1. Field of the Invention
The invention pertains to the field of conducting eye therapy, and more particularly, to systems and methods for stabilizing changes to corneal tissue as a part of eye therapy.
2. Description of Related Art
A variety of eye disorders, such as myopia, keratoconus, and hyperopia, involve abnormal shaping of the cornea. Laser-assisted in-situ keratomileusis (LASIK) is one of a number of corrective procedures that reshape the cornea so that light traveling through the cornea is properly focused onto the retina located in the back of the eye. During LASIK eye surgery, an instrument called a microkeratome is used to cut a thin flap in the cornea. The corneal flap is then peeled back and the underlying corneal tissue is ablated to the desired shape with an excimer laser. After the desired reshaping of the cornea is achieved, the corneal flap is put back in place and the surgery is complete.
In another corrective procedure that reshapes the cornea, thermokeratoplasty provides a noninvasive procedure that applies electrical energy in the microwave or radio frequency (RF) band to the cornea. In particular, the electrical energy raises the corneal temperature until the collagen fibers in the cornea shrink at about 60° C. The onset of shrinkage is rapid, and stresses resulting from this shrinkage reshape the corneal surface. Thus, application of energy according to particular patterns, including, but not limited to, circular or annular patterns, causes aspects of the cornea to flatten and improves vision in the eye.
The success of procedures, such as LASIK or thermokeratoplasty, in addressing eye disorders, such as myopia, keratoconus, and hyperopia, depends on whether the desired reshaping of the cornea has been sufficiently stabilized.
Embodiments according to aspects of the present invention provide systems and methods for stabilizing corneal tissue and improving its biomechanical strength. For example, the embodiments may be employed to preserve the desired reshaping of corneal tissue produced by eye therapies, such as thermokeratoplasty or LASIK surgery.
In particular, the embodiments apply a cross-linking agent to a region of corneal tissue. The cross-linking agent improves the ability of the corneal tissue to resist undesired structural changes. For example, the cross-linking agent may be Riboflavin or Rose Bengal, and the initiating element may be photoactivating light, such as ultraviolet (UV) light. In these embodiments, the photoactivating light initiates cross-linking activity by irradiating the applied cross-linking agent to release reactive oxygen radicals in the corneal tissue. The cross-linking agent, e.g. Riboflavin or Rose Bengal, acts as a sensitizer to convert O2 into singlet oxygen which causes cross-linking within the corneal tissue.
The rate of cross-linking in the cornea is related to the concentration of O2 present when the cross-linking agent is irradiated with photoactivating light. Accordingly, aspects of the present invention control the concentration of O2 during irradiation to increase or decrease the rate of cross-linking and achieve a desired amount of cross-linking.
To increase the presence of O2 during irradiation, the cross-linking agent in some embodiments may be saturated or supersaturated with O2 before application to the cornea.
In other embodiments, a steady state of O2 may be maintained above the eye to expose the cornea to higher concentrations of O2 during irradiation.
In further embodiments, a gel, such as a methylcellulose gel, may be saturated or supersaturated with O2. The gel acts as a carrier for O2. The gel may then be applied to the cornea after the cross-linking agent has been applied to the cornea. Alternatively, the gel may be mixed with the cross-linking agent before the cross-linking agent is applied to the cornea.
In some embodiments, the rate of cross-linking may be monitored in real time and the concentration of O2 may be dynamically increased or decreased to achieve a desired amount of cross-linking. Thus, embodiments include a system that provides a first amount of O2 above the eye to introduce O2 to the corneal tissue and expose the cornea to a first concentration of O2 during irradiation. Based on the feedback from the real time monitoring, the system can then provide a second amount of O2 above the eye to introduce another amount of O2 to the corneal tissue and expose the cornea to a second concentration of O2 during irradiation. The first amount of O2 may be greater than the second amount of O2, or vice versa. Changing the cornea's exposure from the first concentration to the second concentration changes the rate of cross-linking in the corneal tissue. Further changes to the concentration of O2 during irradiation may be effected to control the rate of cross-linking. When necessary, the amount of O2 above the eye may be substantially reduced to zero to prevent further introduction of O2 to the corneal tissue during irradiation.
Other aspects, features, and advantages of the present invention are readily apparent from the following detailed description, by illustrating a number of exemplary embodiments and implementations, including the best mode contemplated for carrying out the present invention. The present invention is also capable of other and different embodiments, and its several details can be modified in various respects, all without departing from the spirit and scope of the present invention. Accordingly, the drawings and descriptions are to be regarded as illustrative in nature, and not as restrictive. The invention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the invention.
Embodiments according to aspects of the present invention provide systems and methods for stabilizing corneal tissue and improving its biomechanical strength. For example, the embodiments may be employed to preserve the desired reshaping of corneal tissue produced by eye therapies, such as thermokeratoplasty or LASIK surgery.
As further illustrated in
Although treatments, such thermokeratoplasty, may initially achieve desired reshaping of the cornea, the desired effects of reshaping the cornea may be mitigated or reversed at least partially if the collagen fibrils continue to change after the desired reshaping has been achieved. Therefore, aspects of the present invention provide approaches for preserving the desired corneal structure and shape that result from an eye therapy, such as thermokeratoplasty. In general, embodiments provide approaches for initiating molecular cross-linking of the corneal collagen to stabilize the corneal tissue and improve its biomechanical strength.
