Eyeglass frame

Information

  • Patent Grant
  • 7441888
  • Patent Number
    7,441,888
  • Date Filed
    Tuesday, May 2, 2006
    18 years ago
  • Date Issued
    Tuesday, October 28, 2008
    16 years ago
Abstract
Eyeglass frame hinges are replaced by flexures made of hyperelastic single-crystal shape memory alloy. These flexures exhibit more than 8 percent recoverable strain. Eyeglass frames with these flexures can be distorted repeatedly in ways that would destroy ordinary hinges, and recover without damage. Flexures may be incorporated in eyeglass frames in ways that make them attractive as fashion items, thus enhancing the value of a commodity consumer product.
Description
FIELD OF THE INVENTION

The present invention relates to frames for eyeglasses, and more particularly to eyeglass frames with improved flexures joining the bows with the foreframes.


BACKGROUND OF THE INVENTION

Frames to support eyeglasses on the face of the user probably developed soon after the first eyeglasses, at least several hundred years ago. Historically, they have been made of a large variety of materials, including bone, horn, metal, plastic etc. The making and marketing of eyeglasses is a worldwide trade involving hundreds of individual companies and totaling billions of dollars each year. The industry is stratified: certain companies make only components, others assemble components into frames, others are solely marketing. A very large component of customer satisfaction involves fashion. Eyeglass fashions change every few months.


An enhancement in satisfaction with the product can worth hundreds of millions of dollars per year. The introduction of prior art superelastic Nitinol eyeglass frames has led to growth of a highly competitive and litigious segment of the industry. Nitinol (also known as NiTi or TiNi) is an alloy of titanium nickel that undergoes an energetic crystalline phase change at near-ambient temperatures: these different phases have distinctly different mechanical characteristics giving rise to shape memory and superelasticity, which is the ability to recover more than 3-4 percent strain.


To date nearly all eyeglass frames have employed hinges to join the temple with the rim. Existing eyeglasses that do not have hinges and use ordinary material or superelastic nitinol are limited in the permitted flexure. These may suffer from stiffness, making them difficult to store in a compact space, and are subject to permanent distortion due to plastic deformation if elastic limit of the frame material is exceeded. To diminish this limitation, superelastic eyeglass frames and components have been known for more than a decade of years, and are a major selling item in eyeglass manufacturing and retail.


Superelastic SMA


Shape memory alloy materials (also termed SMA) are well known. One common SMA material is TiNi (also known as nitinol), which is an alloy of nearly equal atomic content of the elements Ti and Ni. Such an SMA material will undergo a crystalline phase transformation from martensite to austenite when heated through the material□s phase change temperature. When below that temperature the material can be plastically deformed from a “memory shape” responsive to stress. When heated through the transformation temperature, it reverts to the memory shape while exerting considerable force.


In the prior art many different useful devices employing SMA have been developed and commercialized. The typical SMAs used in the prior art devices are of polycrystalline form. Polycrystalline SMA exhibits both: 1) shape memory recovery (when cycled through the material's transformation temperature) and 2) superelasticity. The term superelasticity as used herein applies to a polycrystal SMA material which, when above the transformation temperature (in the austenite crystalline phase), exhibits a strain recovery of several percent. This is in comparison to a strain recovery on the order of only about 0.5 percent for non-SMA metals and metal alloys. Polycrystalline alloys, including Nitinol, cannot achieve the maximum theoretical strain recovery because not all of the crystal grains are optimally aligned.


Superelasticity in a polycrystal SMA material results from stress-induced conversion from austenite to martensite as stress is increased beyond a critical level, and reversion from martensite to austenite as stress is reduced below a second (lower) critical level. These phenomena produce a pair of plateaus of constant stress in the plot of stress versus strain at a particular temperature. Single crystal superelasticity is characterized by an abrupt change in slope of the stress strain plot at a combination of stress, strain, and temperature characteristic of that particular alloy.


Hyperelastic SMA


Shape memory copper-aluminum based alloys grown as single crystals have been experimentally made in laboratories, typically in combination with about 5 percent Ni, Fe, Co, or Mn. The most common such CuAl-based alloy is CuAlNi, which is used throughout this description as the primary example; others are CuAlFe, CuAlCo, and CuAlMn. Single crystal SMA materials when stressed have the property of enabling a shape memory strain recovery much greater than polycrystalline SMA, and resulting shape recovery from about 9% to as great as 24% when above the phase change transition temperature. Because such strain recovery is so far beyond the maximum strain recovery of both convention polycrystal SMA materials and non-SMA metals and alloys, the strain recovery property of single crystal SMA will be referred to herein as “hyperelastic.”


