The present invention generally relates to eyeglasses with replaceable lenses. More particularly, the present invention relates to swim goggles with replaceable prescription lenses, or impact resistant glasses with replaceable prescription or plano (non-prescription) lenses.
Swim goggles are meant to protect the eyes from the water, look as streamlined and aesthetically pleasing as possible, and create as little drag as possible for the ardent swimmer.
Swimmers who need corrective lenses have generally had the option of either wearing swim goggles with piano (non-corrective) lenses, or wearing “Rx-able” swim goggles (that is, goggles with replaceable, prescription lenses). Current Rx-able swim goggles are generally unsatisfactory in that they either do not look good (due to the size and design required to accept a prescription lens), they are not totally watertight and allow water leakage, or they are too difficult to prescribe and therefore opticians refuse to work with them.
Conventionally, there are two options for mounting a prescription lens into current swim goggles. First, a prescription lens can be glued to the back of a pre-existing plano lens. This is not an easy operation, and therefore it is not very popular. Furthermore, there is a risk that that the prescription lens will hit the user's eye. Thus, the second option is more frequently used, and requires the use of either a soft or a hard eyecup to retain the lens. When using a hard eyecup, there is usually a leakage problem because it is difficult to make two hard surfaces completely water tight. This is typically corrected by applying a liquid sealer around the lens after insertion. This application risks contacting the liquid onto the lens surface and consequently, damaging the prescription lens optics. When using the soft eyecups, they must be thick enough to allow a lens to be inserted, and, after they are inserted, strong enough to retain the lens while in use. This requires the eyecup to be relatively thick, which is problematic.
With the rising awareness of the need for protective eyewear during sport activities, there is a problem with inserting a prescription lens into eyeglass frames while simultaneously meeting the impact standards set forth in the ASTM F803 and Military Ballistic standards. Conventionally, when working with high impact material, the only way to insert lenses is by mechanical means.
Accordingly, a need exists for providing improved eyewear, particularly swim goggles, with easily replaceable lenses. There is also a need for improved impact resistant frames with easily replaceable lenses.
An object of the present invention is to provide aesthetically pleasing, yet functional, swim goggles.
Another object of the present invention is to provide swim goggles that allow easy replacement and insertion of lenses by an optician.
A further object of the present invention is to provide an easily insertable prescription lens for impact resistant frames while still having aesthetically pleasing frames.
Yet another object of the present invention is to provide prescription lenses sandwiched between an impact frame or goggle and a shield.
These objects are basically obtained by providing swim goggles including a pair of eyecup assemblies. Each eyecup assembly has a nasal portion, each of which is connected by a bridge strap, and a temple portion, each of which is connected to a head strap. The eyecup assembly includes an eyecup, an inner eyecup retainer, and an outer cap releasably attached to the inner eyecup retainer. The eyecup is formed of a resilient material and has an opening with an inner surface and an outer surface. The inner surface has an inner groove for receiving a lens, and the outer surface has an outer groove. The inner eyecup retainer is formed of a relatively rigid material. The inner eyecup retainer has an opening that fits around the outside edge of the eyecup. The inner surface of the opening in the retainer has a ridge that fits into the outer groove of the eyecup.
In a further aspect of the invention, a pair of impact resistant glasses includes a chassis having a pair of openings for receiving lenses. A retaining piece has a pair of openings that correspond to the openings in the chassis for mating with the chassis. The edges of the openings in the retaining piece and chassis are beveled or stepped. The beveled or stepped edges together form grooves for receiving the lenses.
In yet another aspect of the invention, similar to the previous aspect, a pair of retaining pieces mates with the chassis. Each retaining piece has a temple portion, a nose portion, and an opening that corresponds to one of the openings in the pair of openings in the chassis.
As used in this application, the terms “top”, “bottom”, and “side” are intended to facilitate the description of the eyewear, and are not intended to limit the eyewear of the present invention to any particular orientation.
Other objects, advantages, and salient feature of the invention will become apparent from the following detailed description, which, taken in conjunction with annexed drawings, discloses a preferred embodiment of the present invention.
The above and other objects, features, and advantages of certain embodiments of the present invention will be more apparent from the following description taken in conjunction with the accompanying drawings, in which:
a is a top, plan view of an enlarged section of the screw and bridge strap connection of the swim goggles of
Throughout the drawings, the same drawing reference numerals will be understood to refer to the same elements, features, and structures.
The matters defined in the description such as a detailed construction of the elements are provided to assist in a comprehensive understanding of the embodiments of the invention. Accordingly, descriptions of well-known functions and constructions are omitted for clarity and conciseness.
Referring to
Head strap retaining members 120 may be used to connect the head strap to the eyecup assemblies 102, 104. Head strap retaining members 120 each include a first slot 172 and a second slot 174. First slot 172 receives a head strap and threads the head strap horizontally through the first slot 172 and recess 176. An opposing end of the head strap is laced through the second slot 174. Head strap retaining members 120 prevent the head strap from detaching from the eyecup assemblies 102, 104, but also allow the size of the goggles 100 to be controlled because the retaining members 120 trap the head strap in a desired position as determined by the user. Head strap retaining members 120 are adjustable to secure the headstrap once the goggles 100 are attached to the user.
The soft eyecup 106 is formed of a resilient material, such as the material used for the eyecups in the AquaSpecs swim goggles available from Liberty Sport of Fairfield, New Jersey. Any suitable material which will create a substantially water tight seal when pressed against a swimmer's face can be used. Examples of suitable materials include rubber, rubber-type materials, leather, and foam. