The present invention relates to an eyeglass lens processing shape obtaining method of obtaining an eyeglass lens processing shape for attaching a prescription lens having refractive power to a rim of an eyeglass frame, in place of an original lens having been fitted to the rim.
Eyeglass frames for sunglasses, eyeglass frames of types in which a user is able to simply exchange lenses of different colors (a lens exchange type, and a lens attachment and detachment type) are appearing on the market (for example, see JP-T-2006-510065(WO2004/059367A2). A rim of the eyeglass frame for the sunglasses is formed with grooves for fitting a part of an edge of an original lens. Recently, in place of the original lens fitted to the rim of the frame, there is a higher demand for replacement with the prescription lens (lens with a refractive power). In the case of the original lens for the sunglasses, the thickness of the original lens is uniform, and the rim is formed with a groove which is larger than the thickness of the original lens. However, in a case of inserting the prescription lens (the refractive power lens) into the groove of the rim, since the width of the peripheral edge portion of the prescription lens is greater than the width (thickness) of the original lens, there is a need to perform the processing so as to insert the peripheral edge portion of the prescription lens into the groove of the rim. In other words, there is a need to process the peripheral edge portion of the prescription lens to form a portion to be inserted into the groove of the rim and a stepped portion which is cut off so as not come into contact with (interfere with) the rim. The processing of forming the step is called a step processing. As an eyeglass lens peripheral edge processing apparatus which promotes the automation of the step processing, a device disclosed in JP-A-2009-131939 (US2009-142993A1) is suggested. The device disclosed in JP-A-2009-131939 includes a peripheral edge processing tool capable of performing the step processing.
However, in the original lens (a sunglass lens or a demo lens) attached to the eyeglass frame for sunglasses as mentioned above, the step processing is not generally performed. For this reason, in a case of wanting to use the prescription lens, it is difficult to specify a step processing position relative to the prescription lens. Furthermore, a method of specifying the step processing position by measuring the groove of the rim with vernier calipers or the like is considered, but the method is considerably time-consuming, and the measurement result is also easily incorrect. For this reason, in the current state, when processing one lens, the size of the step processing position is slowly changed (notch amount gradually increases), and the processing is performed by trial and error until the lens is inserted into the groove without interfering with the rim, whereby such a processing is considerably time consuming.
An object of the present invention is to provide an eyeglass lens processing shape obtaining method and an eyeglass lens processing shape obtaining apparatus capable of obtaining an eyeglass lens processing shape which includes a step processing shape of an eyeglass lens, in view of the problems of the related art.
The present invention provides the following arrangements:
obtaining an outline of the original lens;
obtaining an inner boundary of the rim on a surface of the original lens in a state where the original lens is attached to the rim;
obtaining an external form processing shape of the prescription lens based on the outline of the lens; and
obtaining a step processing shape of the prescription lens based on the inner boundary of the rim.
attaching a mark along the inner boundary of the rim in the state where the original lens is attached to the rim;
detaching the original lens attached with the mark from the rim;
obtaining a lens image by photographing the detached original lens,
wherein the outline of the lens is obtained by performing an image processing of the lens image, and
wherein, in obtaining the rim boundary, an outer outline of the mark attached to the lens surface is obtained by performing the image processing of the lens image, and the inner boundary of the rim is obtained based on the obtained outer outline of the mark.
in obtaining the lens image,
in obtaining the lens outline, the outline of the lens is extracted based on the first lens image, and
in obtaining the rim boundary, the outer outline of the mark attached to the lens surface is obtained based on the second lens image.
in obtaining the lens outline,
the original lens is detached from the rim and obtaining a lens image by photographing the detached original lens; and
a brightness change of the lens image is detected to obtain the outline of the lens based on the detected brightness change.
in obtaining the lens outline and obtaining the rim boundary, a lens photographing device is used which is configured to photograph the original lens detached from the rim by a camera and perform an image processing of a photographed lens image, and
the lens photographing device includes a photographing unit having an imaging element for photographing the lens image of the original lens, and a control unit which obtains an contour of the original lens and the outer outline of the mark by the image processing based on the lens image, the control unit detecting a position where brightness of the lens image is changed in a predetermined inner region with respect to the outline of the original lens so as to obtain a position of the outer outline of the mark relative to the outline of the original lens.
Hereinafter, an exemplary embodiment of the present invention will be described with reference to the drawings. Firstly, in place of the original lens (the demo lens, sunglasses lens or the like) attached to the rim, the eyeglass lens processing shape obtaining (measuring) apparatus which obtains the processing shape for attaching the prescription lens having refractive power to the rim, and the configuration of the eyeglass lens processing apparatus will be described.