Referring to
As described previously with reference to
As
In human tissue, O2 content is very low compared to the atmosphere. The rate of cross-linking in the cornea, however, is related to the concentration of O2 when it is irradiated with photoactivating light. Therefore, it may be advantageous to increase or decrease the concentration of O2 actively during irradiation to control the rate of cross-linking until a desired amount of cross-linking is achieved.
An approach according to aspects of the present invention involves supersaturating the Riboflavin with O2. Thus, when the Riboflavin is applied to the eye, a higher concentration of O2 is delivered directly into the cornea with the Riboflavin and affects the conversion of O2 into singlet oxygen when the Riboflavin is exposed to the photoactivating light. As illustrated in
According to other aspects of the present invention, rather than supersaturating the Riboflavin 222′ with O2, another substance, such as a gel (e.g., a methylcellulose gel), may be saturated or supersaturated with O2. As illustrated in
Referring to
According to additional aspects of the present invention, a steady state of O2 may be maintained at the surface of the cornea to expose the cornea to a selected amount of O2 and cause O2 to enter the cornea. The photoactivating light can then be applied to a cornea with the desired O2 content.
As shown in
As
Accordingly, referring to
Referring to
In step 240, the amount of cross-linking resulting from the activation of the Riboflavin 222′ is monitored. One technique for monitoring the cross-linking employs polarimetry to measure corneal birefringence and to determine the structure of the corneal tissue. In particular, the technique measures the effects of cross-linking on corneal structure by applying polarized light to the corneal tissue. Birefringence is the decomposition of a light beam into two beams when it passes through materials that have anisotropic (directionally dependent) structure. The corneal stroma is anisotropic and its index of refractions depends on direction. The cornea behaves like a curved biaxial crystal with the fast axis orthogonal to the corneal surface and the slow axis (or corneal polarization axis) tangential to the corneal surface. Accordingly, a light beam emerging from the living eye after a double pass through the ocular optics contains information on the polarization properties of the ocular structures (except optically inactive humours).
The technique of using birefringence to monitor the structural changes resulting from cross-linking is described further in U.S. Provisional Patent Application No. 61/388,963, filed Oct. 1, 2010, the contents of which are entirely incorporated herein by reference. A controller, employing conventional computer hardware or similar processing hardware, can be used to monitor the amount of cross-linking. Such hardware may operate by reading and executing programmed instructions that are stored or fixed on computer-readable media, such as conventional computer disk. In addition to being coupled to monitoring hardware, the controller may be coupled to, and automatically control, the device(s) that provide the O2 above the corneal surface.
Based on the information from the real time monitoring in step 240, step 250 provides a second amount of O2 above the eye to introduce another amount of O2 to the corneal tissue and expose the cornea to a second concentration of O2 during irradiation with UV light 232′ in step 260. Steps 240, 250, and 260 may be repeated any number of times to change the concentration of O2 during irradiation to control the rate of cross-linking dynamically.
The first amount of O2 in step 228 may be greater than the second amount of O2 in step 250, or vice versa. Changing the cornea's exposure from the first concentration to the second concentration changes the rate of cross-linking in the corneal tissue as desired. If the information from step 240 indicates that the first amount of O2 is too low, step 250 provides a second amount of O2 that is greater than the first amount of O2. On the other hand, if the information from step 240 indicates that the first amount of O2 is too high, step 250 provides a second amount of O2 that is greater than the first amount of O2. It may be necessary to remove the first amount of O2, e.g., from the enclosure 510, before providing the second amount of O2 in step 250.
In some cases, it may be desired to provide substantially zero O2 in step 250 to minimize or reduce the amount of O2 in the corneal tissue during irradiation in step 260. Accordingly, step 250 may introduce a non-O2 element or substance above the corneal surface. For example, nitrogen gas (N2) may replace the O2 supplied by the devices 500 and 510 shown in
Although the embodiments described above may employ Riboflavin as a cross-linking agent, it is understood that other substances may be employed as a cross-linking agent. Thus, an embodiment may employ Rose Bengal (4,5,6,7-tetrachloro-2′,4′,5′,7′-tetraiodofluorescein) as a cross-linking agent (similar to the embodiment of
Thus, with Rose Bengal, the rate of cross-linking in the cornea is related to the concentration of O2 when it is irradiated with photoactivating light. Therefore, it may be advantageous to increase or decrease the concentration of O2 during irradiation to control the rate of cross-linking and achieve the desired cross-linking. The concentration of O2 may be increased or decreased according to the techniques described previously. For example, the Rose Bengal may be saturated or supersaturated with O2 before application to the cornea. Additionally or alternatively, a steady state of O2 may be maintained above the eye to expose the cornea to higher concentrations of O2 and cause O2 to enter the cornea. In general, the O2 content in the cornea may be controlled for more effective cross-linking for any agent that operates to produce a reactive oxygen species for cross-linking.
Although aspects of the present invention have been described in connection with thermokeratoplasty or LASIK surgery, it is understood that the systems and methods described may be applied in other contexts. In other words, it may be advantageous to stabilize corneal structure with a cross-linking agent as described above as a part of any treatment.
While the invention is susceptible to various modifications and alternative forms, specific embodiments and methods thereof have been shown by way of example in the drawings and are described in detail herein. It should be understood, however, that it is not intended to limit the invention to the particular forms or methods disclosed, but, to the contrary, the intention is to cover all modifications, equivalents and alternatives falling within the spirit and scope of the invention.