OBJECTS OF THE INVENTION

A general object of the present invention is to provide an improved eyeglass frame which is a more satisfactory consumer product.


It is another object of the invention to provide eyeglass frames in which components, such as the hinges, have greater flexibility than prior art eyeglass frames.





BRIEF DESCRIPTION OF THE DRAWINGS


FIGS. 1A and 1B are diagrams showing stress/strain isotherms for SMA materials demonstrating hyperelasticity over a wide temperature range, and enhanced strain compared to Nitinol.



FIG. 2 is an isometric view of eyeglasses in accordance with one embodiment having separate hyperelastic hinge/flexures with the bows shown bent into outward positions.



FIG. 3 is an isometric view of eyeglasses in accordance with another embodiment having hyperelastic hinge/flexures integral with the frame and with the bows shown bent into three different positions.





DESCRIPTION OF THE PREFERRED EMBODIMENTS

Many of the limitations in prior art eyeglasses using superelastic SMA (polycrystalline alloys) material are obviated in the present invention through the use of single crystal hyperelastic shape memory alloys which provide an improved material for making flexures enabling extreme distortions, i.e. strain recovery from about 9% to as great as 24% when above the phase change transition temperature. One preferred hyperelastic SMA for use in the invention is single crystal CuAlNi.


One advantage of CuAlNi is its extended temperature range of hyperelasticity. Krumme U.S. Pat. No. 4,772,112 describes a method of making Nitinol superelastic over a temperature range from −20 to +40 deg. C. However, strain of these specially created superelastic materials is limited to about 3%, not enough to make a compact flexure strength to make a satisfactory substitute for a pin hinge.


Hyperelastic single crystal CuAlNi SMA provides an even greater temperature range, from cryogenic temperature to +200 deg. C., and a larger hyperelastic region, up to 9% or 10% and in certain instances as much as 20%.


The stress-strain diagram of FIG. 1A shows curves 2 and 3 representing superelastic SMA. Both curves demonstrate the SMA's superelastic properties.


In comparison, the stress-strain diagram of FIG. 1B shows curves 4 and 5 representing hyperelastic SMA. The curves represent temperatures that differ by 90 deg. C., and both demonstrate the SMA's hyperelastic properties. In FIG. 1B the two stress-strain diagrams for hyperelastic SMA each showing a plateau up to 9% with a small hysteresis.


In the existing eyeglasses containing Nitinol, superelasticity is enhanced by cold work.


This requires significant pre-processing of the material. Enhanced superelasticity of CuAlNi is an intrinsic property of single crystal CuAlNi and is achieved without extra processing steps. The as-quenched single crystal provides recoverable strains that are larger than can be achieved in Nitinol under optimal conditions.


Hyperelastic single crystal CuAlNi is produced by the Stepanov method, described elsewhere. In this method, one or several crystals are pulled from melt, generally in vacuum. The environment must be very low oxygen content, less than 10e-5, to prevent oxidation of Al as it migrates to the surface. Particles of Al2O3 adhering to the surface of the meniscus as it solidifies initiates formation of multiple crystals. It is important to maintain the cooled such that the crystallization zone is independent of the die through which the melt is pulled so that crystallization takes place without being affected by the die. The region between the die and the crystallization zone is supported and contained by surface tension so that crystal growth is solely in the (100) direction. The mechanical properties of single crystal CuAlNi are not isotropic, and the direction that tolerates the greatest recoverable strain is in this preferred direction.


Superelasticity in single crystal CuAlNi is inherent in the material: it originates from the conversion of austenite (high temperature phase) to stress-induced martensite (low temperature phase) that takes place at constant stress. The material is strong enough, (or the conversion takes place at a small enough stress) that, without damage to the material, this conversion can take place in material that has a transformation temperature far below room temperature and reaches to high above room temperature.


Shape-setting in nitinol amounts to deforming, constraining, & annealing. One cannot do this with single crystal: it will degenerate. So a different method is employed. Material is deformed, constrained, rapidly heated and rapidly cooled so that precipitation does not occur.


