location and orientation of said optical axis based on a location of said center of said pupil in three-dimensional space.
The display system of any of the Additional Examples above, wherein said processing electronics is configured to determine said location and orientation of said optical axis based on a location of said center of said pupil in three-dimensional space with respect to a center of curvature of said cornea.
The display system of any of the Additional Examples above, wherein said processing electronics is configured to determine a location of said center of rotation of said eye based on a center of curvature of said cornea.
The display system of any of the Additional Examples above, wherein said processing electronics is configured to determine a location of said center of rotation of said eye based on a center of curvature of said cornea and a location and orientation of said optical axis.
The display system of Additional Example 28, wherein said processing electronics is configured to determine the location of said center of rotation of said eye by translating a particular distance along said optical axis from said center of curvature of said cornea.
The display system of Additional Example 29, wherein said particular distance from said center of curvature to said center of rotation is between 4.0 mm and 6.0 mm
The display system of Additional Example 29 or 30, wherein said particular distance from said center of curvature to said center of rotation is about 4.7 mm.
The display system of Additional Example 20 or 30, wherein said processing electronics is configured to determine the particular distance based at least on one or more images of said eye previously obtained with said inward-facing imaging system.
The display system of any of the Additional Examples above, wherein said processing electronics includes electronics on said frame.
The display system of any of the Additional Examples above, wherein said processing electronics includes electronics on said frame and electronics disposed at a location remote from said frame.
The display system of any of the Additional Examples above, wherein said processing electronics includes electronics on said frame and electronics on a belt pack.
The display system of any of the Additional Examples above, wherein at least a portion of said display is transparent and disposed at a location in front of the user's eye when the user wears said head-mounted display such that said transparent portion transmits light from a portion of the environment in front of the user and said head-mounted display to the user's eye to provide a view of said portion of the environment in front of the user and said head-mounted display.
The display system of any of the Additional Examples above, wherein said head-mounted display receives light from a portion of the environment in front of the user at a first amount of divergence and transmits the light from the portion of the environment in front of the user to the user's eye with a second amount of divergence that is substantially similar to the first amount of divergence.
The display system of any of the Additional Examples above, wherein the processing electronics is configured to obtain the estimate of the center of rotation by filtering, averaging, applying a Kalman filter, or any combinations thereof a plurality of estimated center of rotation positions.
The display system of any of the Additional Examples above, wherein said processing electronics is configured to present said virtual image content to said user's eye that is rendered as if captured by a camera having an aperture at the determined position of the center of rotation of said user's eye.
The display system of any of the Additional Examples above, wherein said processing electronics is configured to use a render camera at said center of rotation to render virtual images to be presented to said eye.
The display system of any of the Additional Examples above, wherein said processing electronics is configured to use a render camera configured to render virtual images to be presented to said eye that are rendered as if captured by a camera having an aperture closer to said the center of rotation than said retina of said eye.
The display system of any of the Additional Examples above, wherein said processing electronics is configured to use a render camera configured to render virtual images to be presented to said eye that are rendered as if captured by a camera having an aperture at said the center of rotation of said eye.
The display system of any of the Additional Examples above, wherein said processing electronics is configured to use a render camera at said center of rotation to render virtual images to be presented to said eye, said render camera modeled with an aperture at said center of rotation of said eye.
The display system of any of Additional Examples 1 to 9, wherein said processing electronics is configured to select the statistically-determined estimate of center of rotation based on said variation during a calibration procedure.
The display system of any of the Examples or Additional Examples above, wherein said processing electronics are configured to obtain the estimate of the center of rotation of said eye based on determination of multiple gaze directions of the user's eye over a period of time during which said eye is rotating based on images of said eye obtained by said one or more eye tracking cameras.
The display system of any of the Examples or Additional Examples above, wherein said processing electronics are configured to determine said gaze direction based on variations of the shape of one or more of the pupil, iris, or limbus of the user's eye in images obtained with said one or more eye tracking cameras over a period of time during which said eye is rotating.
The display system of any of the Examples or Additional Examples above, wherein said processing electronics are configured to determine an array of positions based on a plurality of spatial locations on an image of the user's eye obtained with said one or more eye tracking cameras.
The display system of any of the Examples or Additional Examples above, wherein said array of positions corresponds to at least a portion of an ellipse.
The display system of any of the Examples or Additional Examples above, wherein said processing electronics are configured to determine said array of positions by fitting a curve to said plurality of spatial locations on said image of the user's eye.
The display system of any of the Examples or Additional Examples above, wherein said curve comprises an ellipse.
The display system of any of the Examples or Additional Examples above, wherein said plurality of spatial locations on said image comprises spatial locations on the limbus of said user's eye in said image.
The display system of any of the Examples or Additional Examples above, wherein said plurality of spatial locations on said image comprises spatial locations on a boundary between the iris and the sclera of said user's eye in said image.
The display system of any of the Examples or Additional Examples above, wherein said plurality of spatial locations on said image comprises spatial locations on a boundary between the cornea and the sclera of said user's eye in said image obtained with said one or more eye tracking cameras.
The display system of any of the Examples or Additional Examples above, wherein said processing electronics are configured to determine a plurality of linear paths extending from a location on a first side of said array of positions through said array of positions to a second opposite side of said array of positions.
The display system of any of the Examples or Additional Examples above, wherein said processing electronics are configured to determine a circular region based on said plurality of linear paths, said circular region having a radius, R.
The display system of any of the Examples or Additional Examples above, wherein said radius, R, corresponds to an average radius of a limbus.
The display system of any of the Examples or Additional Examples above, wherein said radius, R, corresponds to a measured radius of the limbus of the user's eye.
The display system of any of the Examples or Additional Examples above, wherein said radius, R, corresponds to an average radius of a pupil.
The display system of any of the Examples or Additional Examples above, wherein said radius, R, corresponds to a measured radius of the pupil of the user's eye.
The display system of any of the Examples or Additional Examples above, wherein said processing electronics are configured to determine the location and direction of a normal through a central portion of said circular region.
The display system of any of the Examples or Additional Examples above, wherein said processing electronics are configured to determine respective locations and directions of a plurality of normals through central portions of respective circular regions based on a plurality of images of said eye previously obtained with said one or more eye tracking cameras.
The display system of any of the Examples or Additional Examples above, wherein said processing electronics are configured to determine a position where said plurality of normals converge or intersect.
The display system of any of the Examples or Additional Examples above, wherein said processing electronics are configured to obtain the estimate of the center of rotation of said user's eye by identifying a region of intersection, convergence, or close proximity of multiple of said normals determined based on images of the user's eye obtained over a period of time during which said eye is rotating.
The display system of any of the Examples or Additional Examples above, wherein said processing electronics are configured to obtain the estimate of the center of rotation of said user's eye based on the locations and directions of multiple of said plurality of normals determined based on images of the user's eye obtained over a period of time during which said eye is rotating.
The display system of any of the Examples or Additional Examples above, wherein the location on the first side of said array positions corresponds to an origin of a coordinate system of one of said one or more eye tracking cameras.
The display system of any of the Examples or Additional Examples above, wherein the processing electronics is configured to obtain the estimate of the center of rotation by filtering, averaging, applying a Kalman filter, or any combinations thereof to a plurality of estimated center of rotation positions.
Any of the above Examples or Additional Examples can be combined. Additionally, any of the above Examples or Additional Examples can be integrated with a head mounted display. In addition, any of the above Examples or Additional Examples can be implemented with a single depth plane and/or with one or more variable depth planes (e.g., one or more elements with variable focusing power that provide accommodation cues that vary over time).
Furthermore, apparatus and methods for determining a variety of values, parameters, etc., such as, but not limited to, anatomical, optical, and geometric features, locations, and orientations, etc., are disclosed herein. Examples of such parameters include, for example, the center of rotation of the eye, the center of curvature of the cornea, the center of the pupil, the boundary of the pupil, the center of the iris, the boundary of the iris, the boundary of the limbus, the optical axis of the eye, the visual axis of the eye, the center of perspective, but are not limited to these. Determinations of such values, parameters, etc., as recited herein include estimations thereof and need not necessarily coincide precisely with the actual values. For example, determinations of the center of rotation of the eye, the center of curvature of the cornea, the center or boundary of the pupil or iris, the boundary of the limbus, the optical axis of the eye, the visual axis of the eye, the center of perspective, etc., may be estimations, approximations, or values close to, but not the same as, the actual (e.g., anatomical, optical, or geometric) values or parameters. In some cases, for example, root mean square estimation techniques are used to obtain estimates of such values. As an example, certain techniques described herein relate to identifying a location or point at which rays or vectors intersect. Such rays or vectors, however, may not intersect. In this example, the location or point may be estimated. For example, the location or point may be determined based on root mean square, or other, estimation techniques (e.g., the location or point may be estimated to be close to or the closest to the rays or vectors). Other processes may also be used to estimate, approximate or otherwise provide a value that may not coincide with the actual value. Accordingly, the term determining and estimating, or determined and estimated, are used interchangeably herein. Reference to such determined values may therefore include estimates, approximations, or values close to the actual value. Accordingly, reference to determining a parameter or value above, or elsewhere herein should not be limited precisely to the actual value but may include estimations, approximations or values close thereto.
Details of one or more implementations of the subject matter described in this specification are set forth in the accompanying drawings and the description below. Other features, aspects, and advantages will become apparent from the description, the drawings, and the claims. Neither this summary nor the following detailed description purports to define or limit the scope of the inventive subject matter.
Throughout the drawings, reference numbers may be re-used to indicate correspondence between referenced elements. The drawings are provided to illustrate example embodiments described herein and are not intended to limit the scope of the disclosure.
Reference will now be made to the drawings, in which like reference numerals refer to like parts throughout. Unless indicated otherwise, the drawings are schematic not necessarily drawn to scale.
Examples of 3D Display of a Wearable System
A wearable system (also referred to herein as an augmented reality (AR) system) can be configured to present 2D or 3D virtual images to a user. The images may be still images, frames of a video, or a video, in combination or the like. At least a portion of the wearable system can be implemented on a wearable device that can present a VR, AR, or MR environment, alone or in combination, for user interaction. The wearable device can be used interchangeably as an AR device (ARD). Further, for the purpose of the present disclosure, the term “AR” is used interchangeably with the term “MR”.
In order for the 3D display to produce a true sensation of depth, and more specifically, a simulated sensation of surface depth, it may be desirable for each point in the display's visual field to generate an accommodative response corresponding to its virtual depth. If the accommodative response to a display point does not correspond to the virtual depth of that point, as determined by the binocular depth cues of convergence and stereopsis, the human eye may experience an accommodation conflict, resulting in unstable imaging, harmful eye strain, headaches, and, in the absence of accommodation information, almost a complete lack of surface depth.
VR, AR, and MR experiences can be provided by display systems having displays in which images corresponding to a plurality of depth planes are provided to a viewer. The images may be different for each depth plane (e.g., provide slightly different presentations of a scene or object) and may be separately focused by the viewer's eyes, thereby helping to provide the user with depth cues based on the accommodation of the eye required to bring into focus different image features for the scene located on different depth plane or based on observing different image features on different depth planes being out of focus. As discussed elsewhere herein, such depth cues provide credible perceptions of depth.
In some embodiments, a speaker 240 is coupled to the frame 230 and positioned adjacent the ear canal of the user (in some embodiments, another speaker, not shown, is positioned adjacent the other ear canal of the user to provide for stereo/shapeable sound control). The display 220 can include an audio sensor (e.g., a microphone) 232 for detecting an audio stream from the environment and capture ambient sound. In some embodiments, one or more other audio sensors, not shown, are positioned to provide stereo sound reception. Stereo sound reception can be used to determine the location of a sound source. The wearable system 200 can perform voice or speech recognition on the audio stream.
The wearable system 200 can include an outward-facing imaging system 464 (shown in
As an example, the wearable system 200 can use the outward-facing imaging system 464 or the inward-facing imaging system 462 to acquire images of a pose of the user. The images may be still images, frames of a video, or a video.
The display 220 can be operatively coupled 250, such as by a wired lead or wireless connectivity, to a local data processing module 260 which may be mounted in a variety of configurations, such as fixedly attached to the frame 230, fixedly attached to a helmet or hat worn by the user, embedded in headphones, or otherwise removably attached to the user 210 (e.g., in a backpack-style configuration, in a belt-coupling style configuration).
The local processing and data module 260 may comprise a hardware processor, as well as digital memory, such as non-volatile memory (e.g., flash memory), both of which may be utilized to assist in the processing, caching, and storage of data. The data may include data a) captured from sensors (which may be, e.g., operatively coupled to the frame 230 or otherwise attached to the user 210), such as image capture devices (e.g., cameras in the inward-facing imaging system or the outward-facing imaging system), audio sensors (e.g., microphones), inertial measurement units (IMUs), accelerometers, compasses, global positioning system (GPS) units, radio devices, or gyroscopes; orb) acquired or processed using remote processing module 270 or remote data repository 280, possibly for passage to the display 220 after such processing or retrieval. The local processing and data module 260 may be operatively coupled by communication links 262 or 264, such as via wired or wireless communication links, to the remote processing module 270 or remote data repository 280 such that these remote modules are available as resources to the local processing and data module 260. In addition, remote processing module 280 and remote data repository 280 may be operatively coupled to each other.
In some embodiments, the remote processing module 270 may comprise one or more processors configured to analyze and process data or image information. In some embodiments, the remote data repository 280 may comprise a digital data storage facility, which may be available through the internet or other networking configuration in a “cloud” resource configuration. In some embodiments, all data is stored and all computations are performed in the local processing and data module, allowing fully autonomous use from a remote module.
Example Components of a Wearable System
With continued reference to
The wearable system can also include one or more depth sensors 234. The depth sensor 234 can be configured to measure the distance between an object in an environment to a wearable device. The depth sensor 234 may include a laser scanner (e.g., a lidar), an ultrasonic depth sensor, or a depth sensing camera. In certain implementations, where the cameras 316 have depth sensing ability, the cameras 316 may also be considered as depth sensors 234.
Also shown is a processor 332 configured to execute digital or analog processing to derive pose from the gyro, compass, or accelerometer data from the sensor assembly 339. The processor 332 may be part of the local processing and data module 260 shown in
The wearable system may combine data acquired by the GPS 337 and a remote computing system (such as, e.g., the remote processing module 270, another user's ARD, etc.) which can provide more information about the user's environment. As one example, the wearable system can determine the user's location based on GPS data and retrieve a world map (e.g., by communicating with a remote processing module 270) including virtual objects associated with the user's location. As another example, the wearable system 200 can monitor the environment using the world cameras 316 (which may be part of the outward-facing imaging system 464 shown in
The wearable system 200 may also comprise a rendering engine 334 which can be configured to provide rendering information that is local to the user to facilitate operation of the scanners and imaging into the eyes of the user, for the user's view of the world. The rendering engine 334 may be implemented by a hardware processor (such as, e.g., a central processing unit or a graphics processing unit). In some embodiments, the rendering engine is part of the local processing and data module 260. The rendering engine 334 can be communicatively coupled (e.g., via wired or wireless links) to other components of the wearable system 200. For example, the rendering engine 334, can be coupled to the eye cameras 324 via communication link 274, and be coupled to a projecting subsystem 318 (which can project light into user's eyes 302, 304 via a scanned laser arrangement in a manner similar to a retinal scanning display) via the communication link 272. The rendering engine 334 can also be in communication with other processing units such as, e.g., the sensor pose processor 332 and the image pose processor 336 via links 276 and 294 respectively.
The cameras 324 (e.g., mini infrared cameras) may be utilized to track the eye pose to support rendering and user input. Some example eye poses may include where the user is looking or at what depth he or she is focusing (which may be estimated with eye vergence). The GPS 337, gyros, compass, and accelerometers 339 may be utilized to provide coarse or fast pose estimates. One or more of the cameras 316 can acquire images and pose, which in conjunction with data from an associated cloud computing resource, may be utilized to map the local environment and share user views with others.
The example components depicted in
Regarding the projection of light 338 into the eyes 302, 304 of the user, in some embodiment, the cameras 324 may be utilized to measure where the centers of a user's eyes are geometrically verged to, which, in general, coincides with a position of focus, or “depth of focus”, of the eyes. A 3-dimensional surface of all points the eyes verge to can be referred to as the “horopter”. The focal distance may take on a finite number of depths, or may be infinitely varying. Light projected from the vergence distance appears to be focused to the subject eye 302, 304, while light in front of or behind the vergence distance is blurred. Examples of wearable devices and other display systems of the present disclosure are also described in U.S. Patent Publication No. 2016/0270656, which is incorporated by reference herein in its entirety.
The human visual system is complicated and providing a realistic perception of depth is challenging. Viewers of an object may perceive the object as being three-dimensional due to a combination of vergence and accommodation. Vergence movements (e.g., rolling movements of the pupils toward or away from each other to converge the lines of sight of the eyes to fixate upon an object) of the two eyes relative to each other are closely associated with focusing (or “accommodation”) of the lenses of the eyes. Under normal conditions, changing the focus of the lenses of the eyes, or accommodating the eyes, to change focus from one object to another object at a different distance will automatically cause a matching change in vergence to the same distance, under a relationship known as the “accommodation-vergence reflex.” Likewise, a change in vergence will trigger a matching change in accommodation, under normal conditions. Display systems that provide a better match between accommodation and vergence may form more realistic and comfortable simulations of three-dimensional imagery.
Further spatially coherent light with a beam diameter of less than about 0.7 millimeters can be correctly resolved by the human eye regardless of where the eye focuses. Thus, to create an illusion of proper focal depth, the eye vergence may be tracked with the cameras 324, and the rendering engine 334 and projection subsystem 318 may be utilized to render all objects on or close to the horopter in focus, and all other objects at varying degrees of defocus (e.g., using intentionally-created blurring). Preferably, the system 220 renders to the user at a frame rate of about 60 frames per second or greater. As described above, preferably, the cameras 324 may be utilized for eye tracking, and software may be configured to pick up not only vergence geometry but also focus location cues to serve as user inputs. Preferably, such a display system is configured with brightness and contrast suitable for day or night use.
In some embodiments, the display system preferably has latency of less than about 20 milliseconds for visual object alignment, less than about 0.1 degree of angular alignment, and about 1 arc minute of resolution, which, without being limited by theory, is believed to be approximately the limit of the human eye. The display system 220 may be integrated with a localization system, which may involve GPS elements, optical tracking, compass, accelerometers, or other data sources, to assist with position and pose determination; localization information may be utilized to facilitate accurate rendering in the user's view of the pertinent world (e.g., such information would facilitate the glasses to know where they are with respect to the real world).
In some embodiments, the wearable system 200 is configured to display one or more virtual images based on the accommodation of the user's eyes. Unlike prior 3D display approaches that force the user to focus where the images are being projected, in some embodiments, the wearable system is configured to automatically vary the focus of projected virtual content to allow for a more comfortable viewing of one or more images presented to the user. For example, if the user's eyes have a current focus of 1 m, the image may be projected to coincide with the user's focus. If the user shifts focus to 3 m, the image is projected to coincide with the new focus. Thus, rather than forcing the user to a predetermined focus, the wearable system 200 of some embodiments allows the user's eye to a function in a more natural manner.
Such a wearable system 200 may eliminate or reduce the incidences of eye strain, headaches, and other physiological symptoms typically observed with respect to virtual reality devices. To achieve this, various embodiments of the wearable system 200 are configured to project virtual images at varying focal distances, through one or more variable focus elements (VFEs). In one or more embodiments, 3D perception may be achieved through a multi-plane focus system that projects images at fixed focal planes away from the user. Other embodiments employ variable plane focus, wherein the focal plane is moved back and forth in the z-direction to coincide with the user's present state of focus.
In both the multi-plane focus systems and variable plane focus systems, wearable system 200 may employ eye tracking to determine a vergence of the user's eyes, determine the user's current focus, and project the virtual image at the determined focus. In other embodiments, wearable system 200 comprises a light modulator that variably projects, through a fiber scanner, or other light generating source, light beams of varying focus in a raster pattern across the retina. Thus, the ability of the display of the wearable system 200 to project images at varying focal distances not only eases accommodation for the user to view objects in 3D, but may also be used to compensate for user ocular anomalies, as further described in U.S. Patent Publication No. 2016/0270656, which is incorporated by reference herein in its entirety. In some other embodiments, a spatial light modulator may project the images to the user through various optical components. For example, as described further below, the spatial light modulator may project the images onto one or more waveguides, which then transmit the images to the user.
Waveguide Stack Assembly
With continued reference to
The waveguides 432b, 434b, 436b, 438b, 440b or the plurality of lenses 458, 456, 454, 452 may be configured to send image information to the eye with various levels of wavefront curvature or light ray divergence. Each waveguide level may be associated with a particular depth plane and may be configured to output image information corresponding to that depth plane. Image injection devices 420, 422, 424, 426, 428 may be utilized to inject image information into the waveguides 440b, 438b, 436b, 434b, 432b, each of which may be configured to distribute incoming light across each respective waveguide, for output toward the eye 410. Light exits an output surface of the image injection devices 420, 422, 424, 426, 428 and is injected into a corresponding input edge of the waveguides 440b, 438b, 436b, 434b, 432b. In some embodiments, a single beam of light (e.g., a collimated beam) may be injected into each waveguide to output an entire field of cloned collimated beams that are directed toward the eye 410 at particular angles (and amounts of divergence) corresponding to the depth plane associated with a particular waveguide.
