The present invention relates to an eyeglass lens processing apparatus which processes an eyeglass lens.
In an eyeglass lens processing apparatus, an eyeglass lens is rotated while being held (chucked) by two lens chucking shafts, and the periphery of the lens is processed by a processing tool such as a grindstone so as to substantially conform to a desired target lens shape. The holding of the lens is performed by fixedly attaching a cup serving as a fixture to the rear refractive surface of the lens by suction, adhesion, or the like, mounting the cup to which the lens is fixed to a cup receiver at a distal end of the one chucking shaft, and allowing a lens presser at a distal end of the other chucking shaft to abut on the lens.
When the periphery of the lens is processed with the processing tool which rotates at high speed, if a load exceeding the holding force of the lens is applied to the lens, rotational deviation may occur between the cup and the lens, and thereby so-called axis deviation may occur. In particular, in a liquid-repellent lens whose surface is coated with a liquid-repellant substance to which water, oil, or the like does not stick easily, the possibility of occurrence of axis deviation is high because the surface slips readily.
Accordingly, it is an object of the present invention to provide an eyeglass lens processing apparatus capable of appropriately suppressing any axis deviation according to slip conditions of a lens.
In order to solve the object, the present invention is characterized by having the following arrangements.
a lens rotating unit having lens chucking shafts which hold an eyeglass lens, and a first motor which rotates the chucking shafts;
an axis-to-axis distance changing unit having a second motor which changes an axis-to-axis distance between a center axis of rotation of a processing tool which processes a periphery of the lens and a center axis of rotation of the chucking shafts;
a torque detector which directly or indirectly detects torque transmitted to the chucking shafts;
a torque level setting unit which variably sets an allowable torque level; and
a driving controller which controls at least one of driving of the first motor and driving of the second motor to adjust at least one of a rotational speed of the chucking shafts and a processing pressure of the lens so that the detected torque falls below the set allowable torque level.
a display portion which displays information on the torque which is detected when a load is applied to the lens held by the chucking shafts; and
an input portion which variably inputs the allowable torque level.
wherein the torque level setting unit includes a storage which stores a plurality of allowable torque levels, and
a selector which selects a desired torque level among the stored allowable torque levels.
Hereinafter, embodiments according to the present invention will be described with reference to the accompanying drawings.
The carriage portion 700 including a carriage 701 and its moving mechanism is mounted on a base 10. A lens LE to be processed is rotated while being held (chucked) by chucking shafts 702L and 702R which are rotatably held by the carriage 701, and is ground by a grindstone 602. The grindstone 602 according to the present embodiment includes a roughing grindstone 602a for plastic, a roughing grindstone 602b for glass, and a bevel-finishing and plane-finishing grindstone 602c. A grindstone rotating shaft 601 to which the grindstone 602 is attached is rotatably held by a bearing 603 and is connected to a grindstone rotating motor 606 via a pulley 604 attached to an end of the shaft 601, a belt 605 and a pulley 607 attached to a rotating shaft of the motor 606. Thereby, the rotation of the motor 606 is transmitted to the shaft 601 and the grindstone 602 attached to the shaft 601 is rotated.
A lens shape measuring section 500 is provided at the back side (inner side) of the carriage 701.
The chucking shafts 702L and 702R are held by the carriage 701 so that the central axis of the chucking shafts 702L and 702R (the central axis of rotation of the lens LE) may be parallel to the central axis of the shaft 601 (the central axis of rotation of the grindstone 602). The carriage 701 is movable in the direction of the central axis of the shaft 601 (the direction of the central axis of the chucking shafts 702L and 702R) (X-axis direction). The carriage 701 is also movable in the direction orthogonal to the X-axis direction (the direction in which the axis-to-axis distance between the central axis of the chucking shafts 702L and 702R and the central axis of the shaft 601 changes) (Y-axis direction).
<Lens Holding (Chucking) Mechanism>
The chucking shafts 702L and 702R are rotatably and coaxially held by left and right arms 701L and 701R, respectively, of the carriage 701. A cup receiver 303 is attached to a distal end of the chucking shaft 702L, and a lens presser 304 is attached to a distal end of the chucking shaft 702R (refer to
<Lens Rotating Mechanism>
A lens rotating motor 722 is fixed to a block 720 attached to a left end of the left arm 701L. The rotation of the motor 722 is transmitted to the chucking shaft 702L via a gear 723 attached to a rotating shaft of the motor 722, a gear 724, and a gear 721 attached to the chucking shaft 702L. Further, the rotation of the motor 722 is transmitted to the chucking shaft 702R via a pulley 726 attached to the chucking shaft 702L, a belt 731a, a pulley 703a, a rotating shaft 728, a pulley 703b, a belt 731b, and a pulley 733 attached to the chucking shaft 702R. Thereby, the chucking shafts 702L and 702R are rotated in synchronization with each other, and the held (chucked) lens LE is then rotated. Incidentally, a servo motor is used as the motor 722, and its rotating shaft is provided with an encoder 722a which detects a rotational angle. The servo motor 722 generates torque when a load is applied to its rotating shaft.
