Eyeglass manufacturing method using variable index layer

Abstract
An eyeglass lens and manufacturing method using a variable refractive index material, such as epoxy. In one embodiment, a method of making an eyeglass lens includes: imaging a patient's eye to determine a wavefront prescription for the patient; and curing the lens based on the wavefront prescription such that the wavefront guided lens corrects for aberrations over the lens for a plurality of gazing angles of the patient.
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention


The present invention relates generally to an eyeglass manufacturing method using a layer with a variable index of refraction. More specifically, the present invention pertains to patient-specific spectacle lenses manufactured with an variable index aberrator in order to more accurately correct lower order aberrations and additionally correct higher order aberrations. The present invention also provides a means for correcting vision problems caused by retinal dysfunction.


2. Description of the Related Art


Present manufacturing techniques for eyeglass lenses are capable of producing lenses that correct only the lower order (sphere and cylinder) aberrations. Customarily, lens blanks are available in discrete steps of refractive power of 0.25 diopters. In most cases, these steps are too large to create optimum vision for a patient's eye.


Current manufacturing techniques do not effectively treat vision problems resulting from retinal dysfunction. For example, in macular degeneration, patients suffer from vision loss in selective areas of the fundus, typically close to the center of vision. Laser treatment of the affected areas further destroys retinal tissue, causing blindness at the treated areas. Clinical studies have shown that the human eye and brain are capable of switching to other areas of the retina to substitute the damaged area with an undamaged area. In other words, damaged areas in the retina are essentially bypassed by the brain. Ultimately, vision loss will occur as a portion of an image falls on the damaged retina. Consequently, there is a need to manufacture an eyepiece such that the image may be “warped” around the dysfunctional tissue in order to allow the entire image to focus on the remaining healthy tissue.


In light of the aforementioned problems, the need for an optical element which generates a unique wavefront phase profile becomes apparent. Traditional manufacturing methods create such profiles through grinding and polishing. Such a method of manufacture is very costly due to the amount of time and expertise required.


SUMMARY OF THE PRESENT INVENTION

The present invention utilizes the technology developed by the wavefront aberrator in which a layer of variable index material, such as curable epoxy, can be sandwiched between two plane or curved glass or plastic plates. This sandwich is then exposed to the curing radiation (i.e., UV light) that is modulated spatially or temporally in order to create spatially resolved variations of refractive indices. This will allow the manufacturing of a lens that is capable of introducing or compensating for low and high order aberrations.


In the simplest form, two lens blanks are sandwiched together with a layer of epoxy such that the lenses used in conjunction approximately correct the patient's refractive spherical and cylindrical correction to within 0.25 diopters. Subsequently, the epoxy aberrator would be exposed to curing radiation in a pre-programmed way in order to fine-tune the refractive properties of the spectacle lens to the exact spherical and cylindrical prescription of the patient's eye.


Another application of the present invention is to manufacture multi-focal or progressive addition lenses constructed with a layer of variable index material sandwiched in between the two lens blanks. The drawback of progressive addition lenses today is that, like regular spectacle lenses, a true customization for a patient's eye cannot be achieved due to the current manufacturing techniques. Using the two lenses and epoxy, a customized progressive addition lens or reading lens can be manufactured by appropriately programming the curing of the epoxy aberrator.


The present invention provides an opportunity to manufacture lenses that give patients “supervision.” In order to achieve supervision, higher order aberrations of the patient's eye need to be corrected. Since these higher order aberrations, unlike the spherical and cylindrical refractive error, are highly asymmetrical, centering of the eye's optical axis with the zone of higher order correction (“supervision zone”) is important. To minimize this effect, one could devise a spectacle lens that incorporates a supervision zone only along the central optical axis, allowing the patient to achieve supervision for one or more discrete gazing angles. The remainder of the lens would then be cured to correct only the lower order aberrations. An optional transition zone could be created between the supervision zone and the normal vision zone allowing for a gradual reduction of higher order aberrations. Again, all of this would be achieved by spatially resolved programming of the epoxy aberrator's curing.