Other methods are known for shape-setting CuAlNi alloys. For example the German patent WO03052150. These methods are limited to small deformations, less than 4%. Our method allows up to 9% deformation after shape-setting: the original crystal is not changed, but has a new shape.


There is no need to do the kind of sophisticated heat treatment and cold work required in TiNi. And the superelastic region is greater.



FIG. 2 illustrates an embodiment providing eyeglass frame 10. The frame comprises a foreframe 12 for holding a pair of lenses 14, 16 and a pair of bows 18, 20. The bows are of sufficient length for passing alongside the user's temple and over the user's ear. The frame further comprises separate flexures 22. 23 which join together the bows with the foreframe. Each flexure is made of hyperelastic material.


The embodiment of FIG. 3 provides an eyeglass frame 26 in which the flexures comprise portions 28, 30 of hyperelastic material and in which the flexures are integral with bow 32, 34 and foreframe 36 of which both are also formed of hyperelastic material. As used herein, the phrase “integral with the bow and foreframe” in relation to the flexure means that the bow, flexure and foreframe are uniformly joined as one piece of hyperelastic material and not as separate pieces.


In both embodiments the flexures, being made of hyperelastic SMA such as CuAlNi, enable the bows to be bent through 180 degrees without damage. Thus, in FIG. 3 the solid lines shown at 32, 34 depict the bows bent into the plane of the foreframe, broken lines 32′, 34′ depict the bows at right angles to the foreframe, and broken lines 32″, 34″ depict the bows bent inwardly inot the foreframe plane.


The flexure may be shaped to fit the configuration of the frame. It may be attached to the rim and to the temple piece by any convenient means. Methods include bolting, pinning, riveting, swaging, threading, bonding by means of adhesives, soldering, and welding. Some of these methods require special equipment and materials. In particular, ordinary fluxes do not clean the surface of CuAlNi. Brazing with TiCuSil or other flash bonding agents will remove the native oxide and enable suitable bonds with adequate strength.


Eyeglass products made with the hyperelastic material will be more durable and consequently more tolerant of errors in handling. It is also possible to incorporate features that protect the lens from breakage by providing a constant-force frame.


Method of Fabricating Flexures of the Invention

A flexure for use in the invention is fabricated by these steps: a rod or wire is drawn from a melted ingot of CuAlNi of nominal composition Cu(85)Al(11)Ni(4) (atomic percent) in a furnace with an inert atmosphere or vacuum. Pulling rates, compensation, temperatures. Boules up to 1 cm diameter have been made. Multiple wires may be pulled simultaneously from the same melted ingot.


The furnace is cooled. The rod or wire is removed from the furnace. The rod is heated in a resistance-heater oven up to nominally 950 deg. C. The rod is plunged into salt water to quench by rapid cooling and thereby preserve the alloy with copper, aluminum, and nickel dissolved in each other.


Alternatively, the rod or wire is heated while being constantly moved through a heat source, such as an induction heater, and quenched, for example with a salt-water spray, for rapid cooling.


The rod is centerless ground to a fixed consistent dimension. It is inspected to determine that it is single crystal. The rod is cut into slices by electron discharge machining (EDM). Abrasive machining is used for further shaping to size and configuration to produce a flexure.


The flexure may be altered in shape by a shape-setting process that includes deforming to form induced martensite, heating rapidly to release stress, and cooling rapidly to preserve the solution of copper-aluminum-nickel.


The thickness of the flexure is made such that it has adequate strength but in bending straight either inward or outward its maximum strain does not exceed 10%. A variety of shapes, cross-sections, lengths, widths, and thicknesses are possible to fit various styles of glasses.


Other variations are possible that may be desirable. The hyperelastic hinge flexure may be curved like a carpenterâ??s tape so that it snaps into position. Carbon fiber may be used to make the bridge and the temple pieces.