This application is a continuation of U.S. patent application Ser. No. 12/909,228, filed Oct. 21, 2010, now allowed, which claims priority to U.S. Provisional Application No. 61/253,736, filed Oct. 21, 2009, the contents of these applications being incorporated entirely herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
4034750 | Seiderman | Jul 1977 | A |
4161013 | Grodzinsky et al. | Jul 1979 | A |
4326529 | Doss et al. | Apr 1982 | A |
4381007 | Doss | Apr 1983 | A |
4712543 | Baron | Dec 1987 | A |
4764007 | Task | Aug 1988 | A |
4805616 | Pao | Feb 1989 | A |
4881543 | Trembly et al. | Nov 1989 | A |
4891043 | Zeimer et al. | Jan 1990 | A |
4994058 | Raven et al. | Feb 1991 | A |
5016615 | Driller et al. | May 1991 | A |
5019074 | Muller | May 1991 | A |
5103005 | Gyure et al. | Apr 1992 | A |
5171254 | Sher | Dec 1992 | A |
5281211 | Parel et al. | Jan 1994 | A |
5332802 | Kelman et al. | Jul 1994 | A |
5461212 | Seiler et al. | Oct 1995 | A |
5490849 | Smith | Feb 1996 | A |
5512966 | Snook | Apr 1996 | A |
5618284 | Sand | Apr 1997 | A |
5624437 | Freeman et al. | Apr 1997 | A |
5634921 | Hood et al. | Jun 1997 | A |
5766171 | Silvestrini | Jun 1998 | A |
5779696 | Berry et al. | Jul 1998 | A |
5814040 | Nelson et al. | Sep 1998 | A |
5885275 | Muller | Mar 1999 | A |
5891131 | Rajan et al. | Apr 1999 | A |
5910110 | Bastable | Jun 1999 | A |
6033396 | Huang et al. | Mar 2000 | A |
6099521 | Shadduck | Aug 2000 | A |
6101411 | Newsome | Aug 2000 | A |
6104959 | Spertell | Aug 2000 | A |
6139876 | Kolta | Oct 2000 | A |
6161544 | DeVore et al. | Dec 2000 | A |
6162210 | Shadduck | Dec 2000 | A |
6218360 | Cintron et al. | Apr 2001 | B1 |
6223075 | Beck et al. | Apr 2001 | B1 |
6280436 | Freeman et al. | Aug 2001 | B1 |
6293938 | Muller et al. | Sep 2001 | B1 |
6319273 | Chen et al. | Nov 2001 | B1 |
6325792 | Swinger et al. | Dec 2001 | B1 |
6334074 | Spertell | Dec 2001 | B1 |
6342053 | Berry | Jan 2002 | B1 |
6394999 | Williams et al. | May 2002 | B1 |
6402739 | Neev | Jun 2002 | B1 |
6413255 | Stern | Jul 2002 | B1 |
6478792 | Hansel | Nov 2002 | B1 |
6520956 | Huang | Feb 2003 | B1 |
6520958 | Shimmick et al. | Feb 2003 | B1 |
6537545 | Karageozian et al. | Mar 2003 | B1 |
6572849 | Shahinian, Jr. | Jun 2003 | B2 |
6617963 | Watters et al. | Sep 2003 | B1 |
6918904 | Peyman | Jul 2005 | B1 |
6946440 | DeWoolfson et al. | Sep 2005 | B1 |
7044945 | Sand | May 2006 | B2 |
7073510 | Redmond et al. | Jul 2006 | B2 |
7130835 | Cox et al. | Oct 2006 | B2 |
7141049 | Stern et al. | Nov 2006 | B2 |
7192429 | Trembly | Mar 2007 | B2 |
7270658 | Woloszko et al. | Sep 2007 | B2 |
7331350 | Kochevar et al. | Feb 2008 | B2 |
7402562 | DeWoolfson et al. | Jul 2008 | B2 |
7753943 | Strong | Jul 2010 | B2 |
8115919 | Yun et al. | Feb 2012 | B2 |
8366689 | Marshall et al. | Feb 2013 | B2 |
8414911 | Mattson et al. | Apr 2013 | B2 |
20010041856 | McDaniel | Nov 2001 | A1 |
20020002369 | Hood | Jan 2002 | A1 |
20020013577 | Frey et al. | Jan 2002 | A1 |
20020049437 | Silvestrini | Apr 2002 | A1 |
20020099363 | Woodward et al. | Jul 2002 | A1 |
20020164379 | Nishihara et al. | Nov 2002 | A1 |
20030018255 | Martin et al. | Jan 2003 | A1 |
20030175259 | Karageozian et al. | Sep 2003 | A1 |
20030216728 | Stern et al. | Nov 2003 | A1 |
20040001821 | Silver et al. | Jan 2004 | A1 |
20040002694 | Pawlowski et al. | Jan 2004 | A1 |
20040071778 | Bellmann et al. | Apr 2004 | A1 |
20040093046 | Sand | May 2004 | A1 |
20040111086 | Trembly et al. | Jun 2004 | A1 |
20040143250 | Trembly | Jul 2004 | A1 |
20040199079 | Chuck et al. | Oct 2004 | A1 |
20040199158 | Hood et al. | Oct 2004 | A1 |
20040204707 | Hood et al. | Oct 2004 | A1 |
20040243160 | Shiuey et al. | Dec 2004 | A1 |
20050038471 | Chan et al. | Feb 2005 | A1 |
20050149006 | Peyman | Jul 2005 | A1 |
20050271590 | Schwartz et al. | Dec 2005 | A1 |
20060135957 | Panescu | Jun 2006 | A1 |
20060149343 | Altshuler et al. | Jul 2006 | A1 |
20060177430 | Bhushan et al. | Aug 2006 | A1 |
20060189964 | Anderson et al. | Aug 2006 | A1 |
20060276777 | Coroneo | Dec 2006 | A1 |