In some embodiments, the image injection devices 420, 422, 424, 426, 428 are discrete displays that each produce image information for injection into a corresponding waveguide 440b, 438b, 436b, 434b, 432b, respectively. In some other embodiments, the image injection devices 420, 422, 424, 426, 428 are the output ends of a single multiplexed display which may, e.g., pipe image information via one or more optical conduits (such as fiber optic cables) to each of the image injection devices 420, 422, 424, 426, 428.
A controller 460 controls the operation of the stacked waveguide assembly 480 and the image injection devices 420, 422, 424, 426, 428. The controller 460 includes programming (e.g., instructions in a non-transitory computer-readable medium) that regulates the timing and provision of image information to the waveguides 440b, 438b, 436b, 434b, 432b. In some embodiments, the controller 460 may be a single integral device, or a distributed system connected by wired or wireless communication channels. The controller 460 may be part of the processing modules 260 or 270 (illustrated in
The waveguides 440b, 438b, 436b, 434b, 432b may be configured to propagate light within each respective waveguide by total internal reflection (TIR). The waveguides 440b, 438b, 436b, 434b, 432b may each be planar or have another shape (e.g., curved), with major top and bottom surfaces and edges extending between those major top and bottom surfaces. In the illustrated configuration, the waveguides 440b, 438b, 436b, 434b, 432b may each include light extracting optical elements 440a, 438a, 436a, 434a, 432a that are configured to extract light out of a waveguide by redirecting the light, propagating within each respective waveguide, out of the waveguide to output image information to the eye 410. Extracted light may also be referred to as outcoupled light, and light extracting optical elements may also be referred to as outcoupling optical elements. An extracted beam of light is outputted by the waveguide at locations at which the light propagating in the waveguide strikes a light redirecting element. The light extracting optical elements (440a, 438a, 436a, 434a, 432a) may, for example, be reflective or diffractive optical features. While illustrated disposed at the bottom major surfaces of the waveguides 440b, 438b, 436b, 434b, 432b for ease of description and drawing clarity, in some embodiments, the light extracting optical elements 440a, 438a, 436a, 434a, 432a may be disposed at the top or bottom major surfaces, or may be disposed directly in the volume of the waveguides 440b, 438b, 436b, 434b, 432b. In some embodiments, the light extracting optical elements 440a, 438a, 436a, 434a, 432a may be formed in a layer of material that is attached to a transparent substrate to form the waveguides 440b, 438b, 436b, 434b, 432b. In some other embodiments, the waveguides 440b, 438b, 436b, 434b, 432b may be a monolithic piece of material and the light extracting optical elements 440a, 438a, 436a, 434a, 432a may be formed on a surface or in the interior of that piece of material.
With continued reference to
The other waveguide layers (e.g., waveguides 438b, 440b) and lenses (e.g., lenses 456, 458) are similarly configured, with the highest waveguide 440b in the stack sending its output through all of the lenses between it and the eye for an aggregate focal power representative of the closest focal plane to the person. To compensate for the stack of lenses 458, 456, 454, 452 when viewing/interpreting light coming from the world 470 on the other side of the stacked waveguide assembly 480, a compensating lens layer 430 may be disposed at the top of the stack to compensate for the aggregate power of the lens stack 458, 456, 454, 452 below. (Compensating lens layer 430 and the stacked waveguide assembly 480 as a whole may be configured such that light coming from the world 470 is conveyed to the eye 410 at substantially the same level of divergence (or collimation) as the light had when it was initially received by the stacked waveguide assembly 480.) Such a configuration provides as many perceived focal planes as there are available waveguide/lens pairings. Both the light extracting optical elements of the waveguides and the focusing aspects of the lenses may be static (e.g., not dynamic or electro-active). In some alternative embodiments, either or both may be dynamic using electro-active features.
With continued reference to
In some embodiments, the light extracting optical elements 440a, 438a, 436a, 434a, 432a are diffractive features that form a diffraction pattern, or “diffractive optical element” (also referred to herein as a “DOE”). Preferably, the DOE has a relatively low diffraction efficiency so that only a portion of the light of the beam is deflected away toward the eye 410 with each intersection of the DOE, while the rest continues to move through a waveguide via total internal reflection. The light carrying the image information can thus be divided into a number of related exit beams that exit the waveguide at a multiplicity of locations and the result is a fairly uniform pattern of exit emission toward the eye 304 for this particular collimated beam bouncing around within a waveguide.
In some embodiments, one or more DOEs may be switchable between “on” state in which they actively diffract, and “off” state in which they do not significantly diffract. For instance, a switchable DOE may comprise a layer of polymer dispersed liquid crystal, in which microdroplets comprise a diffraction pattern in a host medium, and the refractive index of the microdroplets can be switched to substantially match the refractive index of the host material (in which case the pattern does not appreciably diffract incident light) or the microdroplet can be switched to an index that does not match that of the host medium (in which case the pattern actively diffracts incident light).
In some embodiments, the number and distribution of depth planes or depth of field may be varied dynamically based on the pupil sizes or orientations of the eyes of the viewer. Depth of field may change inversely with a viewer's pupil size. As a result, as the sizes of the pupils of the viewer's eyes decrease, the depth of field increases such that one plane that is not discernible because the location of that plane is beyond the depth of focus of the eye may become discernible and appear more in focus with reduction of pupil size and commensurate with the increase in depth of field. Likewise, the number of spaced apart depth planes used to present different images to the viewer may be decreased with the decreased pupil size. For example, a viewer may not be able to clearly perceive the details of both a first depth plane and a second depth plane at one pupil size without adjusting the accommodation of the eye away from one depth plane and to the other depth plane. These two depth planes may, however, be sufficiently in focus at the same time to the user at another pupil size without changing accommodation.
In some embodiments, the display system may vary the number of waveguides receiving image information based upon determinations of pupil size or orientation, or upon receiving electrical signals indicative of particular pupil size or orientation. For example, if the user's eyes are unable to distinguish between two depth planes associated with two waveguides, then the controller 460 (which may be an embodiment of the local processing and data module 260) can be configured or programmed to cease providing image information to one of these waveguides. Advantageously, this may reduce the processing burden on the system, thereby increasing the responsiveness of the system. In embodiments in which the DOEs for a waveguide are switchable between the on and off states, the DOEs may be switched to the off state when the waveguide does receive image information.
In some embodiments, it may be desirable to have an exit beam meet the condition of having a diameter that is less than the diameter of the eye of a viewer. However, meeting this condition may be challenging in view of the variability in size of the viewer's pupils. In some embodiments, this condition is met over a wide range of pupil sizes by varying the size of the exit beam in response to determinations of the size of the viewer's pupil. For example, as the pupil size decreases, the size of the exit beam may also decrease. In some embodiments, the exit beam size may be varied using a variable aperture.
The wearable system 400 can include an outward-facing imaging system 464 (e.g., a digital camera) that images a portion of the world 470. This portion of the world 470 may be referred to as the field of view (FOV) of a world camera and the imaging system 464 is sometimes referred to as an FOV camera. The FOV of the world camera may or may not be the same as the FOV of a viewer 210 which encompasses a portion of the world 470 the viewer 210 perceives at a given time. For example, in some situations, the FOV of the world camera may be larger than the viewer 210 of the viewer 210 of the wearable system 400. The entire region available for viewing or imaging by a viewer may be referred to as the field of regard (FOR). The FOR may include 4π steradians of solid angle surrounding the wearable system 400 because the wearer can move his body, head, or eyes to perceive substantially any direction in space. In other contexts, the wearer's movements may be more constricted, and accordingly the wearer's FOR may subtend a smaller solid angle. Images obtained from the outward-facing imaging system 464 can be used to track gestures made by the user (e.g., hand or finger gestures), detect objects in the world 470 in front of the user, and so forth.
The wearable system 400 can include an audio sensor 232, e.g., a microphone, to capture ambient sound. As described above, in some embodiments, one or more other audio sensors can be positioned to provide stereo sound reception useful to the determination of location of a speech source. The audio sensor 232 can comprise a directional microphone, as another example, which can also provide such useful directional information as to where the audio source is located. The wearable system 400 can use information from both the outward-facing imaging system 464 and the audio sensor 230 in locating a source of speech, or to determine an active speaker at a particular moment in time, etc. For example, the wearable system 400 can use the voice recognition alone or in combination with a reflected image of the speaker (e.g., as seen in a mirror) to determine the identity of the speaker. As another example, the wearable system 400 can determine a position of the speaker in an environment based on sound acquired from directional microphones. The wearable system 400 can parse the sound coming from the speaker's position with speech recognition algorithms to determine the content of the speech and use voice recognition techniques to determine the identity (e.g., name or other demographic information) of the speaker.
The wearable system 400 can also include an inward-facing imaging system 466 (e.g., a digital camera), which observes the movements of the user, such as the eye movements and the facial movements. The inward-facing imaging system 466 may be used to capture images of the eye 410 to determine the size and/or orientation of the pupil of the eye 304. The inward-facing imaging system 466 can be used to obtain images for use in determining the direction the user is looking (e.g., eye pose) or for biometric identification of the user (e.g., via iris identification). In some embodiments, at least one camera may be utilized for each eye, to separately determine the pupil size or eye pose of each eye independently, thereby allowing the presentation of image information to each eye to be dynamically tailored to that eye. In some other embodiments, the pupil diameter or orientation of only a single eye 410 (e.g., using only a single camera per pair of eyes) is determined and assumed to be similar for both eyes of the user. The images obtained by the inward-facing imaging system 466 may be analyzed to determine the user's eye pose or mood, which can be used by the wearable system 400 to decide which audio or visual content should be presented to the user. The wearable system 400 may also determine head pose (e.g., head position or head orientation) using sensors such as IMUs, accelerometers, gyroscopes, etc.
The wearable system 400 can include a user input device 466 by which the user can input commands to the controller 460 to interact with the wearable system 400. For example, the user input device 466 can include a trackpad, a touchscreen, a joystick, a multiple degree-of-freedom (DOF) controller, a capacitive sensing device, a game controller, a keyboard, a mouse, a directional pad (D-pad), a wand, a haptic device, a totem (e.g., functioning as a virtual user input device), and so forth. A multi-DOF controller can sense user input in some or all possible translations (e.g., left/right, forward/backward, or up/down) or rotations (e.g., yaw, pitch, or roll) of the controller. A multi-DOF controller which supports the translation movements may be referred to as a 3DOF while a multi-DOF controller which supports the translations and rotations may be referred to as 6DOF. In some cases, the user may use a finger (e.g., a thumb) to press or swipe on a touch-sensitive input device to provide input to the wearable system 400 (e.g., to provide user input to a user interface provided by the wearable system 400). The user input device 466 may be held by the user's hand during the use of the wearable system 400. The user input device 466 can be in wired or wireless communication with the wearable system 400.
Other Components of the Wearable System
In many implementations, the wearable system may include other components in addition or in alternative to the components of the wearable system described above. The wearable system may, for example, include one or more haptic devices or components. The haptic devices or components may be operable to provide a tactile sensation to a user. For example, the haptic devices or components may provide a tactile sensation of pressure or texture when touching virtual content (e.g., virtual objects, virtual tools, other virtual constructs). The tactile sensation may replicate a feel of a physical object which a virtual object represents, or may replicate a feel of an imagined object or character (e.g., a dragon) which the virtual content represents. In some implementations, haptic devices or components may be worn by the user (e.g., a user wearable glove). In some implementations, haptic devices or components may be held by the user.
The wearable system may, for example, include one or more physical objects which are manipulable by the user to allow input or interaction with the wearable system. These physical objects may be referred to herein as totems. Some totems may take the form of inanimate objects, such as for example, a piece of metal or plastic, a wall, a surface of table. In certain implementations, the totems may not actually have any physical input structures (e.g., keys, triggers, joystick, trackball, rocker switch). Instead, the totem may simply provide a physical surface, and the wearable system may render a user interface so as to appear to a user to be on one or more surfaces of the totem. For example, the wearable system may render an image of a computer keyboard and trackpad to appear to reside on one or more surfaces of a totem. For example, the wearable system may render a virtual computer keyboard and virtual trackpad to appear on a surface of a thin rectangular plate of aluminum which serves as a totem. The rectangular plate does not itself have any physical keys or trackpad or sensors. However, the wearable system may detect user manipulation or interaction or touches with the rectangular plate as selections or inputs made via the virtual keyboard or virtual trackpad. The user input device 466 (shown in
Examples of haptic devices and totems usable with the wearable devices, HMD, and display systems of the present disclosure are described in U.S. Patent Publication No. 2015/0016777, which is incorporated by reference herein in its entirety.
Example of an Eye Image
As the eye 500 moves to look toward different objects, the eye pose will change relative to the natural resting direction 520. The current eye pose can be determined with reference to an eye pose direction 524, which is a direction orthogonal to the surface of the eye (and centered in within the pupil 516) but oriented toward the object at which the eye is currently directed. With reference to an example coordinate system shown in
An eye image can be obtained from a video using any appropriate process, for example, using a video processing algorithm that can extract an image from one or more sequential frames. The pose of the eye can be determined from the eye image using a variety of eye-tracking techniques. For example, an eye pose can be determined by considering the lensing effects of the cornea on light sources that are provided. Any suitable eye tracking technique can be used for determining eye pose in the eyelid shape estimation techniques described herein.
Example of an Eye Tracking System
As shown in
Eye tracking module 614 may receive images from eye tracking camera(s) 324 and may analyze the images to extract various pieces of information. As examples, the eye tracking module 614 may detect the user's eye poses, a three-dimensional position of the user's eye relative to the eye tracking camera 324 (and to the head-mounted unit 602), the direction one or both of the user's eyes 610 are focused on, the user's vergence depth (e.g., the depth from the user at which the user is focusing on), the positions of the user's pupils, the positions of the user's cornea and cornea sphere, the center of rotation of each of the user's eyes, and the center of perspective of each of the user's eyes. The eye tracking module 614 may extract such information using techniques described below in connection with
Data from eye tracking module 614 may be provided to other components in the wearable system. As example, such data may be transmitted to components in a non-head-mounted unit 604 such as CPU 616 including software modules for a light-field render controller 618 and a registration observer 620.
Render controller 618 may use information from eye tracking module 614 to adjust images displayed to the user by render engine 622 (e.g., a render engine that may be a software module in GPU 620 and that may provide images to display 220). As an example, the render controller 618 may adjust images displayed to the user based on the user's center of rotation or center of perspective. In particular, the render controller 618 may use information on the user's center of perspective to simulate a render camera (e.g., to simulate collecting images from the user's perspective) and may adjust images displayed to the user based on the simulated render camera.
A “render camera,” which is sometimes also referred to as a “pinhole perspective camera” (or simply “perspective camera”) or “virtual pinhole camera” (or simply “virtual camera”), is a simulated camera for use in rendering virtual image content possibly from a database of objects in a virtual world. The objects may have locations and orientations relative to the user or wearer and possibly relative to real objects in the environment surrounding the user or wearer. In other words, the render camera may represent a perspective within render space from which the user or wearer is to view 3D virtual contents of the render space (e.g., virtual objects). The render camera may be managed by a render engine to render virtual images based on the database of virtual objects to be presented to said eye. The virtual images may be rendered as if taken from the perspective the user or wearer. For example, the virtual images may be rendered as if captured by a pinhole camera (corresponding to the “render camera”) having a specific set of intrinsic parameters (e.g., focal length, camera pixel size, principal point coordinates, skew/distortion parameters, etc.), and a specific set of extrinsic parameters (e.g., translational components and rotational components relative to the virtual world). The virtual images are taken from the perspective of such a camera having a position and orientation of the render camera (e.g., extrinsic parameters of the render camera). It follows that the system may define and/or adjust intrinsic and extrinsic render camera parameters. For example, the system may define a particular set of extrinsic render camera parameters such that virtual images may be rendered as if captured from the perspective of a camera having a specific location with respect to the user's or wearer's eye so as to provide images that appear to be from the perspective of the user or wearer. The system may later dynamically adjust extrinsic render camera parameters on-the-fly so as to maintain registration with said specific location. Similarly, intrinsic render camera parameters may be defined and dynamically adjusted over time. In some implementations, the images are rendered as if captured from the perspective of a camera having an aperture (e.g., pinhole) at a specific location with respect to the user's or wearer's eye (such as the center of perspective or center of rotation, or elsewhere).
In some embodiments, the system may create or dynamically reposition and/or reorient one render camera for the user's left eye, and another render camera for the user's right eye, as the user's eyes are physically separated from one another and thus consistently positioned at different locations. It follows that, in at least some implementations, virtual content rendered from the perspective of a render camera associated with the viewer's left eye may be presented to the user through an eyepiece on the left side of a head-mounted display (e.g., head-mounted unit 602), and that virtual content rendered from the perspective of a render camera associated with the user's right eye may be presented to the user through an eyepiece on the right side of such a head-mounted display. Further details discussing the creation, adjustment, and use of render cameras in rendering processes are provided in U.S. patent application Ser. No. 15/274,823, entitled “METHODS AND SYSTEMS FOR DETECTING AND COMBINING STRUCTURAL FEATURES IN 3D RECONSTRUCTION,” which is expressly incorporated herein by reference in its entirety for all purposes.
In some examples, one or more modules (or components) of the system 600 (e.g., light-field render controller 618, render engine 620, etc.) may determine the position and orientation of the render camera within render space based on the position and orientation of the user's head and eyes (e.g., as determined based on head pose and eye tracking data, respectively). That is, the system 600 may effectively map the position and orientation of the user's head and eyes to particular locations and angular positions within a 3D virtual environment, place and orient render cameras at the particular locations and angular positions within the 3D virtual environment, and render virtual content for the user as it would be captured by the render camera. Further details discussing real world to virtual world mapping processes are provided in U.S. patent application Ser. No. 15/296,869, entitled “SELECTING VIRTUAL OBJECTS IN A THREE-DIMENSIONAL SPACE,” which is expressly incorporated herein by reference in its entirety for all purposes. As an example, the render controller 618 may adjust the depths at which images are displayed by selecting which depth plane (or depth planes) are utilized at any given time to display the images. In some implementations, such a depth plane switch may be carried out through an adjustment of one or more intrinsic render camera parameters. For example, the light-field render controller 618 may adjust the focal lengths of render cameras when executing a depth plane switch or adjustment. As described in further detail below, depth planes may be switched based on the user's determined vergence or fixation depth.
Registration observer 620 may use information from eye tracking module 614 to identify whether the head-mounted unit 602 is properly positioned on a user's head. As an example, the eye tracking module 614 may provide eye location information, such as the positions of the centers of rotation of the user's eyes, indicative of the three-dimensional position of the user's eyes relative to camera 324 and head-mounted unit 602 and the eye tracking module 614 may use the location information to determine if display 220 is properly aligned in the user's field of view, or if the head-mounted unit 602 (or headset) has slipped or is otherwise misaligned with the user's eyes. As examples, the registration observer 620 may be able to determine if the head-mounted unit 602 has slipped down the user's nose bridge, thus moving display 220 away and down from the user's eyes (which may be undesirable), if the head-mounted unit 602 has been moved up the user's nose bridge, thus moving display 220 closer and up from the user's eyes, if the head-mounted unit 602 has been shifted left or right relative the user's nose bridge, if the head-mounted unit 602 has been lifted above the user's nose bridge, or if the head-mounted unit 602 has been moved in these or other ways away from a desired position or range of positions. In general, registration observer 620 may be able to determine if head-mounted unit 602, in general, and displays 220, in particular, are properly positioned in front of the user's eyes. In other words, the registration observer 620 may determine if a left display in display system 220 is appropriately aligned with the user's left eye and a right display in display system 220 is appropriately aligned with the user's right eye. The registration observer 620 may determine if the head-mounted unit 602 is properly positioned by determining if the head-mounted unit 602 is positioned and oriented within a desired range of positions and/or orientations relative to the user's eyes.
In at least some embodiments, registration observer 620 may generate user feedback in the form of alerts, messages, or other content. Such feedback may be provided to the user to inform the user of any misalignment of the head-mounted unit 602, along with optional feedback on how to correct the misalignment (such as a suggestion to adjust the head-mounted unit 602 in a particular manner).
Example registration observation and feedback techniques, which may be utilized by registration observer 620, are described in U.S. patent application Ser. No. 15/717,747, filed Sep. 27, 2017 and U.S. Provisional Patent Application No. 62/644,321, filed Mar. 16, 2018, both of which are incorporated by reference herein in their entirety.