An optical unit, described later, and a control unit are housed in a housing 1 of the apparatus 100. An illumination unit 10 is equipped with an illumination light source 11 which emits white light. In a middle space of the housing 1, a lens table 20 is provided on which an original lens 400 fitted to the eyeglass frame is mounted. The lens table 20 is made of a milky-white optically transparent member, and a diffusing surface is formed at the light source 11 side. Thus, the lens 400 is illuminated from below by the diffused light. A photographing unit 30 is placed over the lens table 20, and the photographing unit 30 includes a mirror 31, a lens 32, and an imaging element 33. Light flux transmitted through the original lens is reflected by the mirror 31, is focused on the lens 32, and is imaged on a light sensing surface of the imaging element 33 as the processing shape of the lens image. In front of the lower portion of the housing 1, a monitor 40 is provided which displays a processing shape of the lens 400 and an actual lens image. On the monitor 40, the lens image obtained by the control unit 70 and a target lens shape (an outline processing shape of the lens) obtained by the control unit 70 are displayed in an overlapped manner. Furthermore, the monitor 40 has a touch panel function, and an operation signal of an operator is able to be input to the monitor 40. Although the details thereof will be described later, on the monitor 40, an operator performs an operation such as correction of the processing shape while viewing the lens image. The light source 11, the imaging element 33, and the monitor 40 are connected to the control unit 70 which collectively controls the apparatus 100. The control unit 70 obtains outline information of the lens or the like from a lens image (a captured image) of the lens 400. Furthermore, the control unit 70 corrects the processing shape based on the input from the monitor 40. Additionally, when correcting the processing shape, the control unit 70 is able to perform a smoothing process of a line (a curve) indicating the processing shape. A memory 71, which stores the processing shape of the lens 400 obtained by the imaging process and the identification information of the lens 400, is connected to the control unit 70. Furthermore, in the memory 71, photographing conditions (herein, two types) of the illumination unit 10 and the photographing unit 30 are stored.
Furthermore, the eyeglass lens processing apparatus 200 connected to the apparatus 100 (the control unit 70) includes a chuck shaft which chucks a processing target lens that is a prescription lens, and a processing tool (a coarse processing tool, and a finished processing tool) for grinding a peripheral edge of the chucked processing target lens. Furthermore, the apparatus 200 includes a step processing tool (a step bevel processing tool) for performing a step processing on the peripheral edge of the lens. The step processing tool is also used for correcting (cutting) a curved back surface of the processing target lens or a lens shoulder. In regard to the eyeglass lens processing apparatus 200 and the step processing tool, a technique disclosed in JP-A-2009-131939 is referenced. Furthermore, the apparatus 200 includes a processing grindstone (a front curved grindstone, and a back curved grindstone) for forming the curved on a front and a back of a high curve lens, respectively. With the processing grindstone, a chamfering of the front and the back of the high curve lens as well as the formation of the curved are possible. In regard to the processing grindstone, the technique disclosed in JP-A-2009-131939 is referenced. Furthermore, the apparatus 200 includes a tool for forming a concave portion and a notch in the lens peripheral edge by performing the notching processing on the peripheral edge of the lens. Specifically, the device refers to an end mill that is a drilling tool. In regard to the notching processing, the technique disclosed in JP-A-2009-131939 is referenced.
In addition, the illumination unit 10 of the lens in the present embodiment has a configuration (a transmitting type) in which the illumination light is transmitted through the lens table 20, but is not limited thereto. A reflective type may also be adopted. A configuration may be adopted in which the illumination unit 10 is disposed at the same side (the upper portion) as the photographing unit 30, the reflection member (for example, a recurrent reflection member) is disposed at the lens table 20, and the illumination light is emitted from the upper part. For example, it is possible to use a technique disclosed in JP-A-2010-262034.
The lens 400 shown in
Next, a case of attaching the prescription lens to the rim 310 of the frame 300 will be described.
Like the case of the lens 400, the processed lens 500 includes an optical portion 510, a convex portion 520, and a convex portion 530. Furthermore, as shown in
The thickness of the peripheral edge portion (an edge) of the lens 500 is greater than the width W of the original lens 400. For this reason, in a case of fitting the lens 500 in the rim 310, there is a need to perform the step processing so that the lens 500 is inserted into the groove G. Specifically, the processing is performed which makes the thickness of a region (a position) of the lens 500 corresponding to the groove G, the concave portion G2 and the concave portion G3 identical to the width W (or equal to or less than the width). In other words, this processing is a processing which cuts the back side of the lens 500 of the region corresponding to the groove G, the concave portion G2 and the concave portion G3 over a height D.