20060287662 | Berry et al. | Dec 2006 | A1 |
20070048340 | Ferren et al. | Mar 2007 | A1 |
20070055227 | Khalaj et al. | Mar 2007 | A1 |
20070074722 | Giroux et al. | Apr 2007 | A1 |
20070099966 | Fabricant | May 2007 | A1 |
20070123845 | Lubatschowski | May 2007 | A1 |
20070135805 | Peyman | Jun 2007 | A1 |
20070142828 | Peyman | Jun 2007 | A1 |
20070161976 | Trembly | Jul 2007 | A1 |
20070203547 | Costello et al. | Aug 2007 | A1 |
20070244470 | Barker et al. | Oct 2007 | A1 |
20070244496 | Hellenkamp | Oct 2007 | A1 |
20070265603 | Pinelli | Nov 2007 | A1 |
20080009901 | Redmond et al. | Jan 2008 | A1 |
20080015660 | Herekar | Jan 2008 | A1 |
20080027328 | Klopotek et al. | Jan 2008 | A1 |
20080063627 | Stucke et al. | Mar 2008 | A1 |
20080114283 | Mattson et al. | May 2008 | A1 |
20080139671 | Herekar | Jun 2008 | A1 |
20080208177 | Mrochen et al. | Aug 2008 | A1 |
20090024117 | Muller | Jan 2009 | A1 |
20090054879 | Berry | Feb 2009 | A1 |
20090069798 | Muller et al. | Mar 2009 | A1 |
20090130176 | Bossy-Nobs et al. | May 2009 | A1 |
20090149842 | Muller et al. | Jun 2009 | A1 |
20090149923 | Herekar | Jun 2009 | A1 |
20090171305 | El Hage | Jul 2009 | A1 |
20090192437 | Soltz et al. | Jul 2009 | A1 |
20090209954 | Muller et al. | Aug 2009 | A1 |
20090234335 | Yee | Sep 2009 | A1 |
20090275929 | Zickler | Nov 2009 | A1 |
20090276042 | Hughes et al. | Nov 2009 | A1 |
20100028407 | Del Priore et al. | Feb 2010 | A1 |
20100036488 | De Juan, Jr. et al. | Feb 2010 | A1 |
20100057060 | Herekar | Mar 2010 | A1 |
20100069894 | Mrochen et al. | Mar 2010 | A1 |
20100082018 | Panthakey et al. | Apr 2010 | A1 |
20100094197 | Marshall et al. | Apr 2010 | A1 |
20100114109 | Peyman | May 2010 | A1 |
20100149842 | Muller et al. | Jun 2010 | A1 |
20100173019 | Paik et al. | Jul 2010 | A1 |
20100189817 | Krueger et al. | Jul 2010 | A1 |
20100204584 | Ornberg et al. | Aug 2010 | A1 |
20100210996 | Peyman | Aug 2010 | A1 |
20100286156 | Pinelli | Nov 2010 | A1 |
20100318017 | Lewis et al. | Dec 2010 | A1 |
20110077624 | Brady et al. | Mar 2011 | A1 |
20110098790 | Daxer | Apr 2011 | A1 |
20110118654 | Muller et al. | May 2011 | A1 |
20110152219 | Stagni et al. | Jun 2011 | A1 |
20110190742 | Anisimov | Aug 2011 | A1 |
20110208300 | de Juan, Jr. et al. | Aug 2011 | A1 |
20110237999 | Muller et al. | Sep 2011 | A1 |
20110264082 | Mrochen et al. | Oct 2011 | A1 |
20110288466 | Muller et al. | Nov 2011 | A1 |
20110301524 | Bueler et al. | Dec 2011 | A1 |
20120083772 | Rubinfield et al. | Apr 2012 | A1 |
20120215155 | Muller et al. | Aug 2012 | A1 |
20120283621 | Muller et al. | Nov 2012 | A1 |
20120289886 | Muller et al. | Nov 2012 | A1 |
20120303008 | Muller et al. | Nov 2012 | A1 |
20120310083 | Friedman et al. | Dec 2012 | A1 |
20130060187 | Friedman et al. | Mar 2013 | A1 |
20130085370 | Friedman et al. | Apr 2013 | A1 |
Number | Date | Country |
---|---|---|
10 2008 046834 | Mar 2010 | DE |
1 561 440 | Aug 2005 | EP |
1 790 383 | May 2007 | EP |
2 253 321 | Nov 2010 | EP |
MI2010A001236 | May 2010 | IT |
2086215 | Aug 1997 | RU |
2098057 | Dec 1997 | RU |
2121825 | Nov 1998 | RU |
2127099 | Mar 1999 | RU |
2127100 | Mar 1999 | RU |
2309713 | Nov 2007 | RU |
2359716 | Jun 2009 | RU |
2420330 | Jun 2011 | RU |
2428152 | Sep 2011 | RU |
2456971 | Jul 2012 | RU |
WO 0074648 | Dec 2000 | WO |
WO 2004052223 | Jun 2004 | WO |
WO 2005110397 | Nov 2005 | WO |
WO 2006012947 | Feb 2006 | WO |
WO 2006128038 | Nov 2006 | WO |
WO 2007001926 | Jan 2007 | WO |
WO 2007120457 | Oct 2007 | WO |
WO 2007143111 | Dec 2007 | WO |
WO 2008000478 | Jan 2008 | WO |
WO 2009073213 | Jun 2009 | WO |
WO 2009146151 | Dec 2009 | WO |
WO 2010011119 | Jan 2010 | WO |
WO 2010023705 | Mar 2010 | WO |
WO 2010093908 | Aug 2010 | WO |
WO 2011019940 | Feb 2011 | WO |
WO 2011116306 | Sep 2011 | WO |
WO 2012004726 | Jan 2012 | WO |
WO 2012047307 | Apr 2013 | WO |
Entry |
---|
Marzouky, et. al., Tensioactive-mediated Transepithelial Corneal Cross-linking—First Laboratory Report, European Ophthalmic Review, 2009, 3(2), pp. 67-70. |