In order to cover a larger field of view with supervision, a multitude of supervision “islands” might be created. The supervision islands then are connected by transition zones that are programmed to gradually change the higher order aberrations in order to create smooth transitions.


In bifocal lenses, refractive power in discrete steps of 1 diopter is added in the lower area of the lens to aid the spectacle wearer in near distance viewing, i.e. reading. For cosmetic reasons, the visible dividing line between the distance viewing area and the reading area is disliked by many presbyobic patients. With the event of the progressive addition lens, the sharp dividing line between the distance area and the reading area has been eliminated by introducing a continuous varifocal corridor of vision with a refractive power slowly changing from the distance viewing prescription to the reading prescription.


However, due to manufacturing limitations several disadvantages exist with the progressive addition lens. First, vision through areas outside the corridor is noticeably distorted, making the progressive addition lens unsuitable for many patients. Second, while the patient's individual prescription is applied to the distance viewing area, the added refractive power for the reading area is only offered in discrete steps of 1 diopter. Third, the distance between the centers of the distance viewing and reading viewing areas is fixed by the lens design and cannot be changed to accommodate for an individual's preference or application. Furthermore, the corridor design is fixed for any particular brand of lens and cannot be changed according to the patient's actual viewing preferences or spectacle frame selected.


Therefore, when prescribing a progressive addition lens, the eye care professional has to choose from an assortment of designs and manufacturers of the lens which matches the requirements of the patient most closely. The present invention allows one to manufacture a lens that is entirely customized and optimized to the patient's individual requirements.


Lastly, the present invention may be used to “warp” the retinal image so that damaged portions of the retina will be bypassed by the image. In order to do this, the visual field of the patient needs to be mapped with a perimeter or micro-perimeter. From this map of healthy retina, spectacle lenses could be manufactured using the epoxy aberrator.





DESCRIPTION OF THE DRAWINGS

The novel features of this invention, as well as the invention itself, both as to its structure and its operation, will be best understood from the accompanying drawings, taken in conjunction with the accompanying description, in which like reference characters refer to similar parts, and in which:



FIG. 1 is a perspective view of an eyeglass that incorporates a supervision zone for long distance applications;



FIG. 2 shows a cross sectional view of FIG. 1;



FIG. 3 shows a top view of a progressive addition lens, which includes a supervision zone and reading zone;



FIG. 4 shows a top view of a reading or special application lens;



FIG. 5A shows a top view of a lens including a multitude of supervision islands, which cover a larger view with supervision;



FIG. 5B shows a top view of a multi-focal lens including a multitude of reading islands, allowing for far vision correction and simultaneous reading correction;



FIG. 6 shows a text object imaged onto a damaged retina;



FIG. 7 shows the image of the same object as FIG. 6 from the patient's perspective;



FIG. 8 shows the patient's view of the image after the brain shuts down the damaged retina;



FIG. 9 shows an image focused on a damaged retina, with a corrective lens in place;



FIG. 10 shows the image as the patient initially sees it;



FIG. 11 shows the image as the patient sees it after the brain shuts down the damaged retina; and



FIG. 12 shows a sequence of manufacture for the present invention.





DETAILED DESCRIPTION OF A PREFERRED EMBODIMENT

Referring initially to FIG. 1, a lens assembly that incorporates a supervision zone is shown and generally designated 100. FIG. 1 shows that the lens assembly 100 includes an upper lens 102, a variable index layer 103, and a lower lens 104. In a preferred embodiment, the variable index layer is made of ultra-violet curing epoxy which exhibits an index of refraction that can be changed by exposure to ultraviolet radiation. However, it is to be appreciated that other materials which exhibit similar characteristics, namely a variable index of refraction, may be incorporated into the present invention without departing from the spirit of the invention.