<X-Axis-Direction Moving Mechanism of Carriage 701>
A moving arm 740 coupled with the carriage 701 is supported on guide shafts 703 and 741 fixed parallel to each other on the base 10 so that it is movable in the X-axis direction. Further, a motor 745 for movement in the X-axis direction is fixed onto the base 10. The rotation of the motor 745 is transmitted to the arm 740 via a pinion 746 attached to a rotating shaft of the motor 745, and a rack 743 attached to a rear portion of the arm 740. Thereby, the carriage 701 along with the arm 740 is moved in the X-axis direction.
<Y-Axis-Direction Moving Mechanism of Carriage 701>
As shown in
Next, the operation of the present apparatus will be described with reference to a schematic block diagram of a control system of the present apparatus in
A target lens shape of a rim of an eyeglass frame, etc. is measured by the measuring device 2, and the obtained target lens shape data is input by manipulation of the panel 410. Since the input target lens shape data is stored in a memory 120, and a target lens shape graphic based on the target lens shape data is displayed on a screen of the panel 410, layout data on a wearer of the eyeglass frame is input by the manipulation of the panel 410. If required input is performed, the lens LE is held (chucked) by the chucking shafts 702L and 702R.
If the processing start switch of the switch portion 420 is pushed, an arithmetic control portion 100 calculates vector information (rδn, rθn) of the target lens shape data with the holding (chucking) center of the lens LE being the processing center, on the basis of the input layout data (rδn is vector length, and rθn is vector angle). Further, the arithmetic control portion 100 calculates a processing point for every rotational angle of the lens LE on the basis of the obtained vector information and the radius R of the grindstone 602, and calculates the axis-to-axis distance L between the center axis of the chucking shafts 702L and 702R and the center axis of the shaft 601 at the processing point.
For example, the vector information (rδn, rθn) (n=1, 2, 3, . . . , and N) is substituted into the following Formula 1 to obtain a maximum value Li of the distance L, and this maximum distance Li is obtained for a predetermined rotational angle ξi. If the vector angle rθn of each distance Li is defined as Θi, this (ξi, Li, Θi) (i−1, 2, . . . , and N) becomes the target lens shape data related to the distance L, and is stored in the memory 102.
Next, on the basis of this target lens shape data, the arithmetic control portion 100 makes the lens shape measuring section 500 perform measurement of the front refractive surface and the rear refractive surface of the lens LE. Then, on the basis of the obtained shape of the lens LE, the arithmetic control portion 100 calculates roughing data and finishing data.
If the lens LE is a plastic lens, the arithmetic control portion 100 controls the driving of the motor 45 to move the carriage 701 in the X-axis direction and locate the lens LE on the roughing grindstone 602a. Next, the arithmetic control portion 100 controls the driving of the motor 722 via a driver 115 to rotate the lens LE, and the driving of the motor 751 via a driver 117 to move the carriage 701 in the Y-axis direction to perform roughing such that the lens LE is pressed against the rotating roughing grindstone 602a on the basis of the roughing data. The rotational angle of the lens LE (the chucking shafts 702L and 702R) is detected by the encoder 722a. Further, the axis-to-axis distance between the chucking shafts 702L and 702R and the shaft 601 which indicates a movement position of the carriage 701 in the Y-axis direction is detected by the encoder 751a.