Thorton, I. et. al., “Biomechancial Effects of Intraocular Pressure Elevation on Optic Berve/Lamina Cribrosa before and after Peripapillary Scleral Collagen Cross-Linking.” Invest. Ophthalm,ol. Vis. Sci., Mar. 2009, 50(3): pp. 1227-1233. |
Zhang, Y. et al., “Effect of the Synthetic NC-1059 Peptide on Diffusion of Riboflavin Across an Intact Corneal Epithelium”, May 6, 2012, ARBO 2012 Annual Meeting Abstract, 140 Stroma and Keratocytes, program number: 1073, poster board No. A109 (1 page). |
International Search Report and Written Opinion mailed Feb. 6, 2014 which issued in International Patent Application No. PCT/US2013/068588 (6 pages). |
Koller, T. et. Al., “Complication and failure rates after corneal crosslinking,”Journal Cataract and refractive surgery, vol. 35, No. 8, Aug. 2009, pp. 1358-1362. |
Acosta a. et al., “Corneal Stroma Regeneration in Felines After Supradescemetic Keratoprothesis Implantation,” Cornea, vol. 25, No. 7, pp. 830-838; Aug. 2006 (9 pages). |
Baier J. et al., “Singlet Oxygen Generation by UVA Light Exposure of Endogenous Photosensitizers,” Biophysical Journal, vol. 91(4), pp. 1452-1459; Aug. 15, 2006 (8 pages). |
Ballou, D. et al., “Direct Demonstration Of Superoxide Anion Production During The Oxidation Of Reduced Flavin And Of Its Catalytic Decomposition By Erythrocuprein,” Biochemical and Biophysical Research Communications vol. 36, No. 6, pp. 898-904, Jul. 11, 1969 (7 pages). |
Berjano E., et al., “Radio-Frequency Heating of the Cornea: Theoretical Model and In Vitro Experiments,” IEEE Transactions on Biomedical Engineering, vol. 49, No. 3, pp. 196-205; Mar. 2002 (10 pages). |
Berjano E., et al., “Ring Electrode for Radio-frequency Heating of the Cornea: Modelling and in vitro Experiments,” Medical & Biological Engineering & Computing, vol. 41, pp. 630-639; Jun. 2003 (10 pages). |
Brüel, A., “Changes In Biomechanical Properties, Composition Of Collagen And Elastin, And Advanced Glycation Endproducts Of The Rat Aorta In Relation To Age,” Atherosclerosis 127, Mar. 14, 1996 (11 pages). |
Chai, D. et al., “Quantitative Assessment of UVA—Riboflavin Corneal Cross-Linking Using Nonlinear Optical Microscopy,” Investigative Ophthalmology & Visual Science, Jun. 2011, vol. 52, No. 7, 4231-4238 (8 pages). |
Chan B.P., et al., “Effects of photochemical crosslinking on the microstructure of collagen and a feasibility study on controlled protein release;” Acta Biomaterialia, vol. 4, Issue 6, pp. 1627-1636; Jul. 1, 2008 (10 pages). |
Chandonnet, “CO2 Laser Annular Thermokeratoplasty: A Preliminary Study,” Lasers in Surgery and Medicine, vol. 12, pp. 264-273; 1992 (10 pages). |
Clinical Trials.gov, “Riboflavin Mediated Corneal Crosslinking for Stabilizing Progression of Keratoconus (CCL),” University Hospital Freiburg, Feb. 20, 2008; retrieved from http://www.clinicaltrials.gov/ct2/show/NCT00626717, on Apr. 26, 2011 (3 pages). |
Corbett M., et al., “Effect of Collagenase Inhibitors on Corneal Haze after PRK,” Exp. Eye Res., vol. 72, Issue 3, pp. 253-259; Jan. 2001 (7 pages). |
Coskenseven E. et al., “Comparative Study of Corneal Collagen Cross-linking With Riboflaving and UVA Irradiation in Patients With Keratoconus,” Journal of Refractive Surgery, vol. 25, issue 4, pp. 371-376; Apr. 2009 (6 pages). |
“Definity (perflutren) injection, suspension [Bristol-Myers Squibb Medical Imaging],” http://dailymed.nlm.nih.gov/dailymed/drugInfo.cfm?id=8338, revised Sep. 2008, retrieved via the internet archive from http://web.archive.org/web/20100321105500/http://dailymed.nlm.nih.gov/dailymed/drugInfo.cfm?id=8338, on Dec. 14, 2011 (15 pages). |
Ehlers W., et al., “Factors Affecting Therapeutic Concentration of Topical Aminocaproic Acid in Traumatic Hyphema,” Investigative Ophthalmology & Visual Science, vol. 31, No. 11, pp. 2389-2394; Nov. 1990 (6 pp.). |
Erskine H., “Avedro Becomes Sponsor of US FDA Clinical Trials of Corneal Collagen Crosslinking,” Press Release, Mar. 16, 2010 (1 page). |
Fite et al. Noninvasive Multimodal Evaluation of Bioengineered Cartilage Constructs Combining Time-Resolved Fluorescence and Ultrasound Imaging. Tissue Eng: Part C vol. 17, No. 4, 2011 (10 pages). |
