1. Field of the Invention
The present invention generally pertains to surgical instruments, and more specifically to high-speed electrically driven surgical blades. The invention is applicable to the cutting of skin and other tissues or materials found within the body.
Cataract surgery is the most common surgical procedure in the United States today with close to 2 million procedures performed annually. Ocular keratomes are used to create self-sealing incisions entering through the conjunctiva, scleara or cornea to form clear corneal incisions during cataract surgery. Self-sealing incisions may also be referred to as self-healing incisions as there is no need to cauterize tissue to prevent further tissue damage and bleeding.
In general surgical applications, percutaneous access to tissues and vasculature as well as access through body-surface organ tissues like the conjunctiva and sclera is typically accomplished with non-vibrating cutting and shearing edges. Due in part to the variability of sharpness of conventional metal ophthalmic knife blades, the force required to create an incision into the eye tissue can cause significant tissue trauma, separating stromal layers and causing delamination of the Descemets membrane. As the surgeon applies force through the handle to a non-actuated blade, the point ruptures the surface membrane of the tissue and the edges cut and divide the tissue. Essentially, the blade is resisted by the force of the elastically deforming tissue. The blade is also resisted by the force required to divide the tissue at the cutting edges and the force created by the adhesive bonds between the blade and the tissue.
Several advances have been attempted to reduce the force necessary to penetrate a blade through tissue. Most of these, such as U.S. Pat. No. 6,554,840 (Matsutani et al.) for example, simply reduce the cutting edge to blade thickness ratio to lower the penetration force. Others, such as U.S. Pat. No. 6,547,802 (Nallakrishnan et al.) seek to improve incisions to the eye by maximizing the surface area of the cut with a blade having a wide surface area comprised of two cutting edges disposed at an angle greater than 90°. Meanwhile, U.S. Pat. No. 6,056,764 (Smith) not only changes the blade tip angle, or angle between cutting edges on either side of a sharp tip, but also offers alternative blade materials such as diamond, sapphire, ruby, and cubic zirconia. Additionally, the '764 patent teaches the use of coatings over stainless steel blades to add strength to the blade. Other conventional attempts also disclose applying a surface treatment in the form of a hydrophobic/hydrophilic coating to the blade. However, while some reduction of force may be attained by the aforementioned disclosures, they are limited to only reducing the bulk surface friction between the instrument surface and the tissue surface being cut, and changing the surface area of the blade or changing the coefficient of friction between the surfaces.
One of the problems associated with surface treatment of surgical blades is that the blade sharpness is sacrificed for a lowering of mechanical friction. Also, an associated problem with changing the dimensions of the blade is faster dulling, further resulting in increased friction at the blade-tissue interface. These results only further promote cauterization and do not contribute to reducing the force necessary for penetration.
Another approach to cutting and penetrating through tissue is to sonically or ultrasonically vibrate the cutting edges of a surgical blade. Because piezoelectric ceramics deform when exposed to an electrical input, a phenomenon known as the converse piezoelectric effect, current technologies utilize stacks of piezoelectric material such as lead-zirconate-titanate (PZT) to produce the mechanical, ultrasonic motion. For example, U.S. Pat. No. 4,587,958 (Noguchi) discloses an ultrasonic surgical device that focuses on the application of ultrasonic energy to shatter tissue. Unfortunately, it is apparent from the '958 disclosure that the express purpose of the ultrasonic vibrations applied upon the device is to “exhibit a satisfactory tissue shattering capacity”. As a result, this type of tissue penetration does not minimize scarring, but instead creates a blunt incision by shattering the tissue.
On the other hand, U.S. Pat. No. 5,935,143 (Hood) attempts to minimize the “thermal footprint” of an ultrasonic blade. This is done by using a Langevin or dumbbell type transducer to produce axial motion of the cutting blade, thereby providing tactile feedback and enhanced ergonomics to the surgeon using the blade. The combination of ultrasonic vibration coupled with sinusoidal axial motion of the '143 blade perpendicular to the tissue surface plane also causes coagulation and cauterization of the tissue being incised and, therefore, does not increase the quality of the incision.