The peripheral edge surface of the lens 500 will be described (see
The processing is performed such that a width Wa, in which a width Wf of the front chamfered portion 510F, a width Wh of the flat portion 510H, and a width Wr of the back chamfered portion 510R are summed up, matches the width W of the original lens 400. The processing is performed such that a height (a distance from the base portion 510B to the flat portion 510H) Da of the step portion 510S matches the height D of the original lens 400. The base portion 510B is cut backward substantially horizontally such that the optical portion 510 does not interfere with the rim 310.
Although a detailed description is omitted, a lens blank is ground from the peripheral edge by a coarse grindstone and a finishing grindstone of the apparatus 200, and is processed to an external shape a shape before the cutting) of the lens 500. Moreover, the front chamfered portion 510F is processed by the front curved processing grindstone of the apparatus 200, and the back chamfered portion 510R is processed by the back curved processing grindstone. The back side is cut off by the step processing tool so that the width Wa of 510C becomes the width W and the height Da becomes the height D. The peripheral edge of the lens 500 is cut such that the convex portion 520 and the convex portion 530 are formed by the end mill of the apparatus 200. At this time, the dotted line S of
Next, a method of obtaining the processing shape (the target lens shape and the step processing position) of the lens 500 from the original lens 400 will be described.
As shown in
In addition, the putty 600 may not necessarily have adhesiveness. By using with an adhesive tape or the like, the putty 600 may be stuck to the lens 400.
The putty 600 of the present embodiment is a member which is obtained by mixing polybutylene, adhesive, and inorganic mineral filler. The putty 600 is a white clay-like member having adhesiveness. Furthermore, the putty may be a member in which a soft rubber having adhesiveness is processed to a cord shape or a plate shape, a viscous liquid (fluid) having adhesiveness and having characteristics of being solidified when being attached to the lens 400, or the like.
The putty 600 is stuck so as to ensure the width Wb from the edge of the rim 310 toward the internal direction of the lens 400 (approximately, the frame center direction). The width Wb is a width used for the image processing when photographing the putty 600 by the apparatus 100 and extracting the step processing position (the outer peripheral edge position of the putty 600).
When detaching the lens 400 from the rim 310, as shown in
Next, a method of obtaining the processing shape of the lens by photographing the lens 400 attached with the putty 600 and performing the image processing of the photographed lens image will be described.
The control unit 70 drives the illumination unit 10, emits the illumination light to the lens 400 placed on the lens table 20, and obtains the lens image by photographing the transmitted light by the photographing unit 30 (the imaging element 33). At this time, two lens images having different photographing conditions are obtained. A change in photographing condition of the present embodiment is performed by making the amount of light of the illumination light source 11 uniform and changing the gain of the imaging element 33. The control unit 70 manages the lens image as a two-dimensional (for example, XY coordinates) brightness distribution.
A first lens image (a first image) 451 shown in
The lens image 450 shown in
Next, the detection of the step processing position will be described. In
Herein, the point H1 is a point for defining the region where the brightness change is detected by the control unit 70, and is set depending on the distance from the external shape OS. The point is set in the external (peripheral edge side) position further than the width Wb of the case of sticking the putty 600. The width We connecting the external shape OS with the point H1 on the line L1 is set to be longer than the width Wb. For example, in order to cope, with even a case where the convex portion is present in the external shape OS (the transmission region is wide), the point H1 is situated in a position entering the inside from the external shape OS by about 6 mm.
Next, unlike the line L1, a case of detecting the brightness change of the pixel on the line L2 passing through the center position FC will be described. The brightness change on the line L2 from the external shape OS is detected up to the point H2. The point H2 is a point set to be identical to the point H1. In the line L2, the control unit 70 is unable to detect the brightness change. At this time, the control unit 70 determines that there is no step processing position.
Herein, the putty 600 is preferably stuck so that the light shielding region LS includes points becoming the standard, such as the points H1 and H2. When the putty 600 is stuck by a width smaller than the width Wb and a plurality of outlines are detected as the outline information of the putty 600 is detected, an operator may delete unnecessary information on the monitor 40.
By obtaining the position (the position of the outer peripheral edge of the light shielding region LS) of the position of the point S1 obtained in this manner in response to the external shape OS, the step processing position S is obtained. The control unit 70 converts the external shape OS and the step processing position S into polar coordinates (a radius r and an angle θ), respectively, based on the center position FC, and obtains the target lens shape T which is the outer processing shape of the original lens, and the step processing position TS which is the step processing shape shown in
Furthermore, the apparatus 100 includes a configuration which corrects the obtained processing shape. The control unit 70, by the signal input from the monitor 40, is called a mode that is able to manually correct the shape of the step processing position TS by an operator.