Claims
  • 1. A method of fabricating an eyeglass frame having hyperelastic properties, the method comprising the steps of: providing a single crystal of a shape memory material comprised of a CuAl-based alloy of metals,shape-setting the crystal into an eyeglass flexure shape,heating the shape to a temperature sufficient to dissolving the metals into a solution,quenching the shape by cooling at a rate which is sufficiently rapid to preserve the solution, andremoving the native oxide from the surface of the CuAl-based alloy.
  • 2. The method of claim 1, wherein the shape memory material comprises an alloy of Cu, Al, and Ni.
  • 3. The method of claim 1, wherein the step of removing the native oxide comprises brazing with TiCuSil or other flash bonding agent.
  • 4. The method of claim 1, further comprising attaching the flexure to an eyeglass rim and temple piece by surface bonding.
  • 5. The method of claim 1, further wherein the step of providing a crystal of a shape memory material comprises providing a single-crystal CuAlNi material.
CROSS-REFERENCE TO PRIOR APPLICATION

This application claims the benefit under 35 USC §119(e) of U.S. provisional application Ser. No. 60/678,921 filed May 9, 2005.

US Referenced Citations (148)
Number Name Date Kind
1926925 Wescott Sep 1933 A
2060593 Schaurte et al. Nov 1936 A
2371614 Graves Mar 1945 A
2608996 Forman Sep 1952 A
2610300 Walton et al. Sep 1952 A
2647017 Coulliette Jul 1953 A
2911504 Cohn Nov 1959 A
3229956 White Jan 1966 A
3351463 Rozner et al. Nov 1967 A
3400906 Stocklin Sep 1968 A
3408890 Bochman, Jr. Nov 1968 A
3445086 Quinn May 1969 A
3454286 Anderson et al. Jul 1969 A
3546996 Grijalva et al. Dec 1970 A
3613732 Willson et al. Oct 1971 A
3620212 Fannon, Jr. et al. Nov 1971 A
3659625 Coiner et al. May 1972 A
3725835 Hopkins et al. Apr 1973 A
3849756 Hickling Nov 1974 A
3918443 Vennard et al. Nov 1975 A
3974844 Pimentel Aug 1976 A
4055955 Johnson Nov 1977 A
4063831 Meuret Dec 1977 A
4072159 Kurosawa Feb 1978 A
4096993 Behr Jun 1978 A
4176719 Bray Dec 1979 A
4177327 Mathews Dec 1979 A
4243963 Jameel et al. Jan 1981 A
4340049 Munsch Jul 1982 A
4485545 Caverly Dec 1984 A
4501058 Schutzler Feb 1985 A
4524343 Morgan et al. Jun 1985 A
4549717 Dewaegheneire Oct 1985 A
4551974 Yaeger et al. Nov 1985 A
4553393 Ruoff Nov 1985 A
4558715 Walton et al. Dec 1985 A
4567549 Lemme Jan 1986 A
4585209 Aine et al. Apr 1986 A
4596483 Gabriel et al. Jun 1986 A
4619284 Delarue et al. Oct 1986 A
4654191 Krieg Mar 1987 A
4684913 Yaeger Aug 1987 A
4706758 Johnson Nov 1987 A
4753465 Dalby Jun 1988 A
4821997 Zdeblick Apr 1989 A
4823607 Howe et al. Apr 1989 A
4824073 Zdeblick Apr 1989 A
4848388 Waldbusser Jul 1989 A
4864824 Gabriel et al. Sep 1989 A
4893655 Anderson Jan 1990 A
4896728 Wolff et al. Jan 1990 A
4943032 Zdeblick Jul 1990 A
5060888 Vezain et al. Oct 1991 A
5061914 Busch et al. Oct 1991 A
5069419 Jerman Dec 1991 A
5072288 MacDonald et al. Dec 1991 A
5114504 AduJudom, II et al. May 1992 A
5116252 Hartman May 1992 A
5117916 Ohta et al. Jun 1992 A
5119555 Johnson Jun 1992 A
5129753 Wesley et al. Jul 1992 A
5160233 McKinnis Nov 1992 A