While it's been shown in the art that ultrasonically vibrating a blade enhances its sharpness, U.S. Pat. No. 5,324,299 (Davison, et al.) teaches that without proper configuration and design, an ultrasonic blade's “sharpness” is not enhanced when cutting through relatively loose and unsupported tissues. Therefore, the '299 reference teaches ultrasonically driven scalpel blades having a hook tip design which focuses some of the vibration in a particular direction, but does not actually increase the quality of the incision as it serves to enhance coagulation of the tissue being incised. Furthermore, a hooked tip prevents the blade from being optimally tuned for stab type incisions.
Unfortunately, the focus of the improvements of vibrating blades found in the aforementioned prior-alt disclosures were made with little regard to secondary issues related to incising tissue. For example, secondary issues such as those aspects of surgical procedure beyond simply incising the tissue include minimizing the pain experienced by patients during tissue penetration, minimizing scarring and improving wound healing, all of which are the result of having created a high quality incision at a reduced force necessary for cutting, incising, penetrating and the like.
Advancements in the surgical arts have been attempted to address these secondary issues. For instance, it has been shown that oscillating the blade of a surgical tool laterally or parallel to the tissue surface, rather than axially or perpendicular to its surface, may reduce pain during incising. As is disclosed in U.S. Pat. No. 6,210,421 (Bocker, et al.), the lateral motion of the blade against the skin reduces the pressure waves that would otherwise be directed perpendicular to the skin in an axially driven blade, resulting in a smaller number of pain receptors being activated. The '421 patent, however, is directed to a blood lancet which is not optimal for cutting tissue to a depth necessary as in ocular or minimally invasive surgery.
In an attempt to optimize tissue incising, U.S. Pat. No. 6,254,622 (Hood) discloses an ultrasonically driven blade having an unsymmetrical cutting surface which causes an offset center of gravity that creates transverse movement of the blade, perpendicular to the longitudinal axis of the surgical device. The blade, having a low attack angle to form the asymmetric shape that gives the blade a sharp point, is able to then effectively cut both hydrogenous tissue and non-hydrogenous tissue without requiring tension on the cutting medium. The transverse movement of the blade provides an efficient means of transferring the ultrasonic energy directly into the tissue and also moves the blood away from the cutting edge, allowing for a more efficient transfer of ultrasonic energy to the tissue. Unfortunately, the '622 patent relies on a driving frequency from 60,000-120,000 Hz, a frequency range that is generally too high for preserving the soft tissue as it usually causes thermal damage.
In yet another attempt to transform the axial motion of a driving piezoelectric transducer into transverse motion of a surgical blade, U.S. Pat. No. 6,585,745 (Cimino) discloses a split-electrode configuration to drive a bolt-type or Langevin actuator 311. The patent discloses the use of lower frequencies such as 10 kHz in an axial or longitudinal direction, causing a transverse motion of the blade perpendicular to the long axis of the device. While the '745 patent attempts to disclose that the device produces improved cutting, it is inherently flawed as it depends on the split-electrode configuration, which is complex as compared to a single-phase pattern. Because the split-electrode configuration causes the piezoelectric transducers that drive the device to contract on one half and expand on the other, the device is vulnerable to induced stress and cracking, thereby reducing life and efficiency.