Example of an Eye Tracking Module
A detailed block diagram of an example eye tracking module 614 is shown in
Image preprocessing module 710 may receive images from an eye camera such as eye camera 324 and may perform one or more preprocessing (e.g., conditioning) operations on the received images. As examples, image preprocessing module 710 may apply a Gaussian blur to the images, may down sample the images to a lower resolution, may applying an unsharp mask, may apply an edge sharpening algorithm, or may apply other suitable filters that assist with the later detection, localization, and labelling of glints, a pupil, or other features in the images from eye camera 324. The image preprocessing module 710 may apply a low-pass filter or a morphological filter such as an open filter, which can remove high-frequency noise such as from the pupillary boundary 516a (see
Pupil identification module 712 may receive preprocessed images from the image preprocessing module 710 and may identify regions of those images that include the user's pupil. The pupil identification module 712 may, in some embodiments, determine the coordinates of the position, or coordinates, of the center, or centroid, of the user's pupil in the eye tracking images from camera 324. In at least some embodiments, pupil identification module 712 may identify contours in eye tracking images (e.g., contours of pupil iris boundary), identify contour moments (e.g., centers of mass), apply a starburst pupil detection and/or a canny edge detection algorithm, reject outliers based on intensity values, identify sub-pixel boundary points, correct for eye-camera distortion (e.g., distortion in images captured by eye camera 324), apply a random sample consensus (RANSAC) iterative algorithm to fit an ellipse to boundaries in the eye tracking images, apply a tracking filter to the images, and identify sub-pixel image coordinates of the user's pupil centroid. The pupil identification module 712 may output pupil identification data, which may indicate which regions of the preprocessing images module 712 identified as showing the user's pupil, to glint detection and labeling module 714. The pupil identification module 712 may provide the 2D coordinates of the user's pupil (e.g., the 2D coordinates of the centroid of the user's pupil) within each eye tracking image to glint detection module 714. In at least some embodiments, pupil identification module 712 may also provide pupil identification data of the same sort to coordinate system normalization module 718.
Pupil detection techniques, which may be utilized by pupil identification module 712, are described in U.S. Patent Publication No. 2017/0053165, published Feb. 23, 2017 and in U.S. Patent Publication No. 2017/0053166, published Feb. 23, 2017, each of which is incorporated by reference herein in its entirety.
Glint detection and labeling module 714 may receive preprocessed images from module 710 and pupil identification data from module 712. Glint detection module 714 may use this data to detect and/or identify glints (e.g., reflections off of the user's eye of the light from light sources 326) within regions of the preprocessed images that show the user's pupil. As an example, the glint detection module 714 may search for bright regions within the eye tracking image, sometimes referred to herein as “blobs” or local intensity maxima, that are in the vicinity of the user's pupil. In at least some embodiments, the glint detection module 714 may rescale (e.g., enlarge) the pupil ellipse to encompass additional glints. The glint detection module 714 may filter glints by size and/or by intensity. The glint detection module 714 may also determine the 2D positions of each of the glints within the eye tracking image. In at least some examples, the glint detection module 714 may determine the 2D positions of the glints relative to the user's pupil, which may also be referred to as the pupil-glint vectors. Glint detection and labeling module 714 may label the glints and output the preprocessing images with labeled glints to the 3D cornea center estimation module 716. Glint detection and labeling module 714 may also pass along data such as preprocessed images from module 710 and pupil identification data from module 712. In some implementations, the glint detection and labeling module 714 may determine which light source (e.g., from among a plurality of light sources of the system including infrared light sources 326a and 326b) produced each identified glint. In these examples, the glint detection and labeling module 714 may label the glints with information identifying the associated light source and output the preprocessing images with labeled glints to the 3D cornea center estimation module 716.
Pupil and glint detection, as performed by modules such as modules 712 and 714, can use any suitable techniques. As examples, edge detection can be applied to the eye image to identify glints and pupils. Edge detection can be applied by various edge detectors, edge detection algorithms, or filters. For example, a Canny Edge detector can be applied to the image to detect edges such as in lines of the image. Edges may include points located along a line that correspond to the local maximum derivative. For example, the pupillary boundary 516a (see
3D cornea center estimation module 716 may receive preprocessed images including detected glint data and pupil identification data from modules 710, 712, 714. 3D cornea center estimation module 716 may use these data to estimate the 3D position of the user's cornea. In some embodiments, the 3D cornea center estimation module 716 may estimate the 3D position of an eye's center of cornea curvature or a user's corneal sphere, e.g., the center of an imaginary sphere having a surface portion generally coextensive with the user's cornea. The 3D cornea center estimation module 716 may provide data indicating the estimated 3D coordinates of the corneal sphere and/or user's cornea to the coordinate system normalization module 718, the optical axis determination module 722, and/or the light-field render controller 618. Further details of the operation of the 3D cornea center estimation module 716 are provided herein in connection with
Coordinate system normalization module 718 may optionally (as indicated by its dashed outline) be included in eye tracking module 614. Coordinate system normalization module 718 may receive data indicating the estimated 3D coordinates of the center of the user's cornea (and/or the center of the user's corneal sphere) from the 3D cornea center estimation module 716 and may also receive data from other modules. Coordinate system normalization module 718 may normalize the eye camera coordinate system, which may help to compensate for slippages of the wearable device (e.g., slippages of the head-mounted component from its normal resting position on the user's head, which may be identified by registration observer 620). Coordinate system normalization module 718 may rotate the coordinate system to align the z-axis (e.g., the vergence depth axis) of the coordinate system with the cornea center (e.g., as indicated by the 3D cornea center estimation module 716) and may translate the camera center (e.g., the origin of the coordinate system) to a predetermined distance away from the cornea center such as 30 mm (e.g., module 718 may enlarge or shrink the eye tracking image depending on whether the eye camera 324 was determined to be nearer or further than the predetermined distance). With this normalization process, the eye tracking module 614 may be able to establish a consistent orientation and distance in the eye tracking data, relatively independent of variations of headset positioning on the user's head. Coordinate system normalization module 718 may provide 3D coordinates of the center of the cornea (and/or corneal sphere), pupil identification data, and preprocessed eye tracking images to the 3D pupil center locator module 720. Further details of the operation of the coordinate system normalization module 718 are provided herein in connection with
3D pupil center locator module 720 may receive data, in the normalized or the unnormalized coordinate system, including the 3D coordinates of the center of the user's cornea (and/or corneal sphere), pupil location data, and preprocessed eye tracking images. 3D pupil center locator module 720 may analyze such data to determine the 3D coordinates of the center of the user's pupil in the normalized or unnormalized eye camera coordinate system. The 3D pupil center locator module 720 may determine the location of the user's pupil in three-dimensions based on the 2D position of the pupil centroid (as determined by module 712), the 3D position of the cornea center (as determined by module 716), assumed eye dimensions 704 such as the size of the a typical user's corneal sphere and the typical distance from the cornea center to the pupil center, and optical properties of eyes such as the index of refraction of the cornea (relative to the index of refraction of air) or any combination of these. Further details of the operation of the 3D pupil center locator module 720 are provided herein in connection with
Optical axis determination module 722 may receive data from modules 716 and 720 indicating the 3D coordinates of the center of the user's cornea and the user's pupil. Based on such data, the optical axis determination module 722 may identify a vector from the position of the cornea center (e.g., from the center of the corneal sphere) to the center of the user's pupil, which may define the optical axis of the user's eye. Optical axis determination module 722 may provide outputs specifying the user's optical axis to modules 724, 728, 730, and 732, as examples.
Center of rotation (CoR) estimation module 724 may receive data from module 722 including parameters of the optical axis of the user's eye (e.g., data indicating the direction of the optical axis in a coordinate system with a known relation to the head-mounted unit 602). For example, CoR estimation module 724 may estimate the center of rotation of a user's eye. The center of rotation may indicate a point around which the user's eye rotates when the user eye rotates left, right, up, and/or down. While eyes may not rotate perfectly around a singular point, assuming a singular point may be sufficient. In at least some embodiments, CoR estimation module 724 may estimate an eye's center of rotation by moving from the center of the pupil (identified by module 720) or the center of curvature of the cornea (as identified by module 716) toward the retina along the optical axis (identified by module 722) a particular distance. This particular distance may be an assumed eye dimension 704. As one example, the particular distance between the center of curvature of the cornea and the CoR may be approximately 4.7 mm. This distance may be varied for a particular user based on any relevant data including the user's age, sex, vision prescription, other relevant characteristics, etc. Additional discussion of the value of 4.7 mm as an estimate for the distance between the center of curvature of the cornea and the CoR is provided in Appendix (Part III), which forms part of this application.
In at least some embodiments, the CoR estimation module 724 may refine its estimate of the center of rotation of each of the user's eyes over time. As an example, as time passes, the user will eventually rotate their eyes (to look somewhere else, at something closer, further, or sometime left, right, up, or down) causing a shift in the optical axis of each of their eyes. CoR estimation module 724 may then analyze two (or more) optical axes identified by module 722 and locate the 3D point of intersection of those optical axes. The CoR estimation module 724 may then determine the center of rotation lies at that 3D point of intersection. Such a technique may provide for an estimate of the center of rotation, with an accuracy that improves over time.
Various techniques may be employed to increase the accuracy of the CoR estimation module 724 and the determined CoR positions of the left and right eyes. As an example, the CoR estimation module 724 may estimate the CoR by finding the average point of intersection of optical axes determined for various different eye poses over time. As additional examples, module 724 may filter or average estimated CoR positions over time, may calculate a moving average of estimated CoR positions over time, and/or may apply a Kalman filter and known dynamics of the eyes and eye tracking system to estimate the CoR positions over time. In some implementations, a least-squares approach may be taken to determine one or more points of intersection of optical axes. In such implementations, the system may, at a given point in time, identify a location at which the sum of the squared distances to a given set of optical axes is reduced or minimized as the point of optical axes intersection. As a specific example, module 724 may calculate a weighted average of determined points of optical axes intersection and assumed CoR positions (such as 4.7 mm from an eye's center of cornea curvature), such that the determined CoR may slowly drift from an assumed CoR position (e.g., 4.7 mm behind an eye's center of cornea curvature) to a slightly different location within the user's eye over time as eye tracking data for the user is obtain and thereby enables per-user refinement of the CoR position.
Under ideal conditions, the 3D position of the true CoR of a user's eye relative to the HMD should change a negligible or minimal amount over time as the user moves their eye (e.g., as the user's eye rotates around its center of rotation). In other words, for a given set of eye movements, the 3D position of the true CoR of the user's eye (relative to the HMD) should hypothetically vary less over time than any other point along the optical axis of the user's eye. As such, it follows that the further away a point along the optical axis is from the true CoR of the user's eye, the more variation or variance its 3D position will exhibit over time as the user moves their eye. In some embodiments, the CoR estimation module 724 and/or other submodules of eye tracking module 614 may make use of this statistical relationship to improve CoR estimation accuracy. In such embodiments, the CoR estimation module 724 and/or other submodules of eye tracking module 614 may refine their estimates of the CoR 3D position over time by identifying variations of its CoR estimates having a low variation (e.g., low variance or standard deviation).
As a first example and in embodiments where the CoR estimation module 724 estimates CoR based on intersection of multiple different optical axes (each associated with the user looking in a different direction), the CoR estimation module 724 may make use of this statistical relationship (that the true CoR should have a low variance) by introducing common offsets to the direction of each of the optical axes (e.g., shifting each axis by some uniform amount) and determining if the offset optical axes intersect with each other in an intersection point having a low variation, e.g., low variance or standard deviation. This may correct for minor systemic errors in calculating the directions of the optical axes and help to refine the estimated position of the CoR to be closer to the true CoR.
As a second example and in embodiments where the CoR estimation module 724 estimates CoR by moving along an optical axis (or other axis) by a particular distance (e.g., such as the distance between the center of curvature of the cornea and the CoR), the system may vary, optimize, tune, or otherwise adjust the particular distance between the center of curvature of the cornea and the CoR over time (for example, for a large group of images of the eye captured at different times) in a manner so as to reduce or minimize the variation, for example, variance and/or standard deviation of the estimated CoR position. For example, if the CoR estimation module 724 initially uses a particular distance value of 4.7 mm (from the center of curvature of the cornea and along the optical axis) to obtain CoR position estimates, but the true CoR of a given user's eye may be positioned 4.9 mm behind the eye's center of cornea curvature (along the optical axis), then an initial set of CoR position estimates obtained by the CoR estimation module 724 may exhibit a relatively high amount of variation, e.g., variance or standard deviation. In response to detecting such a relatively high amount of variation (e.g., variance or standard deviation), the CoR estimation module 724 may look for and identify one or more points along the optical axis having a lower amount of variation (e.g., variance or standard deviation), may identify the 4.9 mm distance as having the lowest variation (e.g., variance or standard deviation), and may thus adjust the particular distance value utilized to 4.9 mm.
The CoR estimation module 724 may look for alternative CoR estimations having lower variation (e.g., variance and/or standard deviation) in response to detecting that a current CoR estimate has a relatively high amount of variation (e.g., variance or standard deviation) or may look for alternative CoR estimations having lower variation (e.g. variance or standard deviation) as a matter of course after obtaining initial CoR estimates. In some examples, such an optimization/adjustment can happen gradually over time, while in other examples, such an optimization/adjustment can be made during an initial user calibration session. In examples where such a procedure is conducted during a calibration procedure, the CoR estimation module 724 may not initially subscribe/adhere to any assumed particular distance, but may rather collect a set of eye tracking data over time, perform statistical analysis on the set of eye tracking data, and determine the particular distance value yielding CoR position estimates with the least possible amount (e.g., global minima) of variation (e.g. variance or standard deviation) based on the statistical analysis.
Additional discussion of the statistical relationship described above (e.g., that the true CoR should have low variance or standard deviation), as well as the significance of taking into account corneal refraction in determining pupil position, is provided in Appendix (Part III), which forms part of this application.
Interpupillary distance (IPD) estimation module 726 may receive data from CoR estimation module 724 indicating the estimated 3D positions of the centers of rotation of the user's left and right eyes. IPD estimation module 726 may then estimate a user's IPD by measuring the 3D distance between the centers of rotation of the user's left and right eyes. In general, the distance between the estimated CoR of the user's left eye and the estimated CoR of the user's right eye may be roughly equal to the distance between the centers of a user's pupils, when the user is looking at optical infinity (e.g., the optical axes of the user's eyes are substantially parallel to one another), which is the typical definition of interpupillary distance (IPD). A user's IPD may be used by various components and modules in the wearable system. As example, a user's IPD may be provided to registration observer 620 and used in assessing how well the wearable device is aligned with the user's eyes (e.g., whether the left and right display lenses are properly spaced in accordance with the user's IPD). As another example, a user's IPD may be provided to vergence depth estimation module 728 and be used in determining a user's vergence depth. Module 726 may employ various techniques, such as those discussed in connection with CoR estimation module 724, to increase the accuracy of the estimated IPD. As examples, IPD estimation module 724 may apply filtering, averaging over time, weighted averaging including assumed IPD distances, Kalman filters, etc. as part of estimating a user's IPD in an accurate manner.
Vergence depth estimation module 728 may receive data from various modules and submodules in the eye tracking module 614 (as shown in connection with
In some embodiments, vergence depth estimation module 728 may estimate a user's vergence depth based on the intersection of the user's visual axes (instead of their optical axes), which may provide a more accurate indication of the distance at which the user is focused on. In at least some embodiments, eye tracking module 614 may include optical to visual axis mapping module 730. As discussed in further detail in connection with
Optional center of perspective (CoP) estimation module 732, when provided, may estimate the location of the user's left and right centers of perspective (CoP). A CoP may be a useful location for the wearable system and, in at least some embodiments, is a position just in front of a pupil. In at least some embodiments, CoP estimation module 732 may estimate the locations of a user's left and right centers of perspective based on the 3D location of a user's pupil center, the 3D location of a user's center of cornea curvature, or such suitable data or any combination thereof. As an example, a user's CoP may be approximately 5.01 mm in front of the center of cornea curvature (e.g., 5.01 mm from the corneal sphere center in a direction that is towards the eye's cornea and that is along the optical axis) and may be approximately 2.97 mm behind the outer surface of a user's cornea, along the optical or visual axis. A user's center of perspective may be just in front of the center of their pupil. As examples, a user's CoP may be less than approximately 2.0 mm from the user's pupil, less than approximately 1.0 mm from the user's pupil, or less than approximately 0.5 mm from the user's pupil or any ranges between any of these values. As another example, the center of perspective may correspond to a location within the anterior chamber of the eye. As other examples, the CoP may be between 1.0 mm and 2.0 mm, about 1.0 mm, between 0.25 mm and 1.0 mm, between 0.5 mm and 1.0 mm, or between 0.25 mm and 0.5 mm.
The center of perspective described herein (as a potentially desirable position for a pinhole of a render camera and an anatomical position in a user's eye) may be a position that serves to reduce and/or eliminate undesired parallax shifts. In particular, the optical system of a user's eye is very roughly equivalent to theoretical system formed by a pinhole in front of a lens, projecting onto a screen, with the pinhole, lens, and screen roughly corresponding to a user's pupil/iris, lens, and retina, respectively. Moreover, it may be desirable for there to be little or no parallax shift when two point light sources (or objects) at different distances from the user's eye are rigidly rotated about the opening of the pinhole (e.g., rotated along radii of curvature equal to their respective distance from the opening of the pinhole). Thus, it would seem that the CoP should be located at the center of the pupil of an eye (and such a CoP may be used in some embodiments). However, the human eye includes, in addition to the lens and pinhole of the pupil, a cornea that imparts additional optical power to light propagating toward the retina). Thus, the anatomical equivalent of the pinhole in the theoretical system described in this paragraph may be a region of the user's eye positioned between the outer surface of the cornea of the user's eye and the center of the pupil or iris of the user's eye. For instance, the anatomical equivalent of the pinhole may correspond to a region within the anterior chamber of a user's eye. For various reasons discussed herein, it may be desired to set the CoP to such a position within the anterior chamber of the user's eye. The derivation and significance of the CoP are described in more detail below, with respect to
As discussed above, eye tracking module 614 may provide data, such as estimated 3D positions of left and right eye centers of rotation (CoR), vergence depth, left and right eye optical axis, 3D positions of a user's eye, 3D positions of a user's left and right centers of cornea curvature, 3D positions of a user's left and right pupil centers, 3D positions of a user's left and right center of perspective, a user's IPD, etc., to other components, such as light-field render controller 618 and registration observer 620, in the wearable system. Eye tracking module 614 may also include other submodules that detect and generate data associated with other aspects of a user's eye. As examples, eye tracking module 614 may include a blink detection module that provides a flag or other alert whenever a user blinks and a saccade detection module that provides a flag or other alert whenever a user's eye saccades (e.g., quickly shifts focus to another point).
Example of a Render Controller
A detailed block diagram of an example light-field render controller 618 is shown in
Depth plane selection module 750 may receive vergence depth information and other eye data and, based on such data, may cause render engine 622 to convey content to a user with a particular depth plane (e.g., at a particular accommodation or focal distance). As discussed in connection with
In general, it may be desirable for depth plane selection module 750 to select a depth plane matching the user's current vergence depth, such that the user is provided with accurate accommodation cues. However, it may also be desirable to switch depth planes in a discreet and unobtrusive manner. As examples, it may be desirable to avoid excessive switching between depth planes and/or it may be desire to switch depth planes at a time when the user is less likely to notice the switch, such as during a blink or eye saccade.
Hysteresis band crossing detection module 752 may help to avoid excessive switching between depth planes, particularly when a user's vergence depth fluctuates at the midpoint or transition point between two depth planes. In particular, module 752 may cause depth plane selection module 750 to exhibit hysteresis in its selection of depth planes. As an example, modules 752 may cause depth plane selection module 750 to switch from a first farther depth plane to a second closer depth plane only after a user's vergence depth passes a first threshold. Similarly, module 752 may cause depth plane selection module 750 (which may in turn direct displays such as display 220) to switch to the first farther depth plane only after the user's vergence depth passes a second threshold that is farther from the user than the first threshold. In the overlapping region between the first and second thresholds, module 750 may cause depth plane selection module 750 to maintain whichever depth plane is currently select as the selected depth plane, thus avoiding excessive switching between depth planes.
Ocular event detection module 750 may receive other eye data from the eye tracking module 614 of
If desired, depth plane selection module 750 may delay planned depth plane switches only for a limited period of time before executing the depth plane switch, even in the absence of an ocular event. Similarly, depth plane selection module 750 may execute a depth plane switch when the user's vergence depth is substantially outside of a currently-selected depth plane (e.g., when the user's vergence depth has exceeded a predetermined threshold beyond the regular threshold for a depth plane switch), even in the absence of an ocular event. These arrangements may help ensure that ocular event detection module 754 does not indefinitely delay depth plane switches and does not delay depth plane switches when a large accommodation error is present. Further details of the operation of depth plane selection module 750, and how the module may time depth plane switches, are provided herein in connection with
Render camera controller 758 may provide information to render engine 622 indicating where the user's left and right eyes are. Render engine 622 may then generate content by simulating cameras at the positions of the user's left and right eyes and generating content based on the perspectives of the simulated cameras. As discussed above, the render camera is a simulated camera for use in rendering virtual image content possibly from a database of objects in a virtual world. The objects may have locations and orientations relative to the user or wearer and possibly relative to real objects in the environment surrounding the user or wearer. The render camera may be included in a render engine to render virtual images based on the database of virtual objects to be presented to said eye. The virtual images may be rendered as if taken from the perspective the user or wearer. For example, the virtual images may be rendered as if captured by a camera (corresponding to the “render camera”) having an aperture, lens, and detector viewing the objects in the virtual world. The virtual images are taken from the perspective of such a camera having a position of the “render camera.” For example, the virtual images may be rendered as if captured from the perspective of a camera having a specific location with respect to the user's or wearer's eye so as to provide images that appear to be from the perspective of the user or wearer. In some implementations, the images are rendered as if captured from the perspective of a camera having an aperture at a specific location with respect to the user's or wearer's eye (such as the center of perspective or center of rotation as discussed herein, or elsewhere).