During processing of the lens LE, if an excessive load above the holding force of the chucking shafts 702L and 702R is applied to the lens LE, axis deviation may occur between the cup 50 and the lens LE. A command pulse signal for rotating the lens LE at every rotational angle is send to the motor 722. Simultaneously, the rotational angle of the rotating shaft of the motor 722 is detected by the encoder 722a. In the driver 115, the rotation command pulse signal to the motor 722 is compared with the rotation detection pulse signal from the encoder 722a. Here, if there is any deviation between both, a voltage applied to the motor 722 (a current flowing through the motor 722) is changed in order to cancel this deviation. By such feedback control, if a load caused by the processing is applied to the rotating shaft of the motor 722, the motor 722 increases torque to return the rotational angle to a commanded rotational angle. The torque T at this time, as shown in
If the torque T exceeds an allowable torque level T0 (a torque level required to hold the lens LE without any axis deviation) of the lens LE, the arithmetic control portion 100 controls the driving of the motor 722 to reduce the torque and reduce the rotational speed of the lens LE (also including stopping the rotation of the lens LE). Otherwise, the arithmetic control portion controls the driving of the motor 751 for moving the carriage 701 in the Y-axis direction to reduce the torque and reduce the processing pressure of the lens LE (also including pulling the lens LE away from the grindstone 602). The torque of the motor 751 can be detected from a current flowing through the motor 751 to be detected by a current detecting circuit possessed by the driver 117. Further, similar to the torque T of the motor 722, the torque of the motor 751 can also be detected on the basis a rotation instruction pulse signal to the motor 751 and a rotation detection pulse signal from the encoder 751a. Incidentally, the allowable torque level T0 is stored in advance as a torque level which does not cause any axis deviation between the cup 50 and the lens LE.
If the torque T of the motor 722 falls below a torque level T1 (which is set on the basis of the allowable torque level T0) of the torque-up allowance which is set to be lower than the allowable torque level T0, the arithmetic control portion 100 controls the driving of the motors 722 and 751 via the drivers 115 and 117 in order to perform normal processing again. In this way, if the torque T of the motor 722 exceeds the allowable torque level T0, at least one of the rotational speed and the processing pressure of the lens LE is adjusted so that the torque T falls below the allowable torque level T0. As a result, a load acting on the lens LE is reduced and thus any axis deviation of the lens LE is suppressed.
When the roughing is completed, the arithmetic control portion 100 moves the carriage 701 in the X-axis direction and locates the lens LE on the grindstone 602c, and controls the rotation of the lens LE and the movement of the carriage 701 in the X-axis direction and the Y-axis direction on the basis of the finishing data, thereby performing finishing of the lens LE. During this finishing, the arithmetic control portion 100 also controls the driving of at least one of the motors 722 and 751 so that the torque T of the motor 722 falls below the allowable torque level T0.
Incidentally, as a method of detecting the torque T transmitted to the chucking shafts 702L and 702R, the rotational angle error Δθ (an error between the rotation instruction pulse signal to the motor 722 and the rotation detection pulse signal from the encoder 722a) is used in the above embodiment. However, a method of detecting the torque by directly providing at least one of the chucking shafts 702L and 702R with a torque sensor may be used naturally.
Further, as the method of making the torque T transmitted to the chucking shafts 702L and 702R fall below the allowable torque level T0, a method of setting a limit value to a current through the motor 722 and controlling the motor 722 below the limit value may be used. The current flowing through the motor 722 is detected by a current detecting circuit possessed by the driver 115. Since the torque T of the motor 722, that is, the torque T transmitted to the chucking shafts 702L and 702R, and the current flowing through the motor 722 are in a relation approximately proportional to each other, the torque T transmitted to the chucking shafts 702L and 702R can also be indirectly detected by detecting the current flowing through the motor 722. The limit value of the current flowing through the motor 722 is determined on the basis of the relation to the allowable torque level T0 which does not causes any axis deviation between the cup 50 and the lens LE.
Incidentally, although the apparatus of the present embodiment is an apparatus for processing the lens LE as the chucking shafts 702L and 702R is moved with respect to the shaft 601 (the lens LE is moved with respect to the grindstone 602), an apparatus which processes the lens LE as the shaft 601 is moved with respect to the chucking shafts 702L and 702R (the grindstone 602 is moved with respect to the lens LE) may be adopted. In this case, the driving of a motor which moves the shaft 601 may be controlled to adjust the processing pressure. Further, an apparatus in which a lens is simultaneously processed by a plurality of grindstones may be adopted. Further, although a grindstone is used for the apparatus of the present embodiment as a tool for processing a lens, well-known processing tools which rotates a cutter, etc. to perform grinding or cutting may be used.