Frucht-Pery, et al. “Iontophoresis—gentamicin delivery into the rabbit cornea, using a hydrogel delivery probe, ” Jun. 20, 2003 (5 pages). |
Gibson, Q. et al., “The Oxidation Of Reduced Flavin Mononucleotide By Molecular Oxygen,” Biochem. J. (1962) 83, 368-377 (10 pages). |
Givens et al. “A Photoactivated Diazpryruvoyl Cross-Linking Agent for Bonding Tissue Containing Type-I Collagen.” Photochemistry and Photobiology. vol. 78, No. 1, 2003 (pp. 23-29). |
Glenn J.V., et al., “Advanced Glycation End Product (AGE) Accumulation on Bruch's Membrane: Links to Age-Related RPE Dysfunction;” Investigative Ophthalmology & Visual Science, vol. 50, No. 1, pp. 441-451; Jan. 2009 (11 pages). |
Gravitz L., “Laser Show in the Surgical Suite: Lasers and a century-old dye could supplant needles and thread;” technology review, MIT, Mar./Apr. 2009; retrieved from http://www.technologyreview.com/biomedicine/22088/?nlid=1767, on Sep. 26, 2011 (2 pages). |
Hafezi F., et al., “Collagen Crosslinking with Ultraviolet-A and Hypoosmolar Riboflavin Solution in Thin Corneas,” J. Catract Refract. Surg., vol. 35, No. 1, pp. 621-624; Apr. 2009 (4 pages). |
Hitzenberger et al., “Birefringence Properties Of The Human Cornea Measured With Polarization Sensitive Optical Coherence Tomography,” Bull. Soc. Beige Ophtalmol., 302, 153-168, 2006 (16 pages). |
Holmström, B. et al., “Riboflavin As An Electron Donor In Photochemical Reactions,” 1867-1871, Nov. 29, 1960 (5 pages). |
How to Use DEFINITY: “Frequently Asked Questions;” retrieved from http://www.definityimaging.com/how-faq.html, on Sep. 26, 2011 (3 pages) (date unknown, prior to Apr. 26, 2010). |
IMEX, “KXL System: Crosslinking Para Cirugia Corneal Bibliografia Cientifica,” Product Literature, Nov. 23, 2010 (24 pages). |
Kamaev et al., “Photochemical Kinetics Of Corneal Cross-Linking With Riboflavin,” Investigative Ophthalmology & Visual Science, Apr. 2012, vol. 53, No. 4, pp. 2360-2367 (8 pages). |
Kampik D. et al., “Influence of Corneal Collagen Crosslinking With Riboflavin and Ultraviolet-A Irradiation on Excimer Laser Surgery,” Investigative Opthalmology & Visual Science, vol. 51, No. 8, pp. 3929-3934; Aug. 2010 (6 pages). |
Kissner Anja, et al., “Pharmacological Modification of the Epithelial Permeability by Benzalkonium Chloride in UVA/Riboflavin Corneal Collagen Cross-Linking,” Current Eye Research 35(8), pp. 715-721; Mar. 2010 (7 pages). |
Koller T., et al., “Therapeutische Quervernetzung der Hornhaut mittels UVA and Riboflavin: Therapeutic Cross-Linking of the Cornea Using Riboflavin/UVA,” Klinische Monatsblätter für Augenheilkunde, vol. 224, No. 9, pp. 700-706; Sep. 2007 (7 pages). |
Kornilovsky, I. M. “Novye neinvazivnye tekhnologii lazernoy modifikatsii optiko-refraksionnykk struktur glaza. Refraktsionnaya khirurgiya I oftalmologiya.” vol. 9, No. 3, 2006 (pp. 17-26). |
Krueger, Ronald R., “Rapid Vs Standard Collagen Cxl with Equivalent Energy Dosing,” presentation slides; available at http://www.slideshare.net/logen/krueger-herekar-rapid-crosslinking (date unknown, prior to Nov. 9, 2009) (26 pages). |
Massey, V., “Activation of Molecular Oxygen by Flavins and Flavoproteins,” The Journal of Biological Chemistry vol. 269, No. 36, Issue of Sep. 9, pp. 22459-22462, 1994 (4 pages). |
Li, C. et al. “Elastic Properties of Soft Tissue-Mimicking Phantoms Assessed by Combined Use of Laser Ultrasonics and Low Coherence Interferometry.” Optics Express. vol. 19, No. 11, May 9, 2011 (pp. 10153-10163). |
Li, C. et al. “Noncontact All-Optical Measurement of Corneal Elasticity.” Optics Letters. vol. 37, No. 10, May 15, 2012 (pp. 1625-1627). |
Li, P. et al. “In Vivo Microstructural and Microvascular Imaging of the Human Corneo-Scleral Limbus Using Optical Coherence Tomography.” Biomedical Optics Express. vol. 2, No. 11, Oct. 18, 2011 (pp. 3109-3118). |
Mi S., et al., “The adhesion of LASIK-like flaps in the cornea: effects of cross-linking, stromal fibroblasts and cytokine treatment,” presented at British Society for Matrix Biology annual Meeting, Cardiff, UK, Sep. 8-9, 2008 (17 pages). |