The variable index layer 103 makes up the normal vision zone 106, the transition zone 110, and the supervision zone 108, where the epoxy at each zone is cured to a specific index of refraction. The normal vision zone 106 corrects the lower order spherical and cylindrical aberrations of the patient's eye. The transition zone 110 allows for a gradual reduction of higher order aberrations. The supervision zone 108 lies along the patient's optical axis (not shown) and corrects the higher order aberrations allowing the patient to achieve supervision for one or more discrete gazing angles. The shape of the lens 100 is meant to be exemplary of the shape of a typical eyeglass lens, and any shape, including highly curved lenses, may be used while not departing from the present invention.


Referring now to FIG. 2, a cross section of lens 100 is represented such that upper lens 102 has a thickness 112, epoxy layer 103 has a thickness 116, and the lower lens 104 has a thickness 114. The epoxy layer 103 is sandwiched between the upper lens 102 and the lower lens 104 and is held in place by a stopper 118.


Referring now to FIG. 3, an alternative embodiment of the present invention is illustrated as a progressive addition lens and generally designated 200. FIG. 3 shows a top view of a transition lens 200 in which there is a supervision zone 202, a transition zone 204, and a short distance viewing zone 206. The normal vision zone 208 of the progressive addition lens 200 is corrected for the lower aberrations. Again, the creation of the various vision zones is by means of selectively curing the epoxy aberrator sandwiched between two glass (or plastic) blanks, not through the traditional means of grinding or molding these features into a blank. The transition lens 200 has a similar cross section to that depicted in FIG. 2.


Referring now to FIG. 4, another alternative embodiment of the present invention is illustrated as a reading lens and generally designated 300. FIG. 4 shows a top view of a reading lens 300 in which there is a supervision zone 302, a transition zone 304, and a normal vision zone 306. The reading lens 300 has a similar cross section to that depicted in FIG. 2. The supervision zone 302 may be used for, but not limited to, high-resolution applications such as reading, precision close up work, etc.


Referring now to FIG. 5A, an alternative embodiment of the present invention is illustrated as a supervision lens that covers a larger field of view and is generally designated 400. FIG. 5A shows a top view of a supervision lens 400 in which there is a plurality of supervision islands 402, and a transition zone 404. The plurality of supervision islands 402 create a larger field of view for the patient, while the transition zone 404 is manufactured to gradually change the higher order aberrations in order to create smooth transitions.


Referring now to FIG. 5B, another alternative embodiment of the present invention is illustrated as a multi-focal lens that allows for simultaneous correction for far vision and reading vision and is generally designated 450. FIG. 5B shows a top view of a multi-focal lens 450 in which there is a plurality of optical islands 452, each representing the patient's reading prescription while the background zone 454 represents the patient's far vision prescription, or vice versa. Ideally, the diameter of the optical islands is on the order of 100 microns so that a maximum number of optical islands falls within the typical pupil size of 2 to 6 mm diameter.


One special application of this invention is the use for correcting vision problems caused by retinal dysfunction, e.g., by eye diseases like glaucoma or macular degeneration. FIG. 6 shows an eye generally designated 500, in which an image 502 is imaged by the eye's cornea and lens 504 onto the inner surface of the eye 500 where there is damaged retinal tissue 506. The patient initially sees only a portion of the image and an obstruction, as shown in FIG. 7. Eventually the brain shuts off the damaged portion of the retina and the patient's view no longer includes the obstruction, such a view is represented in FIG. 8. Although the patient no longer sees an obstruction, a portion of the image remains unseen. The present invention is capable of correcting this phenomenon as illustrated in FIGS. 9-11. FIG. 9 again shows an eye generally designated 600, in which an object 602 is imaged through the eye's cornea and lens 604 onto the inner surface of the eye 600 where there is damaged retinal tissue 606. However, a lens 608 manufactured using the epoxy wavefront aberrator is placed in front of the eye 600. The retinal image 609 of the object 602 is warped around damaged retinal tissue 606 such that none of the image 602 is lost. FIG. 10 shows the image the patient sees. As previously mentioned, over time the brain will terminate the signals generated by the damaged retinal tissue 606 and the patient will see the entire image 602 as shown in FIG. 11.