Next, the setting of the allowable torque level T0 according to slip conditions of the lens LE will be described. A lens coated with a liquid-repellant substance (hereinafter referred to a liquid-repellant lens), slips very easily as compared with common lenses, and its slip conditions are various. Further, the slip conditions vary depending on the size of the holding portion (abutting portion) of the cup 50, the adhesive force of an adhesive tape, or the like. If the allowable torque level T0 is made constant so as to be suitable for a slippery lens, as described above, the processing pressure, etc. is controlled so that it falls below the allowable torque level T0. Thus, the processing time may become long. Conversely, if priority is given to the processing time and the allowable torque level T0 is consequently made excessively high, axis deviation may be apt to occur in a slippery lens.
Thus, the setting of the allowable torque level T0 is performed in the following manner according to lenses.
First, the cup 50 is fixedly attached to the front refractive surface of the liquid-repellant lens LE. For example, the cup 50 is fixed to the front refractive surface of the lens LE with an adhesive sheet and an adhesive tape therebetween. Incidentally, an adhesive sheet may also be adhered to the rear refractive surface of the lens LE. Thereby, the holding force by the lens presser 304 increases.
When the cup 50 is fixed to the front refractive surface of the lens LE, as shown in
Next, the base of the cup 50 fixed to the lens LE is mounted to the cup receiver 303, the chucking shaft 702R is moved in a direction in which it approaches the chucking shaft 702L by the operation of the switch portion 420, and the lens LE is held (chucked) by the chucking shafts 702L and 702R. Further, a setting screen which allows setting of the allowable torque level T0 is displayed by the operation of a menu key of the panel 410.
When the lens LE held (chucked) by the chucking shafts 702L and 702R is rotated and a load is applied to the lens LE, similar to during the processing, the torque of the motor 722 increases, and the rotational angle of the rotating shaft of the motor 722 returns to an instructed rotational angle. The torque T at this time is displayed by the indicator 450. When the lens LE is further rotated manually and a load is applied to the lens LE, axis deviation occurs in the lens LE. Occurrence of the axis deviation can be confirmed with the marks M. Further, the axis deviation can also be grasped to a certain degree by the sense of touch of a hand. A limit torque level when any axis deviation has occurred is confirmed with the indicator 450, and the allowable torque level T0 is set (changed) to a level lower (for example, by one or two levels) than the limit torque level. When the allowable torque level T0 has been set, the screen of the panel 410 is returned to an initial processing screen of the panel 410 by the operation of an EXIT key 453, and simultaneously, the allowable torque level T0 stored in the memory is changed (updated).
Incidentally, the variable setting of the allowable torque level T0 may be performed in the following manner. For example, a load may be applied until the lens LE is manually rotated and maximum torque at that time the axis deviation occurs is stored in the arithmetic control portion 100. In this case, by the operation of a setting key which is not shown, the arithmetic control portion 100 automatically sets (changes) a level lower by a predetermined amount (by predetermined levels) than the stored maximum torque as the allowable torque level T0.
Before the processing of the lens LE, the allowable torque level T0 is set, the cup 50 is re-fixed to the lens LE, and processing is carried out. Since the allowable torque level T0 is determined in advance according to the slip conditions of the lens LE, any axis deviation can be suppressed, and processing can be performed efficiently. Further, since the processing pressure, which suppresses axis deviation according to the slip conditions of the lens LE, can be appropriately adjusted, an adhesive sheet required for fixation of the liquid-repellant lens to the cup 50 can be omitted in some cases
Incidentally, a load applied to the lens LE can be confirmed even during processing by making the indicator 450 displayed on the screen of the panel 410 during processing. For example, the torque T detected during processing is displayed with lengths of the indicator 450. Display colors of the indicator 450 can be varied when the torque T falls below the allowable torque level T0, when the torque T is almost the same as the allowable torque level T0, or when the torque T exceeds the allowable torque level T0. As a result, suitability of the setting of the allowable torque level T0, possibility of axis deviation of the lens LE during processing, etc. can be grasped easily.
Further, the setting of an allowable torque level does not need to be performed with every processing. For example, the setting can be performed as an occasion arises, such as when slip conditions are unclear in new kinds of lenses, when the cup 50, the adhesive tape, or the like is changed, or the like. Further, since the kind of the liquid-repellant lens is generally known to a certain degree, a normal processing pressure mode not for a liquid-repellant lens but mainly for a common lens, a soft processing pressure rode mainly for a liquid-repellant lens, or the like (a plurality of modes are prepared according to slip conditions of lenses) can be selected by the panel 410. Among allowable torque levels corresponding to individual modes stored in the memory 102, an allowable torque level corresponding to a selected mode may be set.
Number | Date | Country | Kind |
---|---|---|---|
P2005-133734 | Apr 2005 | JP | national |