Muller L., et al., “The Specific Architecture of the Anterior Stroma Accounts for Maintenance of Corneal Curvature,” Br. J. Opthalmol., vol. 85, pp. 437-443; Apr. 2001 (8 pages). |
Mulroy L., et al., “Photochemical Keratodesmos for repair of Lamellar corneal Incisions;” Investigative Ophthalmology & Visual Science, vol. 41, No. 11, pp. 3335-3340; Oct. 2000 (6 pages). |
Naoumidi T., et al., “Two-Year Follow-up of Conductive Keratoplasty for the Treatment of Hyperopic Astigmatism,” J. Cataract Refract. Surg., vol. 32(5), pp. 732-741; May 2006 (10 pages). |
O'Neil A.C., et al., “Microvascular Anastomosis Using a Photochemical Tissue Bonding Technique;” Lasers in Surgery and Medicine, vol. 39, Issue 9, pp. 716-722; Oct. 2007 (7 pages). |
Paddock C., Medical News Today: “Metastatic Melanoma PV-10 Trial Results Encouraging Says Drug Company;” Jun. 9, 2009; retrieved from http://www.medicalnewstoday.com/articles/153024.php, on Sep. 26, 2011 (2 pages). |
Pallikaris I., et al., “Long-term Results of Conductive Keratoplasty for low to Moderate Hyperopia,” J. Cataract Refract. Surg., vol. 31(8), pp. 1520-1529; Aug. 2005 (10 pages). |
Pinelli, R. “Corneal Cross-Linking with Riboflavin: Entering a New Era in Ophthalmology.” Ophthalmology Times Europe. vol. 2, No. 7, Sep. 1, 2006, [online], [retrieved on May 20, 2013]. Retrieved from the Internet: <URL:http://www.oteurope.com/ophthalmologytimeseurope/Cornea/Corneal-cross-linking-with-riboflavin-entering-a-n/ArticleStandard/Article/detail/368411> (3 pages). |
Pinelli R., et al., “C3-Riboflaving Treatments: Where Did We Come From? Where Are We Now?” Cataract & Refractive Surgery Today Europe, Summer 2007, pp. 36-46; Jun. 2007 (10 pages). |
Ponce C., et al., “Central and Peripheral Corneal Thickness Measured with Optical Coherence Tomography, Scheimpflug Imaging, and Ultrasound Pachymetry in Normal, Keratoconus-suspect and Post-laser in situ Keratomileusis Eyes,” J. Cataract Refract. Surgery, vol. 35, No. 6, pp. 1055-1062; Jun. 2009 (8 pages). |
Proano C.E., et al., “Photochemical Keratodesmos for Bonding Corneal Incisions;” Investigative Ophthalmology & Visual Science, vol. 45, No. 7, pp. 2177-2181; Jul. 2004 (5 pages). |
Reinstein, D. Z. et al. “Epithelial Thickness Profile as a Method to Evaluate the Effectiveness of Collagen Cross-Linking Treatment After Corneal Ectasis.” Journal of Refractive Surgery. vol. 27, No. 5, May 2011 (pp. 356-363). [Abstract only]. |
Rocha K., et al., “Comparative Study of Riboflavin-Uva Cross-linking and “Flash-linking” Using Surface Wave Elastometry,” Journal of Refractive Surgery, vol. 24 Issue 7, pp. S748-S751; Sep. 2008 (4 pages). |
Rolandi et al. Correlation of Collagen-Linked Fluorescence and Tendon Fiber Breaking Time. Gerontology 1991;27:240-243 (4 pages). |
RxList: “Definity Drug Description;” The Internet Drug Index, revised Jun. 16, 2008, retrieved from http://www.rxlist.com/definity-drug.htm, on Sep. 26, 2011 (4 pages). |
Sheehan M., et al., “Illumination System for Corneal Collagen Crosslinking,” Optometry and Vision Science, vol. 88, No. 4, pp. 512-524; Apr. 2011 (13 pages). |
Shell, J., “Pharmacokinetics of Topically Applied Ophthalmic Drugs,” Survey of Ophthalmology, vol. 26, No. 4, pp. 207-218; Jan.-Feb. 1982 (12 pages). |
Song P., Metzler D. Photochemical Degradation of Flavins—IV. Studies of the Anaerobic Photolysis of Riboflavin. Photochemistry and Photobiology, vol. 6, pp. 691-709, 1967 (21 pages). |
Sonoda S., “Gene Transfer to Corneal Epithelium and Keratocytes Mediated by Ultrasound with Microbubbles,” Investigative Ophthalmology & Visual Science, vol. 47, No. 2, pp. 558-564; Feb. 2006 (7 pages). |
Spoerl E., et al., “Artificial Stiffening of the Cornea by Induction of Intrastromal Cross-links,” Der Ophthalmologe, vol. 94, No. 12, pp. 902-906; Dec. 1997 (5 pages). |
Spoerl E., et al., “Induction of Cross-links in Corneal Tissue,” Experimental Eye Research, vol. 66, Issue 1, pp. 97-103; Jan. 1998 (7 pages). |