FIG. 12 shows a flow chart in which the manufacturing steps of the present invention are disclosed and generally designated 700. First the patient's eye must be imaged in order to determine the wavefront prescription. Second, both the upper and lower lenses must be selected. This selection corrects both the patient's spherical and cylindrical aberrations to within 0.25 diopters. Next, one side of the first lens is coated with epoxy. The second lens in then placed on the epoxy coated surface of the first lens, such that the epoxy is sandwiched between the two lenses. Finally the epoxy is cured to match the wavefront prescription.


While the different embodiments of the present invention as herein shown and disclosed in detail is fully capable of obtaining the objects and providing the advantages herein before stated, it is to be understood that it is merely illustrative of a preferred embodiment and an alternative embodiment of the invention and that no limitations are intended to the details of construction or design herein shown other than as described in the appended claims.

Claims
  • 1. An eyeglass lens comprising a radiation curable layer having a varying index of refraction wherein said layer is cured based on one or more wavefront measurements and corrects for aberrations over the lens for a plurality of gazing angles of a patient.
  • 2. The lens of claim 1 comprising a supervision zone that corrects for higher order aberrations for said plurality of gazing angles, wherein a remainder of the lens comprises a normal vision zone that is cured to correct only lower order aberrations.
  • 3. The lens of claim 2 further comprising a transitions zone located between the supervision zone and the normal vision zone.
  • 4. The lens of claim 2 wherein the supervision zone comprises a plurality of supervision islands located on the lens.
  • 5. The lens of claim 1 further comprising two outer lenses and a radiation curable epoxy layer sandwiched between the two outer lenses.
  • 6. A method of making a wavefront guided eyeglass lens which comprises: imaging a patient's eye to determine a wavefront prescription for the patient; andcuring the lens based on the wavefront prescription such that the wavefront guided lens corrects for aberrations over the lens for a plurality of gazing angles of the patient.
  • 7. The method of claim 6 wherein the lens design is further based on a vertex distance of the patient.
  • 8. The method of claim 6 wherein the lens design is further based on the curve of the lens.
  • 9. The method of claim 6 wherein the lens contains a variable index of refraction layer.
  • 10. The method of claim 9 wherein the variable index of refraction layer is photo-induced.
  • 11. A wavefront corrected lens comprising a base lens and a layer having a varying index of refraction wherein the wavefront corrected lens is designed using at least a predetermined wavefront measurement of a patient made on the patient's optical axis and the curvature of the base lens wherein the wavefront correction lens corrects low order and high order aberrations for a plurality of gazing angles of the patient.
  • 12. The lens of claim 11 comprising a supervision zone that corrects for higher order aberrations for said plurality of gazing angles, wherein a remainder of the lens comprises a normal vision zone that is cured to correct only lower order aberrations.
  • 13. The lens of claim 12 further comprising a transitions zone located between the supervision zone and the normal vision zone.
  • 14. The lens of claim 12 wherein the supervision zone comprises a plurality of supervision islands located on the lens.
  • 15. The lens of claim 11 further comprising two lens blanks and a radiation curable epoxy layer sandwiched between the lens blanks.
  • 16. The lens of claim 11 wherein the at least one transition zone is configured to provide a smooth transition between a first vision zone configured to correct at least part of the plurality of different aberrations of the patient's eye for a first gazing angle and a second vision zone is configured to correct at least part of the plurality of different aberrations of the patient's eye for a second gazing angle.
RELATED APPLICATION INFORMATION

This application is a continuation of U.S. patent application Ser. No. 11/338,090, filed Jan. 24, 2006, which is a continuation of U.S. patent application Ser. No. 10/946,384, filed Sep. 20, 2004, now U.S. Pat. No. 7,021,764, which is a divisional of U.S. patent application Ser. No. 10/773,667, filed Feb. 6, 2004, now U.S. Pat. No. 6,840,619, which is a continuation of U.S. patent application Ser. No. 10/044,304, filed Oct. 25, 2001, now U.S. Pat. No. 6,712,466, all of which are hereby incorporated by reference in their entireties.