Render camera controller 758 may determine the positions of the left and right cameras based on the left and right eye centers of rotation (CoR), determined by CoR estimation module 724, and/or based on the left and right eye centers of perspective (CoP), determined by CoP estimation module 732. In some embodiments, render camera controller 758 may switch between the CoR and CoP locations based on various factors. As examples, the render camera controller 758 may, in various modes, register the render camera to the CoR locations at all times, register the render camera to the CoP locations at all times, toggle or discretely switch between registering the render camera to the CoR locations and registering the render camera to the CoP locations over time based on various factors, or dynamically register the render camera to any of a range of different positions along the optical (or visual) axis between the CoR and CoP locations over time based on various factors. The CoR and CoP positions may optionally pass through smoothing filter 756 (in any of the aforementioned modes for render camera positioning) which may average the CoR and CoP locations over time to reduce noise in these positions and prevent jitter in the render simulated render cameras.
In at least some embodiments, the render camera may be simulated as a pinhole camera with the pinhole disposed at the position of the estimated CoR or CoP identified by eye tracking module 614. As the CoP is offset from the CoR, the location of the render camera and its pinhole both shift as the user's eye rotates, whenever the render camera's position is based on a user's CoP (see, e.g., how the render camera linearly translates with the eye rotation as shown in
Example of Locating a User's Cornea with an Eye Tracking System
As shown in
In
Similarly in
As shown in
The processes described herein in connection with at least
Example of Normalizing the Coordinate System of Eye Tracking Images
As shown in
As a first normalization step, coordinate system normalization module 718 may rotate coordinate system 850 into rotated coordinate system 902, such that the z-axis (e.g., the vergence depth axis) of the coordinate system may be aligned with a vector between the origin of the coordinate system and cornea center of curvature coordinates 900, as shown in
As a second normalization step, coordinate system normalization module 718 may translate rotated coordinate system 902 into normalized coordinate system 910, such that cornea center of curvature coordinates 900 are a standard, normalized distance 906 from the origin of normalized coordinate system 910, as shown in
Example of Locating a User's Pupil Centroid with an Eye Tracking System
As shown in
In
As shown in
As shown in
Taking into account cornea refraction may possibly result in a more stable determined pupil position than one based on the first intersection 916 between ray 914 (i.e., a ray between the origin of normalized coordinate system 910 and the normalized location of a user's pupil) and the simulated cornea, as shown in
A noticeable benefit in including refraction of the cornea occurs when the center of rotation (CoR) is estimated as a point at a fixed distance from the cornea center along the optical axis of the eye. In particular, including cornea refraction in determining pupil position may significantly reduce variation in calculating the center of rotation for different orientations of the eye. For example, the variation can be caused when the eye as a whole moves in the camera coordinate frame, such as during remount of the headset because the eye as a whole may be oriented differently with respect to the headset on remount. Because the pupil center 920 corresponds better to the physical pupil position of the eye, there may be less variation in the CoR when the eye as a whole moves in the camera coordinate frame. Advantageously, including refraction of the cornea surface may results in a more stable and accurate CoR that can potentially be used in determining when a headset is replaced onto a user's head, may allow for more correct render camera placement, may allow for other novel gaze tracking algorithms or any combination thereof. Additionally, CoR as a stable, slowly changing feature of the eye may potentially be tracked by multi-frame Kalman-type temporal filters to provide a geometric reference location for other applications.
As can be seen from Table 1, the standard deviation (or sigma) of x-component of the CoR is reduced by about half when the refracted pupil center 962 was used for the calculation as compared to when the external pupil center 960. The total three dimensional standard deviation (sigma3d) also reduced significantly with the use of the refracted pupil center 962.
Example of Differences Between Optical and Visual Axes
As discussed in connection with optical to visual mapping module 730 of
Example Processes of Rendering Content and Checking Registration Based on Eye Tracking
At block 1110, the wearable system may capture images of a user's eye or eyes. The wearable system may capture eye images using one or more eye cameras 324, as shown at least in the example of
At block 1120, the wearable system may detect glints and pupils in the eye images captured in block 1110. As an example, block 1120 may include processing the eye images by glint detection & labeling module 714 to identify the two-dimensional positions of glints in the eye images and processing the eye images by pupil identification module 712 to identify the two-dimensional positions of pupils in the eye images.
At block 1130, the wearable system may estimate the three-dimensional positions of a user's left and right corneas relative to the wearable system. As an example, the wearable system may estimate the positions of the center of curvature of a user's left and right corneas as well as the distances between those centers of curvature and the user's left and right corneas. Block 1130 may involve 3D cornea center estimation module 716 identifying the position of the centers of curvature as described herein at least in connection with
At block 1140, the wearable system may estimate the three-dimensional positions of a user's left and right pupil centers relative to the wearable system. As an example, the wearable system and 3D pupil center locator module 720 in particular, may estimate the positions of the user's left and right pupil centers as described at least in connection with
At block 1150, the wearable system may estimate the three-dimensional positions of a user's left and right centers or rotation (CoR) relative to the wearable system. As an example, the wearable system and CoR estimation module 724 in particular, may estimate the positions of the CoR for the user's left and right eyes as described at least in connection with
At block 1160, the wearable system may estimate a user's IPD, vergence depth, center of perspective (CoP), optical axis, visual axis, and other desired attributes from eye tracking data. As examples, IPD estimation module 726 may estimate a user's IPD by comparing the 3D positions of the left and right CoRs, vergence depth estimation module 728 may estimate a user's depth by finding an intersection (or near intersection) of the left and right optical axes or an intersection of the left and right visual axes, optical axis determination module 722 may identify the left and right optical axes over time, optical to visual axis mapping module 730 may identify the left and right visual axes over time, and the CoP estimation module 732 may identify the left and right centers of perspective, as part of block 1160.
At block 1170, the wearable system may render content and may, optionally, provide feedback on registration (e.g., fit of the wearable system to the user's head) based in part on the eye tracking data identified in blocks 1120-1160. As an example, the wearable system may identify a suitable location for a render camera and then generate content for a user based on the render camera's location, as discussed in connection with light-field render controller 618,
Example Graphs of Rendering Content in Response to User Eye Movements
Graph 1200a illustrates an example of a user's vergence depth over time. Graph 1200b illustrates an example of a user's saccade signal or velocity of eye movements over time.
Graph 1200c may illustrate vergence depth data generated by eye tracking module 614 and, in particular, data generated by vergence depth estimation module 728. As shown in graphs 1200c-1200h, eye tracking data may be sampled within eye tracking module 614 at a rate of approximately 60 Hz. As shown between graphs 1200b and 1200c, eye tracking data within eye tracking module 614 may lag behind a user's actual eye movements by a delay 1202. As an example, at time t1 a user's vergence depth may cross a hysteresis threshold 1210a, but the hysteresis band crossing detection module 752 may not recognize the event until time t2 after delay 1202.
Graph 1200c also illustrates various thresholds 1210a, 1210b, 1210c in a hysteresis band, which may be associated with transitions between first and second depth planes (e.g., depth planes #1 and #0 in
Graph 1200d illustrates an internal flag that may be generated by depth plane selection module 750, or hysteresis band crossing detection module 752, indicating whether the user's vergence depth is in the volume generally associated with depth plane #1 or the volume generally associated with depth plane #2 (e.g., whether the user's vergence depth is greater or less than threshold 1210b).
Graph 1200e illustrates an internal hysteresis band flag that may be generated by depth plane section module 750, or hysteresis band crossing detection module 752, indicating whether a user's vergence depth has cross an outer threshold such as threshold 1210a or 1210c. In particular, graph 1200e illustrates a flag indicative of whether the user's vergence depth has completely crossed a hysteresis band and into a region outside of the active depth plane's volume (e.g., into a region associated with a depth plane other than an active depth plane), thus potentially leading to undesirable accommodation-vergence mismatch (AVM).
Graph 1200f illustrates an internal AVM flag that may be generated by depth plane selection module 750, or hysteresis band crossing detection module 752, indicating whether a user's vergence has been in outside of the active depth plane's volume for greater than a predetermined time. The AVM flag may therefore identify when the user may have been subjected to an undesirable accommodation-vergence mismatch for a nearly-excessive or excessive period of time. Additionally or alternatively, the internal AVM flag may also indicate whether a user's vergence has gone a predetermined distance beyond the active depth plane's volume, thus creating a potentially-excessive accommodation-vergence mismatches. In other words, the AVM flag may indicate when a user's vergence has exceeded an additional threshold even further from threshold 1210b than thresholds 1210a and 1210c.
Graph 1200g illustrates an internal blink flag that may be generated by ocular event detection module 754, which may determine when a user has or is blinking. As noted herein, it may be desired to switch depth planes upon user blink, to reduce the likelihood of the user perceiving the switch in depth planes.
Graph 1200h illustrates an example output from depth plane selection module 750. In particular, graph 1200h shows that depth plane selection module 750 may output an instruction to utilize a selected depth plane, which may change over time, to a render engine such as render engine 622 (see
Graphs 1200i and 1200j illustrate delays that may be present in the wearable system including a delay by render engine 622 to switch depth planes and a delay by the display 220, which may need to provide light associated with a new image frame in a new depth plane to effectuate a change in depth planes.
Reference will now be made to the events illustrated in graphs 1200a-1200j at various times (t0-t10).
Sometime around time to, a user's vergence depth may cross threshold 1210a, which may be an outer hysteresis threshold. After a delay associated with image capture and signal processing, the wearable system may generate a signal, as indicated in graph 1200e, that indicates that the user's vergence depth lies within the hysteresis band. In the example of graph 1200e, one or more modules of light-field render controller 618 may present a hysteresis band exceeded flag at approximately time t1 in connection with the user's vergence depth crossing threshold 1210a.
The user's vergence depth may continue to decrease from time to until approximately time t4 and may thereafter increase.
At time t1, a user's vergence depth may cross threshold 1210b, which may be a midpoint between two depth planes such as depth planes #1 and #0. After processing delay 1202, eye tracking module 614 may alter an internal flag indicating that the user's vergence depth has moved from a volume generally associated with depth plane #1 into a volume generally associated with depth plane #0, as illustrated in graph 1200d.
At time t3, one or more modules of light-field render controller 618 may determine that the user's vergence depth, as shown in graph 1200a, has moved entirely through the hysteresis band and cross outer threshold 1210c. As a result, one or more modules of light-field render controller 618 may generate a signal, as indicated in graph 1200e, that indicates that the user's vergence depth lies outside the hysteresis band. In at least some embodiments, one or more modules of light-field render controller 618 (e.g., depth plane selection module 750) may switch between first and second depth planes only when a user's vergence depth is outside of the hysteresis band between those two depth planes.
In at least some embodiments, one or more modules of light-field render controller 618 may be configured to switch depth planes at time t3. In particular, one or more modules of light-field render controller 618 may be configured to switch depth planes based on a determination that the vergence depth has moved from the volume of the currently selected depth plane (depth plane #1 as indicated by graph 1200h) into the volume of another depth plane (depth plane #0) and entirely crossed a hysteresis band. In other words, one or more modules of light-field render controller 618 may implement a depth plane switch whenever the hysteresis band is exceeded (graph 1200e is high) and an accommodation-vergence mismatch based on time or magnitude of mismatch is detected (graph 1200f is high). In such embodiments, one or more modules of light-field render controller 618 may provide a signal to render engine 622 instructing render engine 622 to switch to the other depth plane (depth plane #0). In the example of
At time t4 and in the example of
At time t5 and after delay 1204, the render engine 622 may start rendering content at the newly-selected depth plane #0. After a delay 1206 associated with rendering and conveying light to a user through the display 220, the display 220 may be fully switched to the newly-selected depth plane #0 by time t6.
Thus, graphs 1200a-j illustrates, between times t0 and t6, how the system may respond to a user's changing vergence and may switch depth planes after the user's vergence has moved away from a prior depth volume for more than a predetermined period of time. Graphs 1200a-j, between times t7 and t10, may illustrate how the system responds to a user's changing vergence and may switch depth planes upon detection of the user blinking, which may be prior to the predetermined period of time.
At time t7, one or more modules of light-field render controller 618 may detect that the user's vergence depth has entered the hysteresis region between depth planes #0 and #1 (e.g., that the user's vergence depth has crossed outer threshold 1210c). In response, one or more modules of light-field render controller 618 may alter a hysteresis flag as shown in graph 1200e.
At time t8, one or more modules of light-field render controller 618 may detect that the user's vergence depth has cross threshold 1210b and moved from the volume generally associated with depth plane #0 into the volume generally associated with depth plane #1. As such, one or more modules of light-field render controller 618 may alter a depth volume flag, as shown in graph 1200d.
At time t9, one or more modules of light-field render controller 618 may detect that the user's vergence depth has crossed threshold 1210a and moved out of the hysteresis volume into the volume generally associated exclusively with depth plane #1. In response, one or more modules of light-field render controller 618 may alter a hysteresis flag as shown in graph 1200e.
At around time t10, the user may blink and one or more modules of light-field render controller 618 may detect that blink. As one example, ocular event detection module 754 may detect a user's blink. In response, one or more modules of light-field render controller 618 may generate a blink flag, as shown in graph 1200h. In at least some embodiments, one or more modules of light-field render controller 618 may implement a depth plane switch whenever the hysteresis band is exceeded (graph 1200e is high) and a blink is detected (graph 1200g is high). Thus, one or more modules of light-field render controller 618 may instruct render engine 622 to switch depth planes at time t10.
Example Rendering Modes in a Mixed Reality System Having Multiple Depth Planes
In mixed reality systems, computer-generated (rendered) scenes may be conveyed to the human eye such that real and virtual objects are spatially aligned (from the perspective of the user). To provide a user with a visual perception of spatial alignment between real and virtual objects, the perspective from which the computer-generated scene is rendered and presented may preferably correspond to the perspective (e.g., the position and orientation) of the user's eye. As an example, user may perceive real and virtual objects to be spatially aligned in a desired manner when a “Real World” frame (within which real objects exist) and a “Render World” frame (within which virtual objects exist) are accurately aligned with one another.
A digital light-field display device, such as wearable system 200 including display 220 of
As will be discussed in more detail below, different rendering modes may be employed in a mixed reality system (such as mixed reality system 1300 in
Single Depth Plane Rendering Mode (Discrete Vari-Focus Mode)
As illustrated in
As discussed in more detail in connection with
Blended Depth Plane Rendering Mode (Blended Vari-Focus Mode)
As illustrated in
In the blended vari-focus mode, the wearable system may provide the same focal or accommodation cue for all pixels across the display's FOV, and this accommodation cue may be continuously variable between the depths of any pair of adjacent depth planes. The wearable system may achieve continuously variable accommodation cues by blending pixel intensities between two depth planes. As an example, the wearable system may display a virtual object having an accommodation cue between depth planes 1422 and 1421 by rendering the virtual object in both depth planes 1421 and 1421. In the further example in which the virtual object is closer to the depth of depth plane 1421, the wearable system may render the virtual object at a greater light intensity (e.g., brightness) in depth plane 1421 than in depth plane 1422. In such an arrangement, the light from the two depth planes may blend such that the user perceives the virtual object as having an accommodation cue that lies near depth plane 1421 (but still between planes 1421 and 1422).
In the blended vari-focus mode, the wearable system is configured to select which adjacent depth planes to blend, to provide a desired accommodation cue. However, since the accommodation cue can vary continuously between the planes by continuously varying the brightness, the timing of depth plane switches may not be as significant as in the discrete vari-focus mode. Thus, the wearable system may be configured to switch which two depth planes form the pair of adjacent depth planes without waiting for a triggering event such as a user blink, saccade, or AVM timeout. Instead, the wearable system may smoothly vary the provided accommodation cue, and which depth planes are utilized, over time in response to a user's vergence depth, to the depth of virtual content, or to a combination of these and other inputs as desired.
Multiple Depth Plane Rendering Mode (Multi-Focus Mode)
As illustrated in
In general, the wearable system can provide by blended and non-blended accommodation cues while operating in a multi-focus mode (or while operating in a blended vari-focus mode). As shown in
As discussed in connection with the blended vari-focus mode, the timing of depth plane switches may not be as significant in modes with variable accommodation cues, such as the blended vari-focus mode and the multi-focus mode, as such switches are in a discrete vari-focus mode. Thus, the wearable system may be configured to switch which depth planes are active in the multi-focus mode without waiting for a triggering event such as a user blink, saccade, or AVM timeout. Instead, the wearable system may smoothly vary the provided accommodation cues, and which depth planes are utilized, over time in response to a user's vergence depth, to the depth of virtual content, or to a combination of these and other inputs as desired. In other implementations, however, triggering events such as a user blink, saccade, or AVM timeout may be utilized.
Effects of Center of Perspective Misalignments in Various Rendering Modes
When projected onto one or more depth planes, it may be desirable to render and view 3D virtual content from a particular center of perspective (CoP), which may be determined for both a render world and the real world. When content is rendered from a proper center of perspective in the render world, the pixels of each virtual screen may accurately appear as 3D virtual content when observed from a proper center of perspective in the real word, which may include a specific position and orientation. However, if the same content is rendered from a different position in the render world or viewed from a different position in the real world, the 3D virtual content may not accurately resemble an image of such 3D virtual content. This rendering framework can be represented using a pinhole camera model, where the CoP is represented as a “virtual” or “render” pinhole camera that is positioned and oriented within the Render World (e.g., 3D render space) in a manner so as to correctly capture the projection of the 3D virtual content. Additional detailed related to the CoP is described below, with respect to
In operation, a digitized light field that is projected onto the retina of the user's eye may serve to form an image of 3D virtual content containing artifacts or exhibiting other problematic characteristics if the perspective of the virtual pinhole camera (in the Render World frame) and the perspective of the user (in the Real World frame) are misaligned. For a simple scenario in which the one depth plane is employed, a misalignment between the virtual pinhole camera and the perspective of the user may yield a digitized light field that forms an image of 3D virtual content at an incorrect (an unintended) location within the user's FOV. For scenarios in which two or more depth planes are employed, such as scenarios in which any of the focus modes described above with reference to
As an example of CoP misalignment,
Although there may be no desire to perceptually change the image of the virtual object 1530 formed on the retina 1503 of the user's eye 1502 between the first and second points in time (other than providing a new accommodation cue), because there is a CoP misalignment in the example of
Similarly,
Similarly,
Indeed, the correct alignment of the perspective of the virtual camera and the perspective of the user's eye (which corresponds to the positional/optical configuration of the user's eye) may be important to a digital light-field display device's ability to present graphics that are of relatively high perceptual quality. In some examples, a particular virtual camera perspective may be leveraged in a digital light-field display device, and may correspond to a perspective in which the virtual camera is positioned at the center of the effective aperture of the display-plus-eye optical system.
The eye perspective position may correspond to the position of the effective entrance pupil of the eye (generally referred to herein as the eye “CoP”), which is about 5.01 millimeters in front of the center of cornea curvature the optical axis. In order to maintain proper alignment between the pinhole of a render camera and such a location, the system may obtain information about the real world and the user's eye perspective. In some examples, such information can be inferred from measurements of the user's eye. Such measurements may be obtained by eye tracking module 614. The position of the eye's CoP may be calculated or otherwise inferred by walking or moving to a location about 5.01 millimeters from the cornea center position such as position 1008 of
Examples of Render Camera Modes in a Mixed Reality System
As illustrated in
Pupil Render Camera Mode
In the pupil render camera mode, the pinhole camera of a render camera (e.g., a simulated camera position which the render engine 622 may use in generating content for a particular user's perspective) may be slaved to the position of the estimated user's CoP for all time (e.g., as indicated by module 732 described above). In particular, the pinhole camera of a right eye render camera may be slaved to the user's right eye CoP, while the pinhole camera of a left eye render camera may be slaved to the user's left eye CoP. Thus, virtual image content presented by the display has the perspective of the location of the CoP, which is just in front of the pupil (e.g., within the anterior chamber of the eye).
With a pinhole render camera tracked to a pupil in real-time, the absolute position (and orientation) of the pinhole camera and the relative position (and relative orientation) between the pinhole render camera and the pupil changes stochastically over time. The visuals in this mode may be jittery if the pupil position from eye tracking is noisy and/or is not sufficiently filtered. Slaving the pinhole of the render camera to the actual position of the eye's CoP for all time attempts to account for all pupil movement with respect to display, e.g., both low frequency changes (like slippage and IPD) as well as high frequency changes from rotation of eye. This may introduce high frequency dynamics into the rendering system and result in undesirable temporal artifacts (jitter/jumping).
Center of Rotation (CoR) Render Camera Mode
In the CoR render camera mode, the pinhole camera of a render camera (e.g., a simulated camera position which the render engine 622 may use in generating content for a particular user's perspective) may be slaved to the position of the user's center of rotation (e.g., CoR 1010 as shown in
For example,
In at least some embodiments, the render camera 1730 may comprise a multi-perspective render camera 1730 which may, for example, comprise an array of render cameras radially-distributed about the center of rotation (CoR) at a distance (e.g., a radius) equal to the distance from the CoP of eye 1702 to the center of rotation of eye 1702. As such, the CoP of eye 1702 may be aligned with or nearly aligned with at least one render camera in the array in each of several different poses. In such embodiments, the light-field render controller 618 may select a particular render camera from the radially-distributed array based on a user's current pose (e.g., the user's current optical axis or pupil location), or may simply employ multiple render cameras in the radially-distributed array (or all render cameras in the radially-distributed array) simultaneously. Thus, the render controller 618 may select a render camera substantially aligned and orientated with a user's CoP.