5190546 Jervis Mar 1993 A
5192147 McCloskey Mar 1993 A
5211371 Coffee May 1993 A
5218998 Bakken et al. Jun 1993 A
5245738 Johnson Sep 1993 A
5309717 Minch May 1994 A
5312152 Woebkenberg, Jr. et al. May 1994 A
5325880 Johnson et al. Jul 1994 A
5344117 Trah et al. Sep 1994 A
5364046 Dobbs et al. Nov 1994 A
5494113 Polan Feb 1996 A
5543349 Kurtz et al. Aug 1996 A
5605543 Swanson Feb 1997 A
5619177 Johnson et al. Apr 1997 A
5622225 Sundholm Apr 1997 A
5640217 Hautcoeur et al. Jun 1997 A
5641364 Golberg et al. Jun 1997 A
5695504 Gifford, III et al. Dec 1997 A
5714690 Burns et al. Feb 1998 A
5722989 Fitch et al. Mar 1998 A
5771742 Bokaie et al. Jun 1998 A
5772378 Keto-Tokoi Jun 1998 A
5796152 Carr et al. Aug 1998 A
5819749 Lee et al. Oct 1998 A
5825275 Wuttig et al. Oct 1998 A
5837394 Schumm, Jr. Nov 1998 A
5840199 Warren Nov 1998 A
5850837 Shiroyama et al. Dec 1998 A
5867302 Fleming Feb 1999 A
5903099 Johnson et al. May 1999 A
5924492 Kikuchi et al. Jul 1999 A
5930651 Terasawa Jul 1999 A
5960812 Johnson Oct 1999 A
6072617 Henck Jun 2000 A
6073700 Tsuji et al. Jun 2000 A
6075239 Aksyuk et al. Jun 2000 A
6084849 Durig et al. Jul 2000 A
6101164 Kado et al. Aug 2000 A
6126371 McCloskey Oct 2000 A
6139143 Brune et al. Oct 2000 A
6195478 Fouquet Feb 2001 B1
6203715 Kim et al. Mar 2001 B1
6229640 Zhang May 2001 B1
6247493 Henderson Jun 2001 B1
6277133 Kanesaka Aug 2001 B1
6386507 Dhuler et al. May 2002 B2
6406605 Moles Jun 2002 B1
6407478 Wood et al. Jun 2002 B1
6410360 Steenberge Jun 2002 B1
6451668 Neumeier et al. Sep 2002 B1
6454913 Rasmussen et al. Sep 2002 B1
6470108 Johnson Oct 2002 B1
6524322 Berreklouw Feb 2003 B1
6533905 Johnson et al. Mar 2003 B2
6537310 Palmaz et al. Mar 2003 B1
6582985 Cabuz et al. Jun 2003 B2
6592724 Rasmussen et al. Jul 2003 B1
6605111 Bose et al. Aug 2003 B2
6614570 Johnson et al. Sep 2003 B2
6620634 Johnson et al. Sep 2003 B2
6624730 Johnson et al. Sep 2003 B2
6669795 Johnson et al. Dec 2003 B2
6688828 Post Feb 2004 B1
6729599 Johnson May 2004 B2
6742761 Johnson et al. Jun 2004 B2
6746890 Gupta et al. Jun 2004 B2
6771445 Hamann et al. Aug 2004 B1
6790298 Johnson et al. Sep 2004 B2
6811910 Tsai et al. Nov 2004 B2
6840329 Kikuchi et al. Jan 2005 B2
6843465 Scott Jan 2005 B1
6920966 Buchele et al. Jul 2005 B2
6955187 Johnson Oct 2005 B1
7040323 Menchaca et al. May 2006 B1
7044596 Park May 2006 B2
7084726 Gupta et al. Aug 2006 B2
20010023010 Yamada et al. Sep 2001 A1
20020018325 Nakatani et al. Feb 2002 A1
20030002994 Johnson et al. Jan 2003 A1
20030170130 Johnson Sep 2003 A1
20040200551 Brhel et al. Oct 2004 A1
20040249399 Cinquin et al. Dec 2004 A1
20060118210 Johnson Jun 2006 A1
20060213522 Menchaca et al. Sep 2006 A1
20070127740 Johnson et al. Jun 2007 A1
20070246233 Johnson Oct 2007 A1
Foreign Referenced Citations (11)
Number Date Country
0053596 Jun 1982 EP
1122526 Aug 2001 EP
1238600 Sep 2002 EP
59179771 Oct 1984 JP
07090624 Apr 1995 JP
10173306 Jun 1998 JP
1434314 Oct 1988 SU
WO9853362 Nov 1998 WO
WO0004204 Jan 2000 WO
WO03052150 Jun 2003 WO
WO2005108635 Nov 2005 WO
Provisional Applications (1)
Number Date Country
60678921 May 2005 US