US Referenced Citations (115)
Number Name Date Kind
3485556 Naujokas Dec 1969 A
3718383 Moore Feb 1973 A
3933411 Winner Jan 1976 A
3973837 Page Aug 1976 A
4022855 Hamblen May 1977 A
4257988 Matos et al. Mar 1981 A
4268133 Fischer et al. May 1981 A
4422733 Kikuchi et al. Dec 1983 A
4666236 Mikami et al. May 1987 A
4711576 Ban Dec 1987 A
4778256 Serizawa Oct 1988 A
4810070 Suda et al. Mar 1989 A
4869587 Breger Sep 1989 A
4874234 Wichterle Oct 1989 A
4883548 Onoki Nov 1989 A
4944584 Maeda et al. Jul 1990 A
4969729 Merle Nov 1990 A
4996123 Nomura et al. Feb 1991 A
5033838 Bonbon et al. Jul 1991 A
5062702 Bille Nov 1991 A
5080472 Gupta Jan 1992 A
5080477 Adachi Jan 1992 A
5100589 Ticknor Mar 1992 A
5114628 Hofer et al. May 1992 A
5116684 Fretz, Jr. et al. May 1992 A
5148205 Guilino et al. Sep 1992 A
5157746 Tobita et al. Oct 1992 A
5164750 Adachi Nov 1992 A
5198844 Roffman et al. Mar 1993 A
5229797 Futhey et al. Jul 1993 A
5266352 Filas et al. Nov 1993 A
5276693 Long et al. Jan 1994 A
5296305 Baude et al. Mar 1994 A
5343260 Henry et al. Aug 1994 A
5372755 Stoerr et al. Dec 1994 A
5433810 Abrams Jul 1995 A
5448312 Roffman et al. Sep 1995 A
5512371 Gupta et al. Apr 1996 A
5528321 Blum et al. Jun 1996 A
5531940 Gupta et al. Jul 1996 A
5585968 Guhman et al. Dec 1996 A
5606378 Van Meurs Feb 1997 A
5608471 Miller Mar 1997 A
5617154 Hoffman Apr 1997 A
5638479 Takami et al. Jun 1997 A
5650837 Roffman et al. Jul 1997 A
5715031 Roffman et al. Feb 1998 A
5771088 Perrott Jun 1998 A
5777719 Williams et al. Jul 1998 A
5786883 Miller et al. Jul 1998 A
5835192 Roffman et al. Nov 1998 A
5861934 Blum et al. Jan 1999 A
5864379 Dunn Jan 1999 A
5872613 Blum et al. Feb 1999 A
5880809 Lieberman et al. Mar 1999 A
5929969 Roffman Jul 1999 A
5949521 Williams et al. Sep 1999 A
5953098 Lieberman et al. Sep 1999 A
5956183 Epstein et al. Sep 1999 A
5963300 Horwitz Oct 1999 A
5986818 Hasimura Nov 1999 A
5998096 Umemoto et al. Dec 1999 A
6007204 Fahrenkrug et al. Dec 1999 A
6010756 Gasworth Jan 2000 A
6028723 Smith Feb 2000 A
6050687 Bille et al. Apr 2000 A
6070979 Kagei et al. Jun 2000 A
6081632 Yoshimura et al. Jun 2000 A
6086204 Magnante Jul 2000 A
6089711 Blankenbecler et al. Jul 2000 A
6095651 Williams et al. Aug 2000 A
6109749 Bernstein Aug 2000 A
6112114 Dreher Aug 2000 A
6120150 Sarver et al. Sep 2000 A
6155684 Bille et al. Dec 2000 A