Spoerl E. et al., “Safety of UVA-Riboflavin Cross-Linking of the Cornea,” Cornea, vol. 26, No. 4, pp. 385-389; May 2007 (5 pages). |
Spoerl E., et al., “Techniques for Stiffening the Cornea,” Journal of Refractive Surgery, vol. 15, Issue 6, pp. 711-713; Nov.-Dec. 1999 (4 pages). |
Tessier Fj, et al., “Rigidification of Corneas Treated in vitro with Glyceraldehyde: Characterization of Two Novel Crosslinks and Two Chromophores,” Investigative Opthalmology & Visual Science, vol. 43, E-Abstract; 2002 (2 pages). |
Trembly et al., “Microwave Thermal Keratoplasty for Myopia: Keratoscopic Evaluation in Porcine Eyes,” Journal of Refractive Surgery, vol. 17, No. 6, pp. 682-688; Nov./Dec. 2001 (8 pages). |
“Uv-X: Radiation System for Treatment of Keratokonus,” PESCHKE Meditrade GmbH; retrieved from http://www.peschkemed.ch/ on Sep. 27, 2011 (date unknown, prior to Sep. 16, 2008) (1 page). |
Vasan S., et al., “An agent cleaving glucose-derived protein crosslinks in vitro and in vivo;” Letters to Nature, vol. 382, pp. 275-278; Jul. 18, 1996 (4 pages). |
Verzijl et al. Crosslinking by Advanced Glycation End Products Increases the Stiffness of the Collagen Network in Human Articular Cartilage. Arthritis & Rheumatism vol. 46, No. 1, Jan. 2002, pp. 114-123 (10 pages). |
Wollensak G., et al., “Biomechanical and Histological Changes After Corneal Crosslinking With and Without Epithelial Debridement,” J. Cataract Refract. Surg., vol. 35, Issue 3, pp. 540-546; Mar. 2009 (7 pages). |
Wollensak G., et al., “Collagen Crosslinking of Human and Porcine Sclera,” J. Cataract Refract. Surg., vol. 30, Issue 3, pp. 689-695; Mar. 2004 (7 pages). |
Wollensak G., et al., “Cross-linking of Scleral Collagen in the Rabbit Using Riboflavin and UVA,” Acta Ophtalmologica Scandinavica, vol. 83(4), pp. 477-482; Aug. 2005 (6 pages). |
Wollensak G., “Crosslinking Treatment of Progressive Keratoconus: New Hope,” Current Opinion in Ophthalmology, vol. 17(4), pp. 356-360; Aug. 2006 (5 pages). |
Wollensak G., et al., “Hydration Behavior of Porcine Cornea Crosslinked with Riboflavin and Ultraviolet,” A.J. Cataract Refract. Surg., vol. 33, Issue 3, pp. 516-521; Mar. 2007 (6 pages). |
Wollensak G., et al., “Riboflavin/Ultraviolet-A-induced Collagen Crosslinking for the Treatment of Keratoconus,” American Journal of Ophthalmology, vol. 135, No. 5, pp. 620-627; May 2003 (8 pages). |
Wollensak, G. et al. “Laboratory Science: Stress-Strain Measurements of Human and Porcine Corneas after Riboflavin-Ultraviolet-A-Induced Cross-Linking.” Journal of Cataract and Refractive Surgery. vol. 29, No. 9, Sep. 2003 (pp. 1780-1785). |
Yang H., et al., “3-D Histomorphometry of the Normal and Early Glaucomatous Monkey Optic Nerve Head: Lamina Cribrosa and Peripapillary Scleral Position and Thickness,” Investigative Ophthalmology & Visual Science, vol. 48, No. 10, pp. 4597-4607; Oct. 2007 (11 pages). |
Yang N., Oster G. Dye-sensitized photopolymerization in the presence of reversible oxygen carriers. J. Phys. Chem. 74, 856-860 (1970) (5 pages). |
Zang, Y. et al., “Effects of Ultraviolet-A and Riboflavin on the Interaction of Collagen and Proteoglycans during Corneal Cross-linking”, Journal of Biological Chemistry, vol. 286, No. 15, dated Apr. 15, 2011 (pp. 13011-13022). |
Zderic V., et al., “Drug Delivery Into the Eye With the Use of Ultrasound,” J. Ultrasound Med, vol. 23(10), pp. 1349-1359; Oct. 2004 (11 pages). |
Zderic V., et al., “Ultrasound-enhanced Transcorneal Drug Delivery,” Cornea vol. 23, No. 8, pp. 804-811; Nov. 2004 (8 pages). |
International Search Report and Written Opinion of the International Searching Authority for International Application No. PCT/US2010/053551, mailed Dec. 21, 2010 (13 pages). |
International Search Report and Written Opinion mailed Jul. 18, 2013 which issued in Application No. PCT/US2013/032567 (6 pages). |
Number | Date | Country | |
---|---|---|---|
20140024997 A1 | Jan 2014 | US |
Number | Date | Country | |
---|---|---|---|
61253736 | Oct 2009 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12909228 | Oct 2010 | US |
Child | 14035528 | US |