Hybrid Pupil-CoR Render Camera Mode
In the hybrid pupil-CoR render camera mode, the pinhole camera of a render camera may be located at the pupil (CoP) position, at the CoR position, or at any position on the line between the CoP and CoR positions. The particular position of the render camera along that line may vary over time, in response to changes in eye tracking data. As an example, the light-field render controller 618 may analyze the nature and quality of the eye tracking data, as discussed in more detail below, to determine whether to locate the render camera at the user's CoP, the user's CoR, or somewhere in-between.
In some embodiments, the system may change the location of the pinhole camera based on the determined standard deviation (or other measure of statistical variance) of eye tracking data. For instance, the system may elect to position the pinhole camera at or near the center of rotation (CoR) in response to determining that the eye tracking data being collected is relatively noisy (and thus likely to yield substantial temporal artifacts, such as “jitter”). Positioning the pinhole camera at or near the CoR may help to reduce jitter and other temporal artifacts. Additionally, the system may elect to position the pinhole camera at or near the center of perspective (CoP) in response to determining that the eye tracking data being collected is relatively stable (and thus less likely to yield substantial temporal artifacts, such as jitter). Positioning the pinhole camera at or near the CoP may help to reduce parallax-induced (spatial) artifacts, for example as described below with respect to
Graph 1800a of
Graph 1800b of
Graph 1800c of
The positions of the render camera relative to a user's eye 1802 at times A-E are illustrated in the diagram of
Determining Center of Rotation Based on Limbus Projections
As described above, for example with respect to at least
As discussed above, in various implementations, an eye's CoR may inform, for example, rendering, and presentation, of virtual content to the user. As an example, a rendering engine (e.g., engine 622) may generate virtual content via simulations of cameras positioned at the user's eyes (e.g., as if the camera located at the user's eye generated the virtual content) so that the virtual content is in proper perspective when viewed by the user with the display. To determine these positions, each eye's determined CoR may be utilized. For example, a particular camera may be simulated as a pinhole camera with the pinhole disposed at or near the position of a determined CoR or at a location determined using the location of the CoR. Thus, increasing the accuracy of a determined CoR may provide for technical advantages with respect to the presenting, and correspondingly viewing, of virtual content.
As referenced above, a variety of methods may be utilized to determine an estimate of the location of the center of rotation of the eye. As will be described in more detail below, with respect to
In certain implementations, an ellipse may be projected onto an image of a user's limbus (hereinafter referred to as a ‘projection ellipse’). The projection ellipse may thus represent an ellipse that is fit to the boundary of the user's limbus. As described herein, image preprocessing module 710 may obtain images of a user's eye for analysis. These obtained images may thus be utilized to determine respective projection ellipses. Since each image may include a representation of the eye in a unique orientation (e.g., the gaze may be in a different direction), the projection ellipse may, as an example, be accordingly distinct between successive images of the eye. As will be described, for example at least in
As an example, a cone such as a cone of rays may be projected as extending from a camera point (e.g., a pinhole camera as described above) through a projection ellipse associated with an image of a user's eye. See, e.g.,
One of the circular cross-sections may then be selected for the image. For example, one of the circular cross-sections may correspond to a gaze of the user's eye (e.g., towards virtual content). A vector that is normal to the selected circular cross-section (hereinafter referred to as a ‘normal vector’) may be determined. For example, the normal vector may be normal to the vector also provides a location of the center of the selected circular cross-section.
In the above-described example, two or more images (e.g., successive images) of the eye may be analyzed. Each image of the eye, as described above, may represent the eye in a distinct orientation (e.g., distinct eye pose). A circular cross-section may be selected for each image, and compared to determine the CoR. For example, the CoR may be determined as an intersection of the normal vectors determined for the images. As an example with respect to
A cone 1912 formed via extending rays 1912A-D from the camera point 1910 through the boundary of the projection ellipse 1902 may then be identified. In various implementations, circular cross-sections may be determined along a length of the cone 1912. In the example shown, the circular cross-sections have perimeters intersecting with and bounded by the cone of rays. The circular cross-sections, as will be described with reference to
A first vector 1916 may be determined which passes through a center of the first circular cross-section 1906. Similarly, a second vector 1918 may be determined which passes through the second circular cross-section 1908. For examples, these vectors 1916-1918 may be determined based on the eigenvector decomposition of the cone 1912. The circular cross-sections 1906, 1908, may be disambiguated. Thus, one of the circular cross-sections may be identified as better corresponding to a gaze associated with the imaged eye. For example, while either of the circular cross-sections 1906, 1908, may be mathematically allowable for a given radius, one of the circular cross-sections may correspond to an actual gaze of the eye. Thus, one of the circular cross-sections may be selected for utilization in determining an estimate of the eye's CoR.
As will be described in more detail below, with respect to
Advantageously, in some embodiments, one or more techniques may be utilized to refine the estimated CoR described above. For example, a three-dimensional location of the CoR may be refined. In this example, the refined CoR may be a more accurate representation of the eye's CoR. As an example, to refine the CoR, a plane (herein referred to as a ‘projection plane’) defined by the first vector 1916 and second vector 1918 may be identified. See, e.g.,
Two or more projection planes may be utilized. For example, these projection planes may be determined from successive images of the user's eye. In this example, an intersection between the two or more projection planes may be identified. Since, as described above, each projection plane may include the camera point 1910, the resulting line, formed from the intersection, may thus extend from the camera point 1910. An intersection of the resulting line with the image plane 1904 may therefore represent a two-dimensional location of the CoR on the image plane 1904. To refine the CoR (e.g., the three-dimensional CoR described above), an intersection of the resulting line with the normal vectors may be identified. The intersection may thus be assigned as the refined CoR. Optionally, the refined CoR may be identified as a point along the resulting line based on the point's proximity to the intersection or convergence of the normal vectors. For example, a point on the resulting line which is closest (e.g., according to a root mean squared process) to the normal vectors, or an intersection or convergence thereof, may be assigned as the refined CoR. As mentioned above, in some examples, a least-squares method may also be employed to estimate of such a point.
At block 2002, the display system obtains an image of a user's eye. As described above, with respect to at least
At block 2004, the display system determines a projection ellipse forming a cone based on a limbus of the user's eye. To determine the projection ellipse, the limbus of the user's eye may be identified in the obtained image (e.g. limbic boundary 512 illustrated in
However, and as illustrated in
As described in
Without subscribing to any particular scientific or mathematical theories, in some implementations, the projection ellipse described above may be described according to the following equation:
ax2+bxy+cy2+dx+ey+f=0
The projection ellipse equation described above may be written according to homogenous coordinates
The conic matrix, C2D, identified above may be defined as:
The display system may adjust the above-identified equation according to intrinsic camera parameters (e.g., an intrinsic camera parameter matrix). Thus, the conic equation may be represented as:
C=ΛTC2DΛ
At block 2006, the display system determines vectors associated with a selected circular cross-section of the cone. As described in block 2004, the cone formed by rays extending from the camera point through the boundary of the projection ellipse may be determined. In some implementations, to determine the vectors associated with the circular cross-sections, the display system may determine eigenvalues and eigenvectors of the cone. For example, the cone ‘C’ may be decomposed into an orthogonal matrix and a diagonal matrix:
C=UDUT
The display system may select an eigenvalue ‘λ3’ (e.g., from diagonal matrix ‘D’) with a sign opposite that of the remaining two eigenvalues. The corresponding eigenvector may then be determined as corresponding to a principle axis of the cone (e.g., principle axis 1914 illustrated in
ē3→sign[(ē3)z]·ē3
The display system may identify, from the two remaining eigenvalues, a smallest eigenvalue according to absolute values of the two remaining eigenvalues. This smallest eigenvalue may be referred to as ‘λ2’, and the remaining eigenvalue may be referred to as ‘λ1’
The display system may then determine the following:
As described in
In some implementations, the circular cross-sections may be defined, at least in part, according to vectors based on the eigenvector decomposition described above. The vectors may represent vectors extending through a center of each of the circular cross-sections. For example, vector c1 and c2 may be determined, along with corresponding normal vectors n1 and n2.
The display system selects one of the circular-cross sections. For example, the display system may select one of the vector pairs [c1, n1] or [c2, n2] which corresponds to a gaze of the eye. In this example, the display system may determine which associated circular cross-section corresponds to the user looking at a virtual display (e.g., virtual content). As an example, the display system may utilize the corresponding normal vectors to identify which normal vector points at virtual content. Thus, the disambiguation may be performed using the display system. In some embodiments, other schemes such as utilizing a two-dimensional CoR (e.g., as described below) may be utilized to select from among the vector pairs. Other methods, however, may be used to determine any one or more of the projection ellipse, the cone, the circular cross-sections through the cone, the normal vectors for the circular cross-sections, or to select a cross-section and/or associated normal vector. Variations of the mathematical methods discussed above may be used or such mathematical methods need not be used. A variety of other methods may be employed.
As will be described below with respect to block 2008, the display system may utilize the selected vector pair to determine the eye's CoR. For example, the display system may utilize the selected vector pair in combination with other vector pairs, selected from one or more successive images, to determine the CoR.
At block 2008, the display system determines the eye's CoR. As described in blocks 2002-2006 above, the display system may determine a normal vector based on the user's limbus as represented in an image of the user's eye. For example, the normal vector may represent an optical axis of the user's eye. As described in block 2006, the display system may determine a vector pair such as for example a vector pair [cx, nx]. To determine the eye's CoR, the display system may utilize two or more normal vectors determined from respective images of the user's eye. For example, the two or more images may be successive images of the user's eye (e.g., obtained according to a certain periodicity). As another example, the two or more images may represent images taken a threshold time apart. In the example of
Similar to the above discussion, for each of the images the display system may determine a vector providing a location of a center of a selected circular cross-section. The display system may also determine a normal vector that is normal to the selected circular cross-section. The normal vector may, as an example, represent an optical axis of the eye. For example, the normal vectors may identify the varying optical axes of the eye according to eye poses represented in the images.
To determine the CoR, the display system may identify a location (e.g., three-dimensional location) at which the normal vectors intersect, converge, or are in close proximity, for example, most of the vectors intersect, converge, or are in close proximity or on average the vectors intersect, converge, or are in close proximity. For example, a root mean squared process may be employed. Thus, and as described in
As new images of the user's eye are received, the display system may refine the CoR. For example, the display system may determine one or more new CoRs based on respective images (e.g., respective groups of a threshold number of images). The display system may then refine the CoR based on the new CoRs. As an example, the display system may compute a root mean square of the CoRs. Optionally, the display system may utilize all obtained images, or a threshold number, to continually update the CoR. For example, the display system may initially utilize two or more images to determine the CoR. As new images are received, the display system may perform the process 2000 with all, or a threshold number, of the received images. With the increase in the number of images, and thus increase in a number of determined normal vectors, the accuracy of the CoR may be increased. Other approaches are possible.
As described in
As described above, with respect to
As an example, the display system may determine an array of positions associated with an image of a user's eye. The array of positions may correspond to spatial locations on the image. Example spatial locations may be associated with a portion of the user's eye (e.g., the limbus, pupil, iris, and so on). Thus, in some implementations, the array of positions may be fit to an extremity of the portion. The extremity of the portion may be associated with a curve (e.g., the projection ellipse described above), which is determined for the portion of the user's eye. In some implementations, the display system may identify linear paths extending from a same point through the array of positions. As described above, the linear paths (e.g., rays) may extend from a camera point. The linear paths may form a cone, and a particular circular cross-section of the cone may be selected. For example, the particular cross-section may have a certain radius (e.g., a radius of an average limbus or of the user's limbus, a radius of an average pupil or the of the user's pupil, and so on). A vector normal to the particular cross-section may be identified. The display system may determine an intersection of multiple of the normal vectors, and then assign the intersection as the CoR. In some implementations, one or more of the techniques for determining 3D points of intersection between two or more optical axes and/or other vectors, as described above with reference to
Refining Center of Rotation (CoR) Utilizing Additional Example Techniques
As described in
To refine the determined CoR, the display system may utilize the determined projection planes. For example, in some implementations, the display system may determine intersections of the projection planes (e.g., in three-dimensional space). The intersection of the projection planes may, as an example, result in a line. Additionally, this line may pass through the camera point (e.g., point 1910) from which the cone associated with the projection planes extend. To refine the CoR, the display system may identify a point in the image plane (e.g., image plane 1904) at which this resulting line intersects. The display system may then assign this point as the two-dimensional CoR on the image plane. As described in
Optionally, the display system may refine the eye's CoR according to the following technique. Different images of the user's eye (e.g., successive images) may be obtained. For each image, the display system may determine an intersection of the vectors c1 and c2 with the image plane (e.g., image plane 1904). The display system may then connect a line between (1) the intersection of vector c1 with the image plane and (2) the intersection of vector c2 with the image plane. Thus, the line may represent the intersection of the projection plane, as defined by vectors c1 and c2, with the image plane. The images may thus be associated with respective lines, and the display system may determine a two-dimensional CoR based on proximity of points in the image plane to the lines. For example, the display system may perform a root mean squared (RMS) process (e.g., based on random sample consensus) to determine the two-dimensional CoR. Similar to the above, the display system may refine the CoR (e.g., as described in
With respect to the above example, the display system may optionally select one of the vectors c1 or c2 for each of the images. For example, the display system may select one of the vectors c1 or c2 based on a gaze of an eye. As another example, the display may select one of the vectors c1 or c2 based on the respective vectors intersection with the image plane. In this example, the vector which intersects the image plane closer to that of the two-dimensional CoR (e.g., as described above), may be selected. The display system may then determine a point at which each selected vector intersects with the image plane. Similar to the above, the display system may then determine the two-dimensional CoR based on proximity of points in the image plane to the determined intersection points. For example, an RMS process may be utilized.
Determining Center of Rotation (CoR) Based on Pupil Projections
Similar to the above description in
The display system may then determine the eye's CoR based on the pupil in similar ways as described above for determining the CoR based on the limbus. For example, an ellipse may be fit to the pupil image. A cone of rays may be projected through the ellipse. Circular cross-sections may be fit to the cone. Normals through a plurality of cross-sections obtain using a plurality of images may be used may considered and the intersection or convergence of those normal may be identified. An estimate of the CoR may be obtained therefrom. Other methods, including other methods described herein, such as using projection planes may be employed to determine an estimate of the CoR.
Center of Perspective (CoP) Analysis/Derivation
In the pinhole camera model, the center of perspective (CoP) may be considered as an aperture of a pinhole camera. An example property of this CoP is that it may also be the origin of the object angle space. Thus, and as an example with reference to this origin, objects which are at a same angle from a pinhole will map to the same pixel (e.g., overlap). As another example, if a scene is rigidly rotated about the CoP, then a projected image will translate and the objects in the scene will not experience parallax shifts.
In developing the systems and techniques described herein, two hypotheses were developed and tested. The first hypothesis was that the center of the principal plane is the CoP, and the second hypothesis was that the center of the aperture is the CoP. The principal plane, as an example, may represent a plane where incident light rays may be considered to bend due to refraction. As will be described, it may be determined that the center of aperture is the CoP. For example,
In
An evaluation of optical system 2300 for the two abovementioned implications may be informative as to whether the abovementioned first hypothesis is true or false. That is, in order for the abovementioned first hypothesis to be true, the image that is projected onto the projection screen 2308 (e.g., the incident ray pattern) should not undergo any parallax shifts when the two point light sources 2301 and 2302 are rigidly rotated about the lens center 2307 (e.g., rotated along radii of curvature 2311 and 2312, respectively), but merely experience a translation. Referring again to
However, upon examination of the incident ray pattern 2310, it can also be seen that the relative position (e.g., on the projection screen 2310) between rays of the incident ray pattern 2310 that originate from the first rigidly rotated light source 2301′ and rays of the incident ray pattern 2310 that originate from the second rigidly rotated light source 2302′ has shifted. Referring again to
An evaluation of optical system 2400 similar to evaluation of optical system 2300, as described above with reference to
As such, it may, in some embodiments, be desirable to align the CoP in the Render World (e.g., location of the pinhole of a render camera) with a portion of a user's eye (in the Real World) which is the anatomical equivalent of the aperture center 2407. Because the human eye further includes a cornea (which imparts additional optical power to light propagating toward the retina), the anatomical equivalent of the aperture center 2407 may not correspond to the center of the pupil or iris of a user's eye, but may instead correspond to a region of the user's eye positioned between the outer surface of the cornea of the user's eye and the center of the pupil or iris of the user's eye. For example, the anatomical equivalent of the aperture center 2407 may correspond to a region within the anterior chamber of the user's eye.
Examples for when Eye Tracking is Unavailable
In some embodiments, eye tracking may not be provided or may be temporarily unavailable. As examples, the eye tracking camera 324 or light sources 326 may be obscured, damaged, or disabled by a user, the environmental lighting conditions may make eye tracking prohibitively difficult, the wearable system may be improperly fitted in a manner that prevents eye tracking, the user may be squinting or have eyes that are not easily tracked, etc. At such times, the wearable system may be configured to fall back upon various strategies for positioning the render camera and selecting depth planes in the absence of eye tracking data.
With respect to the render camera, the wearable system may position the render camera to a default position if the user's pupils are not detected for longer than a predetermined threshold, such as a few seconds or longer than a typical blink. The wearable system may move the render camera to the default position in a smooth movement, which may follow an over-damped oscillator model. The default position may be determined as part of a calibration process of the wearable system to a particular user. The default position may be a user's left and right eyes' centers of rotation. These are merely illustrative examples.
With respect to the depth plane, the wearable system may provide accommodation cues based on the depth of virtual content, as opposed to the vergence depth of the user as previously discussed. In some embodiments, the wearable system may receive, obtain, or determine information estimating where the user is likely to be looking and may provide matching accommodation cues. As an example, the wearable system may be displaying content that the user is likely to be focused on, such as a video clip, may assume that the user is looking at the content, and may provide the content on a depth plane (or with blended depth planes) to provide accommodation cues that match the depth of that content.
Computer Vision to Detect Objects in Ambient Environment
As discussed above, the display system may be configured to detect objects in or properties of the environment surrounding the user. The detection may be accomplished using a variety of techniques, including various environmental sensors (e.g., cameras, audio sensors, temperature sensors, etc.), as discussed herein.
In some embodiments, objects present in the environment may be detected using computer vision techniques. For example, as disclosed herein, the display system's forward-facing camera may be configured to image the ambient environment and the display system may be configured to perform image analysis on the images to determine the presence of objects in the ambient environment. The display system may analyze the images acquired by the outward-facing imaging system to perform scene reconstruction, event detection, video tracking, object recognition, object pose estimation, learning, indexing, motion estimation, or image restoration, etc. As other examples, the display system may be configured to perform face and/or eye recognition to determine the presence and location of faces and/or human eyes in the user's field of view. One or more computer vision algorithms may be used to perform these tasks. Non-limiting examples of computer vision algorithms include: Scale-invariant feature transform (SIFT), speeded up robust features (SURF), oriented FAST and rotated BRIEF (ORB), binary robust invariant scalable keypoints (BRISK), fast retina keypoint (FREAK), Viola-Jones algorithm, Eigenfaces approach, Lucas-Kanade algorithm, Horn-Schunk algorithm, Mean-shift algorithm, visual simultaneous location and mapping (vSLAM) techniques, a sequential Bayesian estimator (e.g., Kalman filter, extended Kalman filter, etc.), bundle adjustment, Adaptive thresholding (and other thresholding techniques), Iterative Closest Point (ICP), Semi Global Matching (SGM), Semi Global Block Matching (SGBM), Feature Point Histograms, various machine learning algorithms (such as e.g., support vector machine, k-nearest neighbors algorithm, Naive Bayes, neural network (including convolutional or deep neural networks), or other supervised/unsupervised models, etc.), and so forth.
One or more of these computer vision techniques may also be used together with data acquired from other environmental sensors (such as, e.g., microphone) to detect and determine various properties of the objects detected by the sensors.
As discussed herein, the objects in the ambient environment may be detected based on one or more criteria. When the display system detects the presence or absence of the criteria in the ambient environment using a computer vision algorithm or using data received from one or more sensor assemblies (which may or may not be part of the display system), the display system may then signal the presence of the object.
Machine Learning
A variety of machine learning algorithms may be used to learn to identify the presence of objects in the ambient environment. Once trained, the machine learning algorithms may be stored by the display system. Some examples of machine learning algorithms may include supervised or non-supervised machine learning algorithms, including regression algorithms (such as, for example, Ordinary Least Squares Regression), instance-based algorithms (such as, for example, Learning Vector Quantization), decision tree algorithms (such as, for example, classification and regression trees), Bayesian algorithms (such as, for example, Naive Bayes), clustering algorithms (such as, for example, k-means clustering), association rule learning algorithms (such as, for example, a-priori algorithms), artificial neural network algorithms (such as, for example, Perceptron), deep learning algorithms (such as, for example, Deep Boltzmann Machine, or deep neural network), dimensionality reduction algorithms (such as, for example, Principal Component Analysis), ensemble algorithms (such as, for example, Stacked Generalization), and/or other machine learning algorithms. In some embodiments, individual models may be customized for individual data sets. For example, the wearable device may generate or store a base model. The base model may be used as a starting point to generate additional models specific to a data type (e.g., a particular user), a data set (e.g., a set of additional images obtained), conditional situations, or other variations. In some embodiments, the display system may be configured to utilize a plurality of techniques to generate models for analysis of the aggregated data. Other techniques may include using pre-defined thresholds or data values.