Lateral motion of the blade in a surgical tool has also been combined with longitudinal motion, such as that which is described in U.S. Patent Application No. 2005/0234484 A1 (Houser, et al.). While the '484 application discloses that longitudinal ultrasonic vibration of the blade generates motion and heat, thereby assisting in the coagulating of the tissue, the disclosure also recognizes that transverse ultrasonic vibration of the blade offers beneficial results. One such result is a total ultrasonic vibration having an amplitude that is larger and more uniform over a long distance of the blade as compared to surgical blades having only longitudinal vibrations. Yet, the invention relies solely on ultrasonic vibrations, which inherently limits the invention to incising specific tissues only, and not the wide range of tissues that are encountered during a surgical procedure. A weakness of all blades, which are solely ultrasonically driven, is that they atomize the surrounding fluids. Because fluids are broken into small droplets when they encounter a solid mass vibrating at ultrasonic frequencies, the fluids becomes a mobile “mist” of sorts. As droplets, which have a size inversely proportional to the vibrating frequency, the fluid “mist” is similar to that of room humidifiers and also to the droplets created by industrial spray nozzles. One negative aspect of creating a mobile mist during a surgical procedure is that these particles may contain viral or bacterial agents. By ultrasonically vibrating the moisture surrounding unhealthy tissue as it is being incised, it is possible to unknowingly transport the bacterial or viral agent to healthy tissue. It, therefore, is an inherent weakness of ultrasonically driven surgical blades that they increase the chance of spreading disease or infection.
Therefore, a need exists for an improved surgical blade that is able to be vibrated sonically and ultrasonically, reducing the force required to penetrate tissue, and thereby reduces the amount of resulting tissue damage and scarring while also improving wound healing.
Transducer technologies that rely on conventional, single or stacked piezoelectric ceramic assemblies for actuation are hindered by the maximum strain limit of the piezoelectric materials themselves. Because the maximum strain limit of conventional piezoelectric ceramics is about 0.1% for polycrystalline piezoelectric materials, such as ceramic lead zirconate titanate (PZT) and 0.5% for single crystal piezoelectric materials, it would require a large stack of cells to approach useful displacement or actuation of, for example, a handheld device usable for processes such as cutting, slicing, penetrating, incising and the like. However, using a large stack of cells to actuate components of a handpiece would also require the tool size to increase beyond usable biometric design for handheld instruments.
Flextensional transducer assembly designs have been developed which provide amplification in piezoelectric material stack strain displacement. The flextensional designs comprise a piezoelectric material transducer driving cell disposed within a frame, platten, end-caps or housing. The geometry of the frame, platten, end caps or housing provides amplification of the transverse, axial, radial or longitudinal motions of the driver cell to obtain a larger displacement of the flextensional assembly in a particular direction. Essentially, the flextensional transducer assembly more efficiently converts strain in one direction into movement (or force) in a second direction.
The present invention comprises a handheld device including a cutting, slicing, incising member which is actuated by a flextensional transducer assembly. For example, the flextensional transducer assembly may utilize flextensional cymbal transducer/actuator technology or amplified piezoelectric actuator (APA) transducer technology. The flextensional transducer assembly provides for improved amplification and improved performance which are above that of conventional handheld devices. For example, the amplification may be improved by up to about 50-fold. Additionally, the flextensional transducer assembly enables handpiece configurations to have a more simplified design and a smaller format.
The present invention relates generally to a minimally invasive surgical blade for the cutting and incising of various materials and tissues within a body. Specifically, the present invention is a handpiece comprising a body, at least one piezoelectric transducer driver disposed within the body, a motion transfer adaptor and a surgical blade for cutting, incising and penetrating.
The invention is also a method for cutting, incising and penetrating tissues or other materials found within a patient's body using a handheld surgical tool comprising a body, at least one piezoelectric transducer disposed within the body, a motion transfer adaptor having at least a distal end and a proximal end, and a surgical blade.