An operation of the apparatus including the configuration as mentioned above and the processing shape obtaining method of the eyeglass lens will be described. An operator sticks the putty (the mark) 600 to the back side of the original lens 400 held in the rim 310. At this time, it is preferable that the putty 600 be thinly stuck. As a result, in the photographing of the lens image, the irregularity of the outline information of the putty 600 is suppressed. Moreover, an operator detaches the lens 400 from the rim 310 and mounts the lens 400 on the lens table 20. At this time, the front of the lens 400 faces upward. An operator operates the apparatus 100 and obtains the processing shape. The control unit 70 obtains the lens image 450 from the lens images 451 and 452 photographed by the first photographing condition and the second photographing condition. The control unit 70 extracts the outline information from the lens image 450 by the image processing, and obtains the processing shape (the target lens shape T and the step processing position TS). An operator compares the lens image 450 (not shown in
In this way, by attaching the mark to the eyeglass lens (the original lens) and obtaining the external shape and the step processing position by the image processing, the processing shape can simply be obtained. Furthermore, by using the putty 600 as the mark, the frame, the lens or the like are not contaminated. Furthermore, reusability of the putty 600 is high, which can suppress the cost.
The processing shape of the lens stored in the memory 71 is transmitted to the apparatus 200. (The control unit of) The apparatus 200 calculates the processing data (a coarse processing trace, cutting processing data or the like) from the processing shape, and processes the processing target lens (the prescription lens 500) using the respective processing tools. The processed lens can be fitted into the rim of the frame 300, and simply can be exchanged for the prescription lens by a user.
In addition, in the description mentioned above, the photographing condition of the lens image by the apparatus 100 has a configuration which changes the gain of the imaging element 33, but the present invention is not limited thereto. The photographing conditions such as the outline information for being extracted from the lens image may differ. For example, a configuration may be adopted in which the gain of the photographing element 33 may be constant, and the light emitting amount of light of the illumination light source 11 is changed to change the photographing condition. Furthermore, a configuration has been adopted in which the photographing of the lens image by the apparatus 100 is performed for several times, but the present invention is not limited thereto. If there is a condition in that the external shape of the lens is easily extracted and the outline state of the mark inside the lens is easily extracted, the lens image may be one.
Furthermore, in the description mentioned above, a configuration has been adopted in which the target lens shape obtained from the lens image and the step processing position are corrected, but the configuration is not necessarily required.
Furthermore, in the description mentioned above, a configuration has been adopted in which the clay-like member is used as the mark, but the present invention is not limited thereto. If a configuration is adopted which lowers the light transmittance of the original lens (or shielding the light), a configuration may be adopted in which ink having characteristics (the light shielding characteristics) of lowering the light transmittance is added by a pen. Furthermore, a configuration may be adopted in which the seal having the characteristics of lowering the light transmittance is stuck.
The method of obtaining the exterior processing shape and the step processing shape of the prescription lens is not limited to the usage of the eyeglass lens processing shape obtaining apparatus provided with the illumination unit 10 and the photographing unit 30 of
Indeed, the novel methods described herein may be embodied in a variety of other forms; furthermore, various omissions, substitutions and changes in the form of the methods described herein may be made without departing from the spirit of the inventions. The accompanying claims and their equivalents are intended to cover such forms or modifications as would fall within the scope and spirit of the inventions.
Number | Date | Country | Kind |
---|---|---|---|
2011-031460 | Feb 2011 | JP | national |
2012-027508 | Feb 2012 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
4216588 | Richards et al. | Aug 1980 | A |
4724617 | Logan et al. | Feb 1988 | A |
5121550 | Wood et al. | Jun 1992 | A |
20040008877 | Leppard et al. | Jan 2004 | A1 |
20040142642 | Thepot et al. | Jul 2004 | A1 |
20070212992 | Perez et al. | Sep 2007 | A1 |
20070226991 | Matsuyama | Oct 2007 | A1 |
20080297776 | Mizuno et al. | Dec 2008 | A1 |
20090142993 | Obayashi | Jun 2009 | A1 |
Number | Date | Country |
---|---|---|
1 832 388 | Sep 2007 | EP |
1 997 585 | Dec 2008 | EP |
2 825 308 | Dec 2002 | FR |
2006-510065 | Mar 2006 | JP |
2007-275998 | Oct 2007 | JP |
2009-131939 | Jun 2009 | JP |
2010-262034 | Nov 2010 | JP |
03071222 | Aug 2003 | WO |
WO 2004059367 | Jul 2004 | WO |
Entry |
---|
Nidek, Multifunction Edger, Me 1200. Oct. 2010. Operations Manual, p. 128-129. |
Search Report dated Jul. 16, 2014 issued by the European Patent Office in corresponding European Application No. 12001020.2. |
Number | Date | Country | |
---|---|---|---|
20120206693 A1 | Aug 2012 | US |