The criteria for detecting an object may include one or more threshold conditions. If the analysis of the data acquired by the environmental sensor indicates that a threshold condition is passed, the display system may provide a signal indicating the detection the presence of the object in the ambient environment. The threshold condition may involve a quantitative and/or qualitative measure. For example, the threshold condition may include a score or a percentage associated with the likelihood of the reflection and/or object being present in the environment. The display system may compare the score calculated from the environmental sensor's data with the threshold score. If the score is higher than the threshold level, the display system may detect the presence of the reflection and/or object. In some other embodiments, the display system may signal the presence of the object in the environment if the score is lower than the threshold. In some embodiments, the threshold condition may be determined based on the user's emotional state and/or the user's interactions with the ambient environment.
In some embodiments, the threshold conditions, the machine learning algorithms, or the computer vision algorithms may be specialized for a specific context. For example, in a diagnostic context, the computer vision algorithm may be specialized to detect certain responses to the stimulus. As another example, the display system may execute facial recognition algorithms and/or event tracing algorithms to sense the user's reaction to a stimulus, as discussed herein.
It will be appreciated that each of the processes, methods, and algorithms described herein and/or depicted in the figures may be embodied in, and fully or partially automated by, code modules executed by one or more physical computing systems, hardware computer processors, application-specific circuitry, and/or electronic hardware configured to execute specific and particular computer instructions. For example, computing systems may include general purpose computers (e.g., servers) programmed with specific computer instructions or special purpose computers, special purpose circuitry, and so forth. A code module may be compiled and linked into an executable program, installed in a dynamic link library, or may be written in an interpreted programming language. In some embodiments, particular operations and methods may be performed by circuitry that is specific to a given function.
Further, certain embodiments of the functionality of the present disclosure are sufficiently mathematically, computationally, or technically complex that application-specific hardware or one or more physical computing devices (utilizing appropriate specialized executable instructions) may be necessary to perform the functionality, for example, due to the volume or complexity of the calculations involved or to provide results substantially in real-time. For example, a video may include many frames, with each frame having millions of pixels, and specifically programmed computer hardware is necessary to process the video data to provide a desired image processing task or application in a commercially reasonable amount of time.
Code modules or any type of data may be stored on any type of non-transitory computer-readable medium, such as physical computer storage including hard drives, solid state memory, random access memory (RAM), read only memory (ROM), optical disc, volatile or non-volatile storage, combinations of the same and/or the like. In some embodiments, the non-transitory computer-readable medium may be part of one or more of the local processing and data module (140), the remote processing module (150), and remote data repository (160). The methods and modules (or data) may also be transmitted as generated data signals (e.g., as part of a carrier wave or other analog or digital propagated signal) on a variety of computer-readable transmission mediums, including wireless-based and wired/cable-based mediums, and may take a variety of forms (e.g., as part of a single or multiplexed analog signal, or as multiple discrete digital packets or frames). The results of the disclosed processes or process steps may be stored, persistently or otherwise, in any type of non-transitory, tangible computer storage or may be communicated via a computer-readable transmission medium.
Any processes, blocks, states, steps, or functionalities in flow diagrams described herein and/or depicted in the attached figures should be understood as potentially representing code modules, segments, or portions of code which include one or more executable instructions for implementing specific functions (e.g., logical or arithmetical) or steps in the process. The various processes, blocks, states, steps, or functionalities may be combined, rearranged, added to, deleted from, modified, or otherwise changed from the illustrative examples provided herein. In some embodiments, additional or different computing systems or code modules may perform some or all of the functionalities described herein. The methods and processes described herein are also not limited to any particular sequence, and the blocks, steps, or states relating thereto may be performed in other sequences that are appropriate, for example, in serial, in parallel, or in some other manner. Tasks or events may be added to or removed from the disclosed example embodiments. Moreover, the separation of various system components in the embodiments described herein is for illustrative purposes and should not be understood as requiring such separation in all embodiments. It should be understood that the described program components, methods, and systems may generally be integrated together in a single computer product or packaged into multiple computer products.
Other Considerations
Each of the processes, methods, and algorithms described herein and/or depicted in the attached figures may be embodied in, and fully or partially automated by, code modules executed by one or more physical computing systems, hardware computer processors, application-specific circuitry, and/or electronic hardware configured to execute specific and particular computer instructions. For example, computing systems can include general purpose computers (e.g., servers) programmed with specific computer instructions or special purpose computers, special purpose circuitry, and so forth. A code module may be compiled and linked into an executable program, installed in a dynamic link library, or may be written in an interpreted programming language. In some implementations, particular operations and methods may be performed by circuitry that is specific to a given function.
Further, certain implementations of the functionality of the present disclosure are sufficiently mathematically, computationally, or technically complex that application-specific hardware or one or more physical computing devices (utilizing appropriate specialized executable instructions) may be necessary to perform the functionality, for example, due to the volume or complexity of the calculations involved or to provide results substantially in real-time. For example, animations or video may include many frames, with each frame having millions of pixels, and specifically programmed computer hardware is necessary to process the video data to provide a desired image processing task or application in a commercially reasonable amount of time.
Code modules or any type of data may be stored on any type of non-transitory computer-readable medium, such as physical computer storage including hard drives, solid state memory, random access memory (RAM), read only memory (ROM), optical disc, volatile or non-volatile storage, combinations of the same and/or the like. The methods and modules (or data) may also be transmitted as generated data signals (e.g., as part of a carrier wave or other analog or digital propagated signal) on a variety of computer-readable transmission mediums, including wireless-based and wired/cable-based mediums, and may take a variety of forms (e.g., as part of a single or multiplexed analog signal, or as multiple discrete digital packets or frames). The results of the disclosed processes or process steps may be stored, persistently or otherwise, in any type of non-transitory, tangible computer storage or may be communicated via a computer-readable transmission medium.
Any processes, blocks, states, steps, or functionalities in flow diagrams described herein and/or depicted in the attached figures should be understood as potentially representing code modules, segments, or portions of code which include one or more executable instructions for implementing specific functions (e.g., logical or arithmetical) or steps in the process. The various processes, blocks, states, steps, or functionalities can be combined, rearranged, added to, deleted from, modified, or otherwise changed from the illustrative examples provided herein. In some embodiments, additional or different computing systems or code modules may perform some or all of the functionalities described herein. The methods and processes described herein are also not limited to any particular sequence, and the blocks, steps, or states relating thereto can be performed in other sequences that are appropriate, for example, in serial, in parallel, or in some other manner. Tasks or events may be added to or removed from the disclosed example embodiments. Moreover, the separation of various system components in the implementations described herein is for illustrative purposes and should not be understood as requiring such separation in all implementations. It should be understood that the described program components, methods, and systems can generally be integrated together in a single computer product or packaged into multiple computer products. Many implementation variations are possible.
The processes, methods, and systems may be implemented in a network (or distributed) computing environment. Network environments include enterprise-wide computer networks, intranets, local area networks (LAN), wide area networks (WAN), personal area networks (PAN), cloud computing networks, crowd-sourced computing networks, the Internet, and the World Wide Web. The network may be a wired or a wireless network or any other type of communication network.
The systems and methods of the disclosure each have several innovative aspects, no single one of which is solely responsible or required for the desirable attributes disclosed herein. The various features and processes described above may be used independently of one another, or may be combined in various ways. All possible combinations and subcombinations are intended to fall within the scope of this disclosure. Various modifications to the implementations described in this disclosure may be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other implementations without departing from the spirit or scope of this disclosure. Thus, the claims are not intended to be limited to the implementations shown herein, but are to be accorded the widest scope consistent with this disclosure, the principles and the novel features disclosed herein.
Certain features that are described in this specification in the context of separate implementations also can be implemented in combination in a single implementation. Conversely, various features that are described in the context of a single implementation also can be implemented in multiple implementations separately or in any suitable subcombination. Moreover, although features may be described above as acting in certain combinations and even initially claimed as such, one or more features from a claimed combination can in some cases be excised from the combination, and the claimed combination may be directed to a subcombination or variation of a subcombination. No single feature or group of features is necessary or indispensable to each and every embodiment.
Conditional language used herein, such as, among others, “can,” “could,” “might,” “may,” “e.g.,” and the like, unless specifically stated otherwise, or otherwise understood within the context as used, is generally intended to convey that certain embodiments include, while other embodiments do not include, certain features, elements and/or steps. Thus, such conditional language is not generally intended to imply that features, elements and/or steps are in any way required for one or more embodiments or that one or more embodiments necessarily include logic for deciding, with or without author input or prompting, whether these features, elements and/or steps are included or are to be performed in any particular embodiment. The terms “comprising,” “including,” “having,” and the like are synonymous and are used inclusively, in an open-ended fashion, and do not exclude additional elements, features, acts, operations, and so forth. Also, the term “or” is used in its inclusive sense (and not in its exclusive sense) so that when used, for example, to connect a list of elements, the term “or” means one, some, or all of the elements in the list. In addition, the articles “a,” “an,” and “the” as used in this application and the appended claims are to be construed to mean “one or more” or “at least one” unless specified otherwise.
As used herein, a phrase referring to “at least one of” a list of items refers to any combination of those items, including single members. As an example, “at least one of: A, B, or C” is intended to cover: A, B, C, A and B, A and C, B and C, and A, B, and C. Conjunctive language such as the phrase “at least one of X, Y and Z,” unless specifically stated otherwise, is otherwise understood with the context as used in general to convey that an item, term, etc. may be at least one of X, Y or Z. Thus, such conjunctive language is not generally intended to imply that certain embodiments require at least one of X, at least one of Y and at least one of Z to each be present.
Similarly, while operations may be depicted in the drawings in a particular order, it is to be recognized that such operations need not be performed in the particular order shown or in sequential order, or that all illustrated operations be performed, to achieve desirable results. Further, the drawings may schematically depict one more example processes in the form of a flowchart. However, other operations that are not depicted can be incorporated in the example methods and processes that are schematically illustrated. For example, one or more additional operations can be performed before, after, simultaneously, or between any of the illustrated operations. Additionally, the operations may be rearranged or reordered in other implementations. In certain circumstances, multitasking and parallel processing may be advantageous. Moreover, the separation of various system components in the implementations described above should not be understood as requiring such separation in all implementations, and it should be understood that the described program components and systems can generally be integrated together in a single software product or packaged into multiple software products. Additionally, other implementations are within the scope of the following claims. In some cases, the actions recited in the claims can be performed in a different order and still achieve desirable results.
of a user to display virtual image content in a vision field of said user are described herein such as the examples enumerated below:
A display system configured to project light to an eye of a user to display virtual image content in a vision field of said user, said eye having a cornea, an iris, a pupil, a lens, a retina, and an optical axis extending through said lens, pupil, and cornea, said display system comprising: a frame configured to be supported on a head of the user; a head-mounted display disposed on the frame, said display configured to project light into said user's eye to display virtual image content to the user's vision field at different amounts of at least one of divergence and collimation and thus the displayed virtual image content appears to originate from different depths at different periods of time; one or more eye tracking cameras configured to image the user's eye; and processing electronics in communication with the display and the one or more eye tracking cameras, the processing electronics configured to obtain an estimate of a center of rotation of said eye based on images of said eye obtained with said one or more eye tracking cameras.
The display system of Example 1, further comprising one or more light sources disposed on said frame with respect to said user's eye to illuminate said user's eye, said one or more eye tracking cameras forming images of said eye using said light from said one or more light sources.
The display system of Example 1 or 2, wherein said one or more light sources comprises at least two light sources disposed on said frame with respect to said user's eye to illuminate said user's eye.
The display system of Example 1 or 3, wherein said one or more light sources comprises infrared light emitters.
The display system of any of the Examples 1 to 4, wherein one or more light sources form one or more glints on said eye and said processing electronics is configured to determine a location of said cornea based on said one or more glints.
The display system of any of the Examples 1 to 5, wherein said cornea has associated therewith a cornea sphere having a center of curvature and said processing electronics is configured to determine a location of said center of curvature of said cornea sphere.
The display system of Example 5, wherein said cornea has associated therewith a cornea sphere having a center of curvature and said processing electronics is configured to determine a location of said center of curvature of said cornea sphere based on said one or more glints.
The display system of any of the Examples above, wherein said one or more eye tracking camera is configured to image said pupil of said eye.
The display system of any of the Examples above, wherein said processing electronics is configured to determine the location of said center of said pupil.
The display system of any of the Examples above, wherein said processing electronics is configured to determine at least a portion of a boundary between said iris and said pupil.
The display system of Example 10, wherein said processing electronics is configured to determine a center of said boundary between said iris and said pupil.
The display system of any of the Examples above, wherein said processing electronics is configured to determine a location of said center of said pupil in three-dimensional space with respect to a center of curvature of said cornea.
The display system of any of the Examples above, wherein said processing electronics is configured to determine a location and orientation of said optical axis.
The display system of Example 12, wherein said processing electronics is configured to determine a location and orientation of said optical axis based on a location of said center of said pupil in three-dimensional space.
The display system of any of the Examples above, wherein said processing electronics is configured to determine said location and orientation of said optical axis based on a location of said center of said pupil in three-dimensional space with respect to a center of curvature of said cornea.
The display system of any of the Examples above, wherein said processing electronics is configured to determine a location of said center of rotation of said eye based on a center of curvature of said cornea.
The display system of any of the Examples above, wherein said processing electronics is configured to determine a location of said center of rotation of said eye based on a center of curvature of said cornea and a location and orientation of said optical axis.
The display system of Example 17, wherein said processing electronics is configured to determine the location of said center of rotation of said eye by translating a particular distance along said optical axis from said center of curvature of said cornea.
The display system of Example 18, wherein said particular distance from said center of curvature to said center of rotation is between 4.0 mm and 6.0 mm.
The display system of Example 18 or 19, wherein said particular distance from said center of curvature to said center of rotation is about 4.7 mm.
The display system of Example 18 or 19, wherein said particular distance is fixed.
The display system of Example 18 or 19, wherein said processing electronics is configured to determine the particular distance based at least on one or more images of said eye previously obtained with said one or more eye tracking cameras.
The display system of any of the Examples above, wherein said processing electronics is configured to determine a location and orientation of a visual axis, offset from said optical axis, based on said location and orientation of said optical axis.
The display system of any of the Examples above, wherein said processing electronics is configured to determine a location and orientation of a visual axis based on an angular rotation with respect to said optical axis.
The display system of any of the Examples above, wherein said processing electronics is configured to determine a location and orientation of a visual axis based on an angular rotation of between 4.0° and 6.5° with respect to said optical axis.
The display system of any of the Examples above, wherein said processing electronics is configured to determine a location and orientation of a visual axis based on an angular rotation of about 5.2° with respect to said optical axis.
The display system of any of the Examples above, wherein said processing electronics are configured to determine a location and orientation of a visual axis based at least on one or more images of said eye previously obtained with said one or more eye tracking cameras.
The display system of any of the Examples above, wherein said processing electronics is configured to determine a center of rotation of said eye based multiple determinations of said location of said optical axis or visual axis over a period of time during which said eye is rotating.
The display system of any of the Examples above, wherein said processing electronics is configured to determine said center of rotation by identifying a region of intersection of multiple determinations of said location of said optical axis or a visual axis over a period of time during which said eye is rotating.
The display system of any of the Examples above, wherein said processing electronics is configured to determine a vergence distance of said user where left and right eyes of a user are gazing based on a determination of the location and orientation of said optical axes for said left and right eyes of the user.
The display system of any of the Examples above, wherein said processing electronics is configured to determine a vergence distance of said user where left and right eyes of a user are gazing based on a determination of the location and orientation of said visual axes for said left and right eyes of the user.
The display system of any of the Examples above, wherein said processing electronics is configured to determine a vergence distance where left and right eyes of a user are gazing based on identifying a region of intersection of said visual axes for said left and right eyes of the user.
The display system of any of the Examples above, wherein said processing electronics is configured to determine a vergence distance where left and right eyes of a user are gazing by projecting the visual axes for said left and right eyes onto a horizontal plane and identifying a region of intersection of said projections of the visual axes for said left and right eyes onto a horizontal plane.
The display system of any of the Examples above, wherein said processing electronics is configured to determine the relative amounts of at least one of divergence, and collimation to project image content based on a determination of said vergence distance.
The display system of any of the Examples above, wherein said processing electronics includes electronics on said frame.
The display system of any of the Examples above, wherein said processing electronics includes electronics on said frame and electronics disposed at a location remote from said frame.
The display system of any of the Examples above, wherein said processing electronics includes electronics on said frame and electronics on a belt pack.
The display system of any of the Examples above, wherein at least a portion of said display is transparent and disposed at a location in front of the user's eye when the user wears said head-mounted display such that said transparent portion transmits light from a portion of the environment in front of the user and said head-mounted display to the user's eye to provide a view of said portion of the environment in front of the user and said head-mounted display.
The display system of any of the Examples above, wherein said head-mounted display receives light from a portion of the environment in front of the user at a first amount of divergence and transmits the light from the portion of the environment in front of the user to the user's eye with a second amount of divergence that is substantially similar to the first amount of divergence.
The display system of any of the Examples above, wherein the processing electronics is configured to obtain the estimate of the center of rotation by filtering, averaging, applying a Kalman filter, or any combinations thereof a plurality of estimated center of rotation positions.
The display system of any of the Examples above, wherein said processing electronics is configured to present said virtual image content to said user's eye that is rendered as if captured by a camera having an aperture at the determined position of the center of rotation of said user's eye.
The display system of any of the Examples above, wherein said processing electronics is configured to use a render camera at said center of rotation to render virtual images to be presented to said eye.
The display system of any of the Examples above, wherein said processing electronics is configured to use a render camera configured to render virtual images to be presented to said eye that are rendered as if captured by a camera having an aperture closer to said the center of rotation than said retina of said eye.
The display system of any of the Examples above, wherein said processing electronics is configured to use a render camera configured to render virtual images to be presented to said eye that are rendered as if captured by a camera having an aperture at said the center of rotation of said eye.
The display system of any of the Examples above, wherein said processing electronics is configured to use a render camera at said center of rotation to render virtual images to be presented to said eye, said render camera modeled with an aperture at said center of rotation of said eye.
A display system configured to project light to an eye of a user to display virtual image content in a vision field of said user, said eye having a cornea, an iris, a pupil, a lens, a retina, and an optical axis extending through said lens, pupil, and cornea, said display system comprising: a frame configured to be supported on a head of the user; a head-mounted display disposed on the frame, said display configured to project light into said user's eye to display virtual image content to the user's vision field at different amounts of at least one of divergence and collimation and thus the displayed virtual image content appears to originate from different depths at different periods of time; one or more eye tracking cameras configured to image the user's eye; and processing electronics in communication with the display and the one or more eye tracking cameras, the processing electronics configured to obtain a position estimate of a center of perspective of said eye based on images of said eye obtained with said one or more eye tracking cameras, said center of perspective being estimated to be proximal said pupil of said eye or between said cornea and said pupil of said eye, wherein said processing electronics is configured to present said virtual image content to said user's eye that are rendered by a render camera located at said center of perspective.
The display system of any of the Examples above, wherein said processing electronics is configured to present said virtual image content to said user's eye that are rendered as if captured by a camera having an aperture closer to said center of perspective than said retina.
The display system of any of the Examples above, wherein said processing electronics is configured to present said virtual image content to said user's eye that are rendered as if captured by a camera having an aperture closer to said center of perspective than a center of rotation of the eye.
The display system of any of the Examples above, wherein said processing electronics is configured to present said virtual image content to said user's eye that are rendered as if captured by a camera having an aperture at said center of perspective.
The display system of any of the Examples above, wherein said center of perspective is not located at said pupil of said eye.
The display system of any of the Examples above, wherein the processing electronics is configured to obtain an estimate of said user's eye pose over time and wherein the processing electronics adjust the position of the render camera based at least in part upon the user's eye pose.
The display system of any of the Examples above, wherein the processing electronics is configured to track said user's eye pose over time and wherein the position of the render camera is adjusted over time in response to changes in said user's eye pose over time.
The display system of any of the Examples above, wherein the processing electronics is configured to obtain the estimate of the center of perspective by filtering a plurality of estimated center of perspective positions.
The display system of any of the Examples above, wherein the processing electronics is configured to obtain the estimate of the center of perspective by averaging and/or applying a Kalman filter to a plurality of estimated center of perspective positions.
The display system of any of the Examples above, wherein the center of perspective comprises a position within the anterior chamber of said user's eye.
The display system of any of the Examples above, wherein the center of perspective comprises a position in front of said pupil of said user's eye.
The display system of any of the Examples above, wherein the center of perspective comprises a position that is between 1.0 mm and 2.0 mm in front of said pupil of said user's eye.
The display system of any of the Examples above, wherein the center of perspective comprises a position that is about 1.0 mm in front of said pupil of said user's eye.
The display system of any of the Examples above, wherein the center of perspective comprises a position that is between 0.25 mm and 1.0 mm in front of said pupil of said user's eye.