The method includes driving the at least one piezoelectric transducer disposed within a body of the handheld surgical tool sinusoidally in a frequency range of 10-1000 Hertz (Hz) and at an electric field in the range of about 300-500 V/mm. Specifically, the blade is driven sinusoidally at such a frequency and displacement so as to attain a peak velocity in the range of 0.9-2.5 m/s, more preferably in the range of 1.0-2.5 m/s and most preferably in the range of 1.5-2.0 m/s. The sinusoidal vibrations are transferred mechanically to the motion transfer adapter coupled at the proximal end to the at least one piezoelectric transducer. The vibrations are further transferred mechanically to the surgical blade attached to a proximal end of the motion transfer adaptor. The surgical blade is configured in such a manner so as to oscillate in a direction that comprises an in-plane motion. In particular, the in-plane motion comprises motion that is primarily in one plane. Most preferably, the surgical blade of the present invention is parallel to the surface of the tissue which is being incised, cut, penetrated or the like, by the blade. The in-plane motion is such a motion that is primarily perpendicular to the long axis of the device handle. In other words, the sinusoidal vibrations are an axial driving motion produced parallel to a hypothetical, centrally located axis which extends through a distal end and through a proximal end of a surgical tool's handle portion. The axial driving motion is transposed into lateral motion, perpendicular to the direction of the originating sinusoidal vibrations. It is an object of this invention to reduce tissue deformation, thereby giving superior shaped flap peripheries and flap or stromal bed apposition in ophthalmologic surgical procedures.
In one embodiment, the piezoelectric transducer is a standard bimorph actuator or a variable thickness bimorph similar to but not limited to, those configurations which are described by Cappalleri, D. et al in “Design of a PZT Bimorph Actuator Using a Metamodel-Based Approach”, Transactions of the ASME, Vol. 124 June 2002 and is hereby incorporated by reference.
In another embodiment, the piezoelectric transducer is a cymbal transducer/actuator similar to, but not limited to, that which is described in U.S. Pat. No. 5,729,077 (Newnham) and is hereby incorporated by reference.
In one embodiment, the piezoelectric transducer is a Langevin or dumbbell type transducer similar to, but not limited to, that which is disclosed in U.S. Patent Publication No. 2007/0063618 A1 (Bromfield), which is hereby incorporated by reference.
In yet another embodiment, the piezoelectric transducer is an APA transducer similar to, but not limited to, that which is described in U.S. Pat. No. 6,465,936 (Knowles et al.) and is hereby incorporated by reference.
These and other features of this invention are described in, or are apparent from, the following detailed description of various exemplary embodiments of this invention.
Exemplary embodiments of this invention will be described with reference to the accompanying figures.
The preferred embodiments of the present invention are illustrated in
The effectiveness of the invention as described, for example, in the aforementioned preferred embodiments, relies on the reduction of force principle in order to optimize incising, cutting or penetrating through tissue or materials found within the body. Essentially, when tissue is incised, cut, penetrated or separated by the high-speed operation of the surgical blade of the present invention, the tissue is held in place purely by its own inertia. In other words, a reduction of force effect is observed when a knife blade, for example a slit knife blade, is vibrated with an in-plane motion during the incision process and enough mechanical energy is present to break adhesive bonds between tissue and blade. The threshold limits of energy can be reached in the sonic or ultrasonic frequency ranges if the necessary amount of blade displacement is present.
To exploit the reduction of force effect, the surgical blade of the present invention is designed such that the blade attains a short travel distance or displacement, and vibrates sinusoidally with a high cutting frequency. Utilizing the various device configurations as described in the aforementioned embodiments, it has been determined that the sinusoidal motion of the blade must include at least a peak velocity in the range of 0.9-2.5 m/s, more preferably between 1.0-2.25 m/s and most preferably at a velocity of 1.5-2.0 m/s. For example,
In a first embodiment of the present invention as shown in
Now, with respect to
With respect to
Returning to
While the actuator of the bender actuated surgical tool has been described with respect to a bimorph type actuator, a unimorph type actuator may easily replace the bimorph piezoelectric transducer 111. In essence, when the bimorph piezoelectric transducer 111 comprises at least one layer of at least one of piezoelectric plate 112 formed side by side, each plate being formed longitudinally against and in direct physical contact to a first side surface 113′ of bender support bar 113 so as to form first piezoplate stack 127, and second piezoplate stack 128 is not formed, the piezoelectric transducer is a unimorph piezoelectric transducer. Furthermore, as shown in
The bimorph piezoelectric transducer 111 may also be of a variable thickness type, so long as in the case of either the first piezoplate stack 127 or second piezoplate stack 128 comprise more than one layer of piezoelectric ceramic plate 112, with each additional layer being shorter in length than the previously stacked layer and a conductive plate being formed between each layer. In other words, a variable thickness bimorph piezoelectric transducer may be formed in a similar fashion as prescribed to unimorph piezoelectric transducer 111′ with the exception that the multiplicity of layers of piezoelectric ceramic plates is symmetrically formed on second side surface 113″ of bender support bar 113.