6176580 Roffman et al. Jan 2001 B1
6199986 Williams et al. Mar 2001 B1
6224211 Gordon May 2001 B1
6234631 Sarver et al. May 2001 B1
6240226 Presby et al. May 2001 B1
6256098 Rubinstein et al. Jul 2001 B1
6257723 Sarver et al. Jul 2001 B1
6270221 Liang et al. Aug 2001 B1
6271915 Frey et al. Aug 2001 B1
6274288 Kewitsch et al. Aug 2001 B1
6299311 Williams et al. Oct 2001 B1
6305802 Roffman et al. Oct 2001 B1
6319433 Kohan Nov 2001 B1
6338559 Williams et al. Jan 2002 B1
6379005 Williams et al. Apr 2002 B1
6379008 Chateau et al. Apr 2002 B1
6382795 Lai May 2002 B1
6394605 Campin et al. May 2002 B1
6396588 Sei May 2002 B1
6464355 Gil Oct 2002 B1
6499843 Cox et al. Dec 2002 B1
6721043 Platt et al. Apr 2004 B2
6786599 Hayashi Sep 2004 B2
6786602 Abitbol Sep 2004 B2
6813082 Bruns Nov 2004 B2
6830712 Roffman et al. Dec 2004 B1
6840752 Foreman et al. Jan 2005 B2
6917416 Platt et al. Jul 2005 B2
7021764 Dreher Apr 2006 B2
7188950 Dreher et al. Mar 2007 B2
20010033362 Sarver Oct 2001 A1
20010035939 Mihashi et al. Nov 2001 A1
20010041884 Frey et al. Nov 2001 A1
20020047992 Graves et al. Apr 2002 A1
20020080464 Bruns Jun 2002 A1
20020196412 Abitbol Dec 2002 A1
20030128330 Iori et al. Jul 2003 A1
20040008319 Lai et al. Jan 2004 A1
20040051846 Blum et al. Mar 2004 A1
20060119792 Dreher Jun 2006 A1
Foreign Referenced Citations (29)
Number Date Country
0 077 168 Mar 1986 EP
0 340 091 Nov 1989 EP
0 472 384 Aug 1991 EP
0 949 529 Apr 1999 EP
1411976 Sep 1965 FR
2 661 914 Nov 1991 FR
1163002 Sep 1969 GB
57-046202 Mar 1982 JP
57-201216 Dec 1982 JP
60-175009 Sep 1985 JP
WO-9201417 Jun 1992 WO
WO-9321010 Oct 1993 WO
WO-9738344 Oct 1997 WO
WO-9827863 Jul 1998 WO
WO-9853360 Nov 1998 WO
WO-9913361 Mar 1999 WO
WO-0019885 Apr 2000 WO
WO-0041650 Jul 2000 WO
WO-0102896 Jan 2001 WO
WO-0147449 Jul 2001 WO
WO-0161382 Aug 2001 WO
WO-0171411 Sep 2001 WO
WO-0182791 Nov 2001 WO
WO-0189424 Nov 2001 WO
WO-0209579 Feb 2002 WO
WO-0219901 Mar 2002 WO
WO-0228272 Apr 2002 WO
WO-0230273 Apr 2002 WO
WO-0232297 Apr 2002 WO
Related Publications (1)
Number Date Country
20070109494 A1 May 2007 US
Divisions (1)
Number Date Country
Parent 10773667 Feb 2004 US
Child 10946384 US
Continuations (3)
Number Date Country
Parent 11338090 Jan 2006 US
Child 11649995 US
Parent 10946384 Sep 2004 US
Child 11338090 US
Parent 10044304 Oct 2001 US
Child 10773667 US