The display system of any of the Examples above, wherein the center of perspective comprises a position that is between 0.5 mm and 1.0 mm in front of said pupil of said user's eye.
The display system of any of the Examples above, wherein the center of perspective comprises a position that is between 0.25 mm and 0.5 mm in front of said pupil of said user's eye.
The display system of any of the Examples above, wherein the center of perspective lies along the optical axis of said eye and wherein said processing electronics are further configured to obtain the position estimate of the center of perspective by obtaining a position estimate of the optical axis of said eye.
The display system of any of the Examples above, wherein the center of perspective lies along the optical axis of said eye at a position between an outer surface of the cornea and the pupil of said eye and wherein said processing electronics are further configured to obtain the position estimate of the center of perspective by obtaining a position estimate of the optical axis of said eye.
The display system of any of the Examples above, wherein the center of perspective lies along the optical axis of said eye at a position between an outer surface of the cornea and the pupil of said eye and wherein said processing electronics are further configured to obtain the position estimate of the center of perspective by obtaining a position estimate of the optical axis of said eye and a position estimate of a center of rotation of said eye, the cornea of said eye, the iris of said eye, the retina of said eye, and the pupil of said eye or any combinations thereof.
The display system of any of the Examples above, wherein said processing electronics includes electronics on said frame.
The display system of any of the Examples above, wherein said processing electronics includes electronics on said frame and electronics disposed at a location remote from said frame.
The display system of any of the Examples above, wherein said processing electronics includes electronics on said frame and electronics on a belt pack.
The display system of any of the Examples above, wherein at least a portion of said display is transparent and disposed at a location in front of the user's eye when the user wears said head-mounted display such that said transparent portion transmits light from a portion of the environment in front of the user and said head-mounted display to the user's eye to provide a view of said portion of the environment in front of the user and said head-mounted display.
The display system of any of the Examples above, further comprising one or more light sources disposed on said frame with respect to said user's eye to illuminate said user's eye, said one or more eye tracking cameras capturing images of said eye using said light from said one or more light sources.
The display system of any of the Examples above, wherein said one or more light sources comprises at least two light sources disposed on said frame with respect to said user's eye to illuminate said user's eye.
The display system of any of the Examples above, wherein said one or more light sources comprises at least three light sources disposed on said frame with respect to said user's eye to illuminate said user's eye.
The display system of any of the Examples above, wherein said one or more light sources comprises infrared light emitters.
The display system of any of the Examples above, wherein said one or more light sources form one or more glints on said eye and said processing electronics is configured to determine the position of the center of curvature of said cornea based on said one or more glints.
The display system of any of the Examples above, wherein said one or more light sources form one or more glints on said eye and said processing electronics is configured to determine a three-dimensional position of the center of curvature of said cornea based on said one or more glints.
The display system of any of the Examples above, wherein said one or more eye-tracking cameras are further configured to image said pupil of the user's eye and wherein said processing electronics are further configured to determine the position of said pupil of said eye based at least on the image of said pupil from the one or more eye-tracking cameras.
The display system of any of the Examples above, wherein said one or more eye-tracking cameras are further configured to image said pupil of the user's eye and wherein said processing electronics are further configured to determine a three-dimensional position of said pupil of said eye based at least on the image of said pupil from the one or more eye-tracking cameras.
The display system of any of the Examples above, wherein said one or more eye-tracking cameras are further configured to image said pupil of the user's eye and wherein said processing electronics are further configured to determine the position of said pupil of said eye based on the position of the center of curvature of said cornea and based on the image of said pupil from the one or more eye-tracking cameras.
The display system of any of the Examples above, wherein said processing electronics is configured to determine the optical axis of said eye based on the three-dimensional position of the center of curvature of said cornea and based on the three-dimensional position of said pupil.
The display system of any of the Examples above, wherein said processing electronics is configured to determine a visual axis of said eye based on the optical axis.
The display system of any of the Examples above, wherein said processing electronics is configured to determine the visual axis of said eye based on the optical axis and the three-dimensional position of at least one of the center of curvature of said cornea, said pupil or both.
The display system of any of the Examples above, wherein said processing electronics is configured to determine a three-dimensional position of the center of rotation of said eye based on the three-dimensional position of the center of curvature of said cornea.
The display system of any of the Examples above, wherein said processing electronics is configured to determine a three-dimensional position of the center of rotation of said eye based on the three-dimensional position of the center of curvature of said cornea and based on said optical axis.
The display system of any of the Examples above, wherein said processing electronics is configured to determine the distance between said eye and the additional eye of said user based at least on the three-dimensional position of the center of rotation of said eye.
The display system of any of the Examples above, wherein said processing electronics is configured to determine an interpupillary distance between said eye and the additional eye of said user based at least on the three-dimensional position of the center of rotation of said eye.
The display system of any of the Examples above, wherein said processing electronics is configured to determine the vergence distance of said user based at least on the optical axis of said eye.
The display system of any of the Examples above, wherein said processing electronics is configured to determine the vergence distance of said user based at least on the optical axis of said eye and on a determined optical axis of the additional eye of said user.
The display system of any of the Examples above, wherein said processing electronics is configured to determine the vergence distance of said user based at least on the visual axis of said eye and on a determined visual axis of the additional eye of said user.
The display system of any of the Examples above, wherein said display is configured to project collimated light into said user's eye.
The display system of any of the Examples above, wherein said display is configured to project collimated light corresponding to an image pixel into said user's eye at a first period of time and divergent light corresponding to said image pixel into said user's eye at a second period of time.
The display system of any of the Examples above, wherein said display is configured to project light corresponding to an image pixel having a first amount of divergence into said user's eye at a first period of time and to project light corresponding to said image pixel having a second amount of divergence, greater than the first amount of divergence, into said user's eye at a second period of time.
A method of rendering virtual image content in a display system configured to project light to an eye of a user to display the virtual image content in a vision field of said user, said eye having a cornea, an iris, a pupil, a lens, a retina, and an optical axis extending through said lens, pupil, and cornea, said method comprising: with one or more eye tracking cameras configured to image said eye of the user to track movements of said eye, determining a position of a center of rotation of said eye; with a render engine, rendering virtual image content with a render camera at said center of rotation of said eye, said render camera configured to render virtual images to be presented to said eye; and with a head-mounted display, projecting light into said user's eye to display the rendered virtual image content to the user's vision field at different amounts of divergence such that the virtual image content appears to originate from different depths at different periods of time.
The method of any of the Examples above, wherein said render camera is configured to render virtual images to be presented to said eye that are rendered as if captured by a camera having an aperture closer to said the center of rotation than said retina of said eye.
The method of any of the Examples above, wherein said render camera is configured to render virtual images to be presented to said eye that are rendered as if captured by a camera having an aperture at said the center of rotation.
The method of any of the Examples above, wherein said render camera is modeled with an aperture at said center of rotation of said eye.
The method of any of the Examples above, wherein said render camera is modeled with an aperture, a lens, and a detector.
The method of any of the Examples above, wherein said render camera has an aperture at a position along a line between (i) the determined position of the center of rotation of said eye and (ii) the determined position of the at least one of said iris or pupil.
The method of any of the Examples above, further comprising: with the one or more eye tracking cameras, determining a position of a center of perspective of said user's eye, wherein the center of perspective of said user's eye is located less than approximately 1.0 mm from the pupil of said user's eye; and with the render engine, rendering the virtual image content with the render camera, wherein said render camera has an aperture at the determined position of the center of perspective of said user's eye.
The method of any of the Examples above, further comprising: with the render engine, rendering the virtual image content with the render camera, wherein said render camera has an aperture at a position along a line between (i) the determined position of the center of rotation of said eye and (ii) the determined position of the center of perspective of said user's eye.
The method of any of the Examples above, further comprising: with processing electronics in communication with the one or more eye tracking cameras, determining a measure of change with time of the determined position of the center of perspective of said user's eye; and with the processing electronics, if it is determined that the measure of change with time exceeds a first threshold, directing the render engine to render the virtual content with the render camera, wherein the render camera has an aperture at the determined position of the center of rotation of said eye.
The method of any of the Examples above, further comprising: with the processing electronics, if it is determined that the measure of change with time is below a second threshold, directing the render engine to render the virtual content with the render camera, wherein the render camera has an aperture at the determined position of the center of perspective of said eye, and wherein the first threshold is indicative of a higher level change with time in the determined position of the center of perspective of said user's eye than the second threshold.
The method of any of the Examples above, further comprising: with the processing electronics, if it is determined that the measure of change with time is below a second threshold, directing the render engine to render the virtual content with the render camera, wherein the render camera has an aperture at the determined position of the center of perspective of said eye.
The method of any of the Examples above, further comprising: with the processing electronics, if it is determined that the measure of change with time is between the first and second thresholds, directing the render engine to render the virtual content with the render camera, wherein the render camera has an aperture at a point along a line between (i) the determined position of the center of rotation of said eye and (ii) the determined position of the center of perspective of said eye.
The method of any of the Examples above, further comprising: with at least a portion of said display, said portion being transparent and disposed at a location in front of the user's eye when the user wears said head-mounted display, transmitting light from a portion of the environment in front of the user and said head-mounted display to the user's eye to provide a view of said portion of the environment in front of the user and said head-mounted display.
The method of any of the Examples above, further comprising: with the one or more eye tracking cameras, determining a position of at least one of said iris, pupil, or lens
The method of any of the Examples above, further comprising: with the render engine, rendering the virtual image content with the render camera, said render camera configured to present virtual images to said eye images that are rendered as if captured by a camera having an aperture at a position along a line between (i) the determined position of the center of rotation of said eye and (ii) the determined position of the at least one of said iris or pupil.
The method of any of the Examples above, further comprising: with the one or more eye tracking cameras, determining a position of a center of perspective of said user's eye, wherein the center of perspective of said user's eye is located less than approximately 1.0 mm from the pupil of said user's eye; and with the render engine, rendering the virtual image content with the render camera, said render camera configured to present virtual images to said eye images that are rendered as if captured by a camera having an aperture at the determined position of the center of perspective of said user's eye.
The method of any of the Examples above, further comprising: with the render engine, rendering the virtual image content with the render camera, said render camera configured to present virtual images to said eye images that are rendered as if captured by a camera having an aperture at a position along a line between (i) the determined position of the center of rotation of said eye and (ii) the determined position of the center of perspective of said user's eye.
The method of any of the Examples above, further comprising: with processing electronics in communication with the one or more eye tracking cameras, determining a measure of change with time of the determined position of the center of perspective of said user's eye; and with the processing electronics, if it is determined that the measure of change with time exceeds a first threshold, directing the render engine to render the virtual content with the render camera as if captured by a camera having an aperture at the determined position of the center of rotation of said eye.
The method of any of the Examples above, further comprising: with the processing electronics, if it is determined that the measure of change with time is below a second threshold, directing the render engine to render the virtual content with the render camera as if captured by a camera having an aperture at the determined position of the center of perspective of said eye, wherein the first threshold is indicative of a higher level change with time in the determined position of the center of perspective of said user's eye than the second threshold.
The method of any of the Examples above, further comprising: with the processing electronics, if it is determined that the measure of change with time is below a second threshold, directing the render engine to render the virtual content with the render camera as if captured by a camera having an aperture at the determined position of the center of perspective of said eye.
The method of any of the Examples above, further comprising: with the processing electronics, if it is determined that the measure of change with time is between the first and second thresholds, directing the render engine to render the virtual content with the render camera as if captured by a camera having an aperture at a point along a line between (i) the determined position of the center of rotation of said eye and (ii) the determined position of the center of perspective of said eye.
A display system configured to project light to an eye of a user to display virtual image content in a vision field of said user, said eye having a cornea, an iris, a pupil, a lens, and a retina, and an optical axis extending through said lens, pupil, and cornea, said display system comprising: a frame configured to be supported on a head of the user; a head-mounted display disposed on the frame, said display configured to project light into said user's eye to display virtual image content to the user's vision field at different amounts of divergence and thus the displayed virtual image content appears to originate from different depths at different periods of time, wherein said head-mounted display is configured to project light into said user's eye having a first amount of divergence at a first period of time and is configured to project light into said user's eye having a second amount of divergence at a second period of time, wherein the first amount of divergence is different from the second amount of divergence; one or more eye tracking cameras configured to image the user's eye; and processing electronics in communication with the display and the one or more eye tracking cameras, the processing electronics configured to obtain an estimate of a center of rotation of said eye based on images of said eye obtained with said one or more eye tracking cameras, obtain an estimate of a vergence distance of said user based on images of said eye obtained with said one or more eye tracking cameras, and shift from projecting light into said user's eye at the first amount of divergence to projecting light into said user's eye at the second amount of divergence based on the estimated vergence distance of said user.
The display system of any of the Examples above, wherein at least a portion of said display is transparent and disposed at a location in front of the user's eye when the user wears said head-mounted display such that said transparent portion transmits light from a portion of the environment in front of the user and said head-mounted display to the user's eye to provide a view of said portion of the environment in front of the user and said head-mounted display.
The display system of any of the Examples above, wherein said processing electronics is further configured to, based on images of said eye obtained with said one or more eye tracking cameras, detect a blink of said eye.
The display system of any of the Examples above, wherein said processing electronics is further configured to, based on images of said eye obtained with said one or more eye tracking cameras, detect a saccade of said eye.
The display system of any of the Examples above, wherein said processing electronics is configured to shift from projecting light into said user's eye at the first amount of divergence to projecting light into said user's eye at the second amount of divergence based on the determined vergence distance of said user and based on whether the processing electronics have detected the blink of said eye.
The display system of any of the Examples above, wherein said processing electronics is configured to shift from projecting light into said user's eye at the first amount of divergence to projecting light into said user's eye at the second amount of divergence based on the determined vergence distance of said user and based on whether the processing electronics have detected the saccade of said eye.
The display system of any of the Examples above, wherein said processing electronics is configured to shift from projecting light into said user's eye at the first amount of divergence to projecting light into said user's eye at the second amount of divergence based on the determined vergence distance of said user and based on whether the processing electronics have detected at least one of the saccade or the blink of said eye.
The display system of any of the Examples above, wherein said first amount of divergence is associated with vergence distances in a first range and wherein said second amount of divergence is associated with vergence distances in a second range.
The display system of any of the Examples above, wherein said first amount of divergence is associated with vergence distances in a first range, wherein said second amount of divergence is associated with vergence distances in a second range and wherein the first and second ranges overlap but are not equal.
The display system of any of the Examples above, wherein said processing electronics is configured to shift from projecting light into said user's eye at the first amount of divergence to projecting light into said user's eye at the second amount of divergence upon determining the vergence distance of said user lies outside the first range and lies within the second range.
The display system of any of the Examples above, wherein said processing electronics is configured to shift from projecting light into said user's eye at the first amount of divergence to projecting light into said user's eye at the second amount of divergence upon determining the vergence distance of said user lies outside the second range and lies within the first range.
The display system of any of the Examples above, wherein said processing electronics is configured to shift from projecting light into said user's eye at the first amount of divergence to projecting light into said user's eye at the second amount of divergence upon determining the vergence distance of said user lies outside the first range and lies within the second range and also detecting a blink of said eye.
The display system of any of the Examples above, wherein said processing electronics is configured to shift from projecting light into said user's eye at the first amount of divergence to projecting light into said user's eye at the second amount of divergence upon determining the vergence distance of said user lies outside the first range and lies within the second range and also detecting a saccade of said eye.
The display system of any of the Examples above, wherein said processing electronics is configured to shift from projecting light into said user's eye at the first amount of divergence to projecting light into said user's eye at the second amount of divergence upon determining the vergence distance of said user has been outside the first range and within the second range for longer than a predetermined period of time.
The display system of any of the Examples above, wherein said processing electronics is configured to shift from projecting light into said user's eye at the first amount of divergence to projecting light into said user's eye at the second amount of divergence upon determining the vergence distance of said user has been outside the first range and within the second range for longer than a predetermined period of time of at least 10 seconds.
The display system of any of the Examples above, wherein said head-mounted display comprises a first display element configured to project light having the first amount of divergence and a second display element configured to project light having the second amount of divergence.
The display system of any of the Examples above, wherein said display is configured to project light into said user's eye to display virtual image content in a discrete display mode in which the display is configured to project light associated with a plurality of sequential frames using only one of the first display element.
The display system of any of the Examples above, wherein said display is configured to project light into said user's eye to display virtual image content in a blended display mode in which the display is configured to project light associated with a plurality of sequential frames using both of the first and second display elements for each of the frames.
The display system of any of the Examples above, wherein said display is configured to project light into said user's eye to display virtual image content in a blended display mode in which the display is configured to project light associated with a plurality of sequential frames using both of the first and second display elements for each of the frames and wherein, in the blended display mode, the display is configured to project light, using the first and second display elements, that is perceived by a user as having a given amount of divergence that is between the first and second amounts of divergence.
The display system of any of the Examples above, wherein said display is configured to project light into said user's eye to display virtual image content in a multi-focus display mode in which the display is configured to project light associated with a plurality of sequential frames using both of the first and second display elements for each of the frames, wherein, in the multi-focus display mode, the display is configured to project light associated with first virtual image content at a third amount of divergence and to project light associated with second virtual image content at a fourth amount of divergence, and wherein the third amount of divergence is different from the fourth amount of divergence.
The display system of any of the Examples above, wherein third and fourth amounts of divergence are each between the first and second amounts of divergence.
The display system of any of the Examples above, wherein at least one of the third and fourth amounts of divergence are between the first and second amounts of divergence.
The display system of any of the Examples above, wherein the third and fourth amounts of divergence are respectively equal to the first and second amounts of divergence.
The display system of any of the Examples above, wherein the display is configured to project light associated with the first virtual image in a first region of the user's vision field and to project light associated with the second virtual image in a second region of the user's vision field and wherein the first and second regions are different.
The display system of any of the Examples above, wherein the display is configured to project light associated with the first virtual image in a first region of the user's vision field and to project light associated with the second virtual image in a second region of the user's vision field and wherein the first and second regions do not overlap.
A display system configured to project light to left and right eyes of a user to display virtual image content in a vision field of said user, each of said eyes having a cornea, an iris, a pupil, a lens, a retina, and an optical axis extending through said lens, pupil, and cornea, said display system comprising: a frame configured to be supported on a head of the user; a head-mounted display disposed on the frame, said display configured to project light into said user's left and right eyes to display virtual image content to the user's vision field at different amounts of at least one of divergence and collimation and thus the displayed virtual image content appears to originate from different distances from the user's left and right eyes at different periods of time; a first eye tracking camera configured to image the user's left eye; a second eye tracking camera configured to image the user's right eye; and processing electronics in communication with the display and the first and second eye tracking cameras, the processing electronics configured to obtain an estimate of an interpupillary distance between the user's left and right eyes based on images of said left and right eyes obtained with said first and second eye tracking cameras.
The display system of any of the Examples above, further comprising one or more light sources disposed on said frame with respect to said user's eye to illuminate said user's eye, said one or more eye tracking cameras forming images of said eye using said light from said one or more light sources.
The display system of any of the Examples above, wherein said one or more light sources comprises at least two light sources disposed on said frame with respect to said user's eye to illuminate said user's eye.
The display system of any of the Examples above, wherein said one or more light sources comprises infrared light emitters.
The display system of any of the Examples above, wherein one or more light sources form one or more glints on said eye and said processing electronics is configured to determine a location of said cornea based on said one or more glints.
The display system of any of the Examples above, wherein said cornea has associated therewith a cornea sphere having a center of curvature and said processing electronics is configured to determine a location of said center of curvature of said cornea sphere.
The display system of any of the Examples above, wherein said cornea has associated therewith a cornea sphere having a center of curvature and said processing electronics is configured to determine a location of said center of curvature of said cornea sphere based on said one or more glints.
The display system of any of the Examples above, wherein said one or more eye tracking camera is configured to image said pupil of said eye.
The display system of any of the Examples above, wherein said processing electronics is configured to determine the location of said center of said pupil.
The display system of any of the Examples above, wherein said processing electronics is configured to determine at least a portion of a boundary between said iris and said pupil.
The display system of any of the Examples above, wherein said processing electronics is configured to determine a center of said boundary between said iris and said pupil.
The display system of any of the Examples above, wherein said processing electronics is configured to determine a location of said center of said pupil in three-dimensional space with respect to a center of curvature of said cornea.
The display system of any of the Examples above, wherein said processing electronics is configured to determine a location and orientation of said optical axis.
The display system of any of the Examples above, wherein said processing electronics is configured to determine a location and orientation of said optical axis based on a location of said center of said pupil in three-dimensional space.
The display system of any of the Examples above, wherein said processing electronics is configured to determine said location and orientation of said optical axis based on a location of said center of said pupil in three-dimensional space with respect to a center of curvature of said cornea.
The display system of any of the Examples above, wherein said processing electronics is configured to determine a location of said center of rotation of said eye based on a center of curvature of said cornea.
The display system of any of the Examples above, wherein said processing electronics is configured to determine a location of said center of rotation of said eye based on a center of curvature of said cornea and a location and orientation of said optical axis.
The display system of any of the Examples above, wherein said processing electronics is configured to determine the location of said center of rotation of said eye by translating a particular distance along said optical axis from said center of curvature of said cornea.