The functional performance of the surgical tool is driven by the piezoelectric elements section. Piezoelectric ceramic elements, such as each of one or more piezoelectric ceramic plate 112 are capable of precise, controlled displacement and can generate energy at a specific frequency. The piezoelectric ceramics expand when exposed to an electrical input, due to the asymmetry of the crystal structure, in a process known as the converse piezoelectric effect. Contraction is also possible with negative voltage. Piezoelectric strain is quantified through the piezoelectric coefficients d33, d31, and d15, multiplied by the electric field, E, to determine the strain, x, induced in the material. Ferroelectric polycrystalline ceramics, such as barium titanate (BT) and lead zirconate titanate (PZT), exhibit piezoelectricity when electrically poled. Simple devices composed of a disk or a multilayer type directly use the strain induced in a ceramic by the applied electric field. Acoustic and ultrasonic vibrations can be generated by an alternating field tuned at the mechanical resonance frequency of a piezoelectric device. Piezoelectric components can be fabricated in a wide range of shapes and sizes. A piezoelectric component may be 2-5 mm in diameter and 3-5 mm long, possibly composed of several stacked disks or plates. The exact dimensions of the piezoelectric component are performance dependent.
The piezoelectric ceramic material may be comprised of at least one of lead zirconate titanate (PZT), multilayer PZT, polyvinylidene difluoride (PVDF), multilayer PVDF, lead magnesium niobate-lead titanate (PMNPT), multilayer PMN, electrostrictive PMN-PT, ferroelectric polymers, single crystal PMN-PT (lead zinc-titanate), and single crystal PZN-PT.
Bender bar 113 may comprise a metal such as stainless steel, titanium, or another conductive material also having high rigidity.
Returning to
As depicted in
In a second embodiment, the surgical tool of the present invention can be a cymbal actuated surgical tool 200 as shown in
As shown in
The cymbal transducer/actuator 211 drives the dual beveled angled slit split blade 215. When activated by an AC current, the cymbal transducer/actuator 211 vibrates sinusoidally with respect to the current's frequency. Because end-cap 213 is fixed to an inner sidewall of body 210, when transducer 211 is activated, end-cap 214 moves with respect to the body in a direction perpendicular to the hypothetical long axis HLA of the surgical tool. This motion of end-cap 214 is transferred at the attachment node 217 through blade neck 216 and finally to slit split blade 215 which is displaced in a lateral direction to longitudinal axis HLA. Further, the displacement of slit split blade 215 is amplified relative to the displacement originating at piezoelectric ceramic disc 212 when it compresses and expands during activation due in part to the amplification caused by the design of end-caps 213 and 214. An amplification of the motion originating at the piezoelectric ceramic disc 212 and terminating with a displacement of split blade 215 can further be attributed to the combination of yoke 218 and blade neck 216 acting as a fulcrum and arm of a lever. For example, the piezoelectric ceramic disc 212 alone may only displace by about 1-2 microns, but attached to the end-caps 213 and 214, the cymbal transducer/actuator 211 as a whole may generate up to about 1 kN (225 lb-f) of force and about 80 to 100 microns of displacement. This motion is further transferred through the blade neck 216 and yoke 218 as an amplified lateral displacement of split blade 215 of 100-300 microns. For cases requiring higher displacement, a plurality of cymbal transducer/actuators 211 can be stacked end-cap-to-end-cap to increase the total lateral displacement of the split blade 215.