A method of rendering virtual image content in a display system configured to project light to left and right eyes of a user to display the virtual image content in a vision field of said user, each of said eyes having a cornea, an iris, a pupil, a lens, a retina, and an optical axis extending through said lens, pupil, and cornea, said method comprising: with one or more eye tracking cameras configured to image said eyes of the user to track movements of said eyes, determining a position of a center of rotation of said left eye and a position of a center of rotation of said right eye; with processing electronics in communication with the one or more eye tracking cameras, estimating said user's interpupillary distance based on the determined positions of the center of rotation of said left and right eyes; with the one or more eye tracking cameras, determining a current left eye pose and a current right eye pose; and with the processing electronics, estimating said user's current vergence distance by comparing said estimated interpupillary distance and said determined current left eye pose and said determined current right eye pose.
The method of any of the Examples above, wherein determining said current left and right eye poses comprises, with the one or more eye tracking cameras, estimating a position of said pupil of said user's left eye and a position of said pupil of said user's right eye.
The method of any of the Examples above, wherein determining said current left and right eye poses comprises, with the one or more eye tracking cameras, estimating a position of said cornea of said user's left eye and a position of said cornea of said user's right eye.
The method of any of the Examples above, wherein determining said current left and right eye poses comprises, with the one or more eye tracking cameras, estimating a position of said iris of said user's left eye and a position of said iris of said user's right eye.
The method of any of the Examples above, wherein determining said current left and right eye poses comprises, with the one or more eye tracking cameras, estimating a position of said lens of said user's left eye and a position of said lens of said user's right eye.
The method of any of the Examples above, wherein estimating said user's current vergence distance comprises: with processing electronics, estimating a distance between said positions of said irises of said user's left and right eyes; and
The method of any of the Examples above, further comprising: with a head-mounted display, projecting light into said user's eye to display the rendered virtual image content to the user's vision field at different amounts of divergence such that the virtual image content appears to originate from different depths at different periods of time.
The method of any of the Examples above, further comprising: with at least a portion of said display, said portion being transparent and disposed at a location in front of the user's eye when the user wears said head-mounted display, transmitting light from a portion of the environment in front of the user and said head-mounted display to the user's eye to provide a view of said portion of the environment in front of the user and said head-mounted display.
A display system configured to project light to an eye of a user to display virtual image content in a vision field of said user, said eye having a cornea, an iris, a pupil, a lens, a retina, and an optical axis extending through said lens, pupil, and cornea, said display system comprising: a frame configured to be supported on a head of the user; a head-mounted display disposed on the frame, said display configured to project light into said user's eye to display virtual image content to the user's vision field at different amounts of at least one of divergence and collimation and thus the displayed virtual image content appears to originate from different depths at different periods of time; one or more eye tracking cameras configured to image the user's eye; and processing electronics in communication with the display and the one or more eye tracking cameras, the processing electronics configured to obtain a position estimate of a center of rotation of said eye based on images of said eye obtained with said one or more eye tracking cameras and configured to obtain a direction estimate of the optical axis of said eye based on said images, wherein said processing electronics is configured to present said virtual image content to said user's eye that are rendered as if captured by a camera having an aperture disposed along the optical axis and spaced apart from the estimated position of the center of rotation of said eye by between 6.0 mm and 13.0 mm in a direction away from said retina.
The display system of any of the Examples above, wherein said processing electronics is configured to present said virtual image content to said user's eye that are rendered as if captured by a camera having an aperture disposed along the optical axis and spaced apart from the estimated position of the center of rotation of said eye by between 7.0 mm and 12.0 mm in a direction away from said retina.
The display system of any of the Examples above, wherein said processing electronics is configured to present said virtual image content to said user's eye that are rendered as if captured by a camera having an aperture disposed along the optical axis and spaced apart from the estimated position of the center of rotation of said eye by between 8.0 mm and 11.0 mm in a direction away from said retina.
The display system of any of the Examples above, wherein said processing electronics is configured to present said virtual image content to said user's eye that are rendered as if captured by a camera having an aperture disposed along the optical axis and spaced apart from the estimated position of the center of rotation of said eye by between 9.0 mm and 10.0 mm in a direction away from said retina.
The display system of any of the Examples above, wherein said processing electronics is configured to present said virtual image content to said user's eye that are rendered as if captured by a camera having an aperture disposed along the optical axis and spaced apart from the estimated position of the center of rotation of said eye by between 9.5 mm and 10.0 mm in a direction away from said retina.
The display system of any of the Examples above, wherein said processing electronics is configured to present said virtual image content to said user's eye that are rendered as if captured by a camera having an aperture disposed along the optical axis and spaced apart from the estimated position of the center of rotation of said eye by approximately 9.7 mm.
The display system of any of the Examples above, wherein said processing electronics includes electronics on said frame.
The display system of any of the Examples above, wherein said processing electronics includes electronics on said frame and electronics disposed at a location remote from said frame.
The display system of any of the Examples above, wherein said processing electronics includes electronics on said frame and electronics on a belt pack.
The display system of any of the Examples above, wherein at least a portion of said display is transparent and disposed at a location in front of the user's eye when the user wears said head-mounted display such that said transparent portion transmits light from a portion of the environment in front of the user and said head-mounted display to the user's eye to provide a view of said portion of the environment in front of the user and said head-mounted display.
The display system of any of the Examples above, further comprising one or more light sources disposed on said frame with respect to said user's eye to illuminate said user's eye, said one or more eye tracking cameras capturing images of said eye using said light from said one or more light sources.
The display system of any of the Examples above, wherein said one or more light sources comprises at least two light sources disposed on said frame with respect to said user's eye to illuminate said user's eye.
The display system of any of the Examples above, wherein said one or more light sources comprises at least three light sources disposed on said frame with respect to said user's eye to illuminate said user's eye.
The display system of any of the Examples above, wherein said one or more light sources comprises infrared light emitters.
A display system configured to project light to an eye of a user to display virtual image content in a vision field of said user, said eye having a cornea, an iris, a pupil, a lens, a retina, and an optical axis extending through said lens, pupil, and cornea, said display system comprising: a frame configured to be supported on a head of the user; a head-mounted display disposed on the frame, said display configured to project light into said user's eye to display virtual image content to the user's vision field at different amounts of at least one of divergence and collimation and thus the displayed virtual image content appears to originate from different depths at different periods of time; one or more eye tracking cameras configured to image the user's eye; and processing electronics in communication with the display and the one or more eye tracking cameras, wherein said processing electronics is configured to present said virtual image content to said user's eye that are rendered by a render camera having an aperture located at the pupil of the eye or between the pupil and the cornea of the eye.
The display system of any of the Examples above, wherein the aperture of the render camera is located at a position that is between 1.0 mm and 2.0 mm in front of said pupil of said user's eye.
The display system of any of the Examples above, wherein the aperture of the render camera is located a position that is about 1.0 mm in front of said pupil of said user's eye.
The display system of any of the Examples above, wherein the aperture of the render camera is located at a position that is between 0.25 mm and 1.0 mm in front of said pupil of said user's eye.
The display system of any of the Examples above, wherein the aperture of the render camera is located at a position that is between 0.5 mm and 1.0 mm in front of said pupil of said user's eye.
The display system of any of the Examples above, wherein the aperture of the render camera is located at position that is between 0.25 mm and 0.5 mm in front of said pupil of said user's eye.
The display system of any of the Examples above, wherein the aperture of the render camera is located at the pupil of the eye.
The display system of any of the Examples above, wherein the aperture of the render camera is not located at the pupil of the eye.
Any of the claims above, wherein the camera comprises a pinhole camera.
Any of the claims above, wherein the aperture comprises a pinhole of a pinhole camera.
Any of the above Examples or Additional Examples can be combined. Additionally, any of the above Examples or Additional Examples can be integrated with a head mounted display. In addition, any of the above Examples or Additional Examples can be implemented with a single depth plane and/or with one or more variable depth planes (e.g., one or more elements with variable focusing power that provide accommodation cues that vary over time).
Furthermore, apparatus and methods for determining a variety of values, parameters, etc., such as, but not limited to, anatomical, optical, and geometric features, locations, and orientations, etc., are disclosed herein. Examples of such parameters include, for example, the center of rotation of the eye, the center of curvature of the cornea, the center of the pupil, the boundary of the pupil, the center of the iris, the boundary of the iris, the boundary of the limbus, the optical axis of the eye, the visual axis of the eye, the center of perspective, but are not limited to these. Determinations of such values, parameters, etc., as recited herein include estimations thereof and need not necessarily coincide precisely with the actual values. For example, determinations of the center of rotation of the eye, the center of curvature of the cornea, the center or boundary of the pupil or iris, the boundary of the limbus, the optical axis of the eye, the visual axis of the eye, the center of perspective, etc., may be estimations, approximations, or values close to, but not the same as, the actual (e.g., anatomical, optical, or geometric) values or parameters. In some cases, for example, root mean square estimation techniques are used to obtain estimates of such values. As an example, certain techniques described herein relate to identifying a location or point at which rays or vectors intersect. Such rays or vectors, however, may not intersect. In this example, the location or point may be estimated. For example, the location or point may be determined based on root mean square, or other, estimation techniques (e.g., the location or point may be estimated to be close to or the closest to the rays or vectors). Other processes may also be used to estimate, approximate or otherwise provide a value that may not coincide with the actual value. Accordingly, the term determining and estimating, or determined and estimated, are used interchangeably herein. Reference to such determined values may therefore include estimates, approximations, or values close to the actual value. Accordingly, reference to determining a parameter or value above, or elsewhere herein should not be limited precisely to the actual value but may include estimations, approximations or values close thereto.
This application claims priority to U.S. Patent Prov. App. 62/618,559, which is titled “EYE CENTER OF ROTATION DETERMINATION, DEPTH PLANE SELECTION, AND RENDER CAMERA POSITIONING IN DISPLAY SYSTEMS” and was filed on Jan. 17, 2018. This application further claims priority to U.S. Patent Prov. App. 62/702,849, which is titled “EYE CENTER OF ROTATION DETERMINATION, DEPTH PLANE SELECTION, AND RENDER CAMERA POSITIONING IN DISPLAY SYSTEMS” and was filed on Jul. 24, 2018. Each of the above-recited applications is incorporated herein by reference in its entirety. This application further incorporates by reference U.S. Patent Pub. 2018/0018515, which is titled “IRIS BOUNDARY ESTIMATION USING CORNEA CURVATURE” and was published on Jan. 18, 2018.
Number | Name | Date | Kind |
---|---|---|---|
5280312 | Yamada et al. | Jan 1994 | A |
6433760 | Vaissie et al. | Aug 2002 | B1 |
6850221 | Tickle | Feb 2005 | B1 |
8928558 | Lewis et al. | Jan 2015 | B2 |
9081426 | Armstrong | Jul 2015 | B2 |
9215293 | Miller | Dec 2015 | B2 |
9348143 | Gao et al. | May 2016 | B2 |
9417452 | Schowengerdt et al. | Aug 2016 | B2 |
9470906 | Kaji et al. | Oct 2016 | B2 |
9547174 | Gao et al. | Jan 2017 | B2 |
9671566 | Abovitz et al. | Jun 2017 | B2 |
9740006 | Gao | Aug 2017 | B2 |
9791700 | Schowengerdt et al. | Oct 2017 | B2 |
9851563 | Gao et al. | Dec 2017 | B2 |
9857591 | Welch et al. | Jan 2018 | B2 |
9874749 | Bradski | Jan 2018 | B2 |
10089526 | Amayeh et al. | Oct 2018 | B2 |
10146997 | Kaehler | Dec 2018 | B2 |
10296792 | Spizhevoy et al. | May 2019 | B2 |
20020181115 | Massof et al. | Dec 2002 | A1 |
20060028436 | Armstrong | Feb 2006 | A1 |
20070081123 | Lewis | Apr 2007 | A1 |
20100045932 | Shelhamer et al. | Feb 2010 | A1 |
20100149073 | Chaum et al. | Jun 2010 | A1 |
20120127062 | Bar-Zeev et al. | May 2012 | A1 |
20120162549 | Gao et al. | Jun 2012 | A1 |
20130050070 | Lewis | Feb 2013 | A1 |
20130082922 | Miller | Apr 2013 | A1 |
20130093791 | Arnold et al. | Apr 2013 | A1 |
20130114043 | Balan | May 2013 | A1 |
20130114850 | Publicover | May 2013 | A1 |
20130117377 | Miller | May 2013 | A1 |
20130125027 | Abovitz | May 2013 | A1 |
20130208234 | Lewis | Aug 2013 | A1 |
20130242262 | Lewis | Sep 2013 | A1 |
20140071539 | Gao | Mar 2014 | A1 |
20140177023 | Gao et al. | Jun 2014 | A1 |
20140218468 | Gao et al. | Aug 2014 | A1 |
20140267420 | Schowengerdt | Sep 2014 | A1 |
20140306866 | Miller et al. | Oct 2014 | A1 |
20140354948 | Kratzer | Dec 2014 | A1 |
20150016777 | Abovitz et al. | Jan 2015 | A1 |
20150077416 | Villmer | Mar 2015 | A1 |
20150103306 | Kaji et al. | Apr 2015 | A1 |
20150178939 | Bradski et al. | Jun 2015 | A1 |
20150189266 | Zhou | Jul 2015 | A1 |
20150205126 | Schowengerdt | Jul 2015 | A1 |
20150222883 | Welch | Aug 2015 | A1 |
20150222884 | Cheng | Aug 2015 | A1 |
20150268415 | Schowengerdt et al. | Sep 2015 | A1 |
20150278642 | Chertok et al. | Oct 2015 | A1 |
20150287206 | Ebisawa | Oct 2015 | A1 |
20150302652 | Miller et al. | Oct 2015 | A1 |
20150309263 | Abovitz et al. | Oct 2015 | A2 |
20150326570 | Publicover et al. | Nov 2015 | A1 |
20150346490 | TeKolste et al. | Dec 2015 | A1 |
20150346495 | Welch et al. | Dec 2015 | A1 |
20160011419 | Gao | Jan 2016 | A1 |
20160026253 | Bradski et al. | Jan 2016 | A1 |
20160196465 | Wu et al. | Jul 2016 | A1 |
20170123526 | Trail | May 2017 | A1 |
20190094981 | Bradski et al. | Mar 2019 | A1 |
20190187482 | Lanman | Jun 2019 | A1 |
Number | Date | Country |
---|---|---|
WO 2019143844 | Jul 2019 | WO |
WO 2021011686 | Jan 2021 | WO |
Entry |
---|
International Search Report and Written Opinion for PCT Application No. PCT/US2019/014052, dated Apr. 10, 2019. |
International Preliminary Report for Patentability for PCT Application No. PCT/US2019/014052, dated Jul. 21, 2020. |
ARToolKit: https://web.archive.org/web/20051013062315/http://www.hitl.washington.edu:80/artoolkit/documentation/hardware.htm, archived Oct. 13, 2005. |
Azuma, “A Survey of Augmented Reality,” Teleoperators and Virtual Environments 6, 4 (Aug. 1997), pp. 355-385. https://web.archive.org/web/20010604100006/http://www.cs.unc.edu/˜azuma/ARpresence.pdf. |
Azuma, “Predictive Tracking for Augmented Realty,” TR95-007, Department of Computer Science, UNC-Chapel Hill, NC, Feb. 1995. |
Bimber, et al., “Spatial Augmented Reality—Merging Real and Virtual Worlds,” 2005 https://web.media.mit.edu/˜raskar/book/BimberRaskarAugmentedRealityBook.pdf. |
Jacob, “Eye Tracking in Advanced Interface Design,” Human-Computer Interaction Lab Naval Research Laboratory, Washington, D.C. / paper/ in Virtual Environments and Advanced Interface Design, ed. by W. Barfield and T.A. Furness, pp. 258-288, Oxford University Press, New York (1995). |
Shih, et al., “A Novel Approach to 3-D Gaze Tracking Using Stereo Cameras,” in 27 pages, TR-M3LAB-2002-001 (available at http://erdos.csie.ncnu.edu.tw/˜stone/publication/TR-2002-001.pdf) and corresponding article, IEEE Transactions on Systems, Man, and Cybernetics—Part B: Cybernetics, vol. 34, No. 1, Feb. 2004. |
Tanriverdi and Jaob, “Interacting With Eye Movements in Virtual Environments,” Department of Electrical Engineering and Computer Science, Tufts University, Medford, MA—paper/Proc. ACM CHI 2000 Human Factors in Computing Systems Conference, pp. 265-272, Addison-Wesley/ACM Press (2000). |
Atchison, “Optical models for human myopic eyes,” Vision Research (4614), 2236-50, 2006. |
Atchison, “Schematic eyes,” Handbook of Visual Optics, vol. 1, Chapter 16, Fundamentals and Eye Optics, pp. 235-248, 2007. |
Atchison, “Thomas Young's contribution to visual optics: The Bakerian lecture 'On the mechanism of the eye,”' Journal of Vision, 10(12), 1-16, 2010. |
Atchison, et al., “Age-related changes in opitcal and biometric characteristics of emmetropic eyes,” Journal of Vision, 8(4):29, 1-20, 2008. |
Benes, et al., “Corneal Shap and Eccentricity in Population,” Coll. Antropol. 37 (2103) Suppl. 1: 117-120. |
Bennett, et al., “The eye as an opitcal system.” In Visual Optics and the Optical Space Sense, vol. 4: The Eye, pp. 101-131, 1962. |
Carney, et al., “Corneal Topography and Myopia,” Investigative Ophthalmology & Visual Science, Feb. 1997, vol. 38, No. 2. |
Cook, et al., “Ocular Growth and Refractice Error Development in Premature Infants without Retinopathy of Prematurity.” investigative Opthaimology & Visual Science. Mar. 2003, vol. 44, No. 3. |
Fedtke, et al., “The entrance pupil of the human eye: a three-dimensional model as a function of viewing angle,” Optics Express, Oct. 11, 2010, vol. 18, No. 21. |
Fry, et al.. “The Center of Rotation of the Eye” American Journal of Optometry and Archives of American Academy of Optometry, vol. 39, No. 11, Nov. 1962. |
Fry, et al., “The Mechanics of Elevating the Eye,” American Journal of Optometry and Archives of American Academy of Optometry, vol. 40, No. 12, Dec. 1963. |
Gale, “Research Note—A Nove on the Remote Oculometer Technique for Recording Eye Movements,” Vision Research vol. 22. pp. 201-202, 1982. |
Grolman, “The Sighting Center,” American Academy of Optometry, Annual Meeting Miami Beach, FL Dec. 10, 1962. American Journal of Optometry and Archives of American Academy of Optometry. |
Guestrin, et al., “General Theory of Remote Gaze Estimation Using the Pupil Center and Corneal Reflections,” IEEE Transactions on Biomedical Engineering, vol. 53, No. 6, Jun. 2006. |
Hansen, D et al., “In the Eye of the Beholder: A Survey of Models for Eyes and Gaze”, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 32, No. 3, Mar. 2010, in 23 pages. |
Kiely, et al., “The mean shape of the human cornea,” Optica Acta, 1982, vol. 29, No. 8, 1027-1040. |
Kooijman, “Light distribution on the retina of a wide-angle theoretical eye.” J. Opt. Soc. Am./vol. 73, No. 11/Nov. 1983. |
Koretz, et al., “Accommodation and Presbyopia in the Human Eye—Changes in the Anterior Segment and Crystalline Lens With Focus,” Investigative Ophthalmology & Visual Science, Mar. 1997, vol. 38, No. 3. |
Liou, et a!., “Anatomically accurate, finite model eye for optical modeling,” J. Opt. Soc. Am. A/Voi. 14, No.8/Aug. 1997. |
Logan, et al., “Posterior Retinal Contour in Adult Human Anisomyopia,” Investigative Ophthalmology & Visual Science, Jul. 2004, vol. 45, No. 7. |
Lotmar_Theoretical Eye Model with Aspherics, Journal of The Optical Society of America, vol. 61, No. 11, Nov. 1971. |
Mainstone, et al., “Corneal shape in hyperipia,” Clinical and Experimental Optometry 81.3 May-Jun. 1998. |
Mashige. “A review of corneal diameter, curvature and thickness values and influencing factors.” S Afr Optom 2013 72(4) 185-194. |
Morimoto, et al., “Eye gaze tracking techniques for interactive applications.” Computer Vision and Image Understanding 98 (2005) 4-24. |
Nagamatsu, et al.»“Gaze Estimation Method Involving Corneal Reflection-Based Modeling of the Eye as a General Surface of Revolution about the Optical Axis of the Eye,” IEICE Trans. Inf. & Syst., vol. E95-D, No. 6 Jun. 2012. |
Navarro, et al., “Accommodation-dependent model of the human eye with aspherics,” J. Opt. Soc. Am. A vol. 2, No. 8, Aug. 1985. |
Taba, “Improving Eye-Gaze Tracking Accuracy Through Personalized Calibration of a User's Aspherical Corneal Model,” MS Thesis, University of British Columbia, Jan. 2012. |
Xiong, et al., The analysis of corneal asphericity (Q value) and its related factors of 1,683 Chinese eyes older than 30 years, PLoS ONE 12(5): e0176913. May 2017. |
Number | Date | Country | |
---|---|---|---|
20190243448 A1 | Aug 2019 | US |
Number | Date | Country | |
---|---|---|---|
62702849 | Jul 2018 | US | |
62618559 | Jan 2018 | US |