Turning the attention over to
In other words, again referring to
In a fourth embodiment of the present invention, an APA transducer driven surgical tool 400 is shown in
In operation, the cell 412 expands during the positive cycle of an AC voltage, which causes top wall 414 and bottom wall 415 of the frame 413 to move inward. Conversely, the transducer cell 412 moves inward during the negative AC cycle, resulting in an outward displacement of the top 414 and bottom 415 walls of the frame 413. However, in the present embodiment, bottom wall 414 is fixedly attached to body 410 so that any movement in the cell will result in only a relative motion of top wall 415 with respect to the body 410 and bottom wall 414. Furthermore, a blade neck 417 is coupled to the top wall 415 on one end, and coupled to a blade 419 at an opposite end. A motion constraining yoke 418 attached to the walls of an opening at a distal end of body 410 serves to constrain blade neck 417 in a similar fashion as the yoke described in
Two examples of applicable APA transducers are the non-hinged type, and the grooved or hinged type. Details of the mechanics, operation and design of an example hinged or grooved APA transducer are described in U.S. Pat. No. 6,465,936 (Knowles et al.), which is hereby incorporated by reference in its entirety. An example of a non-hinged APA transducer is the Cedrat APA50XS, sold by Cedrat Technologies, and described in the Cedrat Piezo Products Catalogue “Piezo Actuators & Electronics” (Copyright ®Cedrat Technologies June 2005).
While the above described embodiments of the present invention are made with respect to a handheld surgical device having a vibrating blade and utilizing a bender-type, cymbal type, Langevin type or APA type transducer assembly for actuation, the present invention is not limited to these transducer assemblies. Generally, any type of motor comprising a transducer assembly, further comprising a mass coupled to a piezoelectric material, the transducer assembly having a geometry which upon actuation amplifies the motion in a direction beyond the maximum strain of the piezoelectric material, would also fall within the spirit and scope of the invention.
From the above description, it may be appreciated that the present invention provides significant benefits over conventional surgical tools. The configuration of the actuating means described above such as embodiments comprising a bender transducer actuator, cymbal transducer/actuator actuator, Langevin actuator 311 actuator or an APA transducer actuator accommodates the use of piezoelectric actuating members in a surgical instrument by enabling the displacement of the cutting member or blade to such velocities that cause a reduction of force needed for cutting, incising, or penetrating of tissue during surgical procedures. Electrical signal control facilitated by an electrically coupled feedback system could provide the capability of high cut rate actuation, control over cut width, and low traction force for these procedures.
Now that exemplary embodiments of the present invention have been shown and described in detail, various modifications and improvements thereon will become readily apparent to those skilled in the art. While the foregoing embodiments may have dealt with the incision of an eyeball as an exemplary biological tissue, the present invention can undoubtedly ensure similar effects with other tissues commonly incised during surgery. For example there are multiplicities of other applications like restorative or reconstructive microsurgery, cardiology or neurology, to name a few, where embodiments disclosed herein comprising sonically or ultrasonically driven cutting edges may be used to precisely pierce or incise tissues other than that forming an eyeball. Furthermore, while the previous embodiments have relied heavily on examples in which the surgical blades are vibrated sinusoidally in a direction parallel to the surface of the tissue or material being incised, cut, divided or penetrated by the blade, they are not limited to such locomotion in such a relative direction. For example, the motion of the blades of the previously described embodiments may actually be sinusoidal and in a direction that is perpendicular to the surface of the tissue or material being incised, cut, divided or penetrated by the blade. Accordingly, the spirit and scope of the present invention is to be construed broadly and limited only by the appended claims, and not by the foregoing specification.
This application claims the benefit of U.S. Provisional Application No. 60/933,528 filed on Jun. 7, 2007. The subject matter of the prior application is incorporated in its entirety herein by reference thereto.
Number | Date | Country | |
---|---|---|---|
60933528 | Jun 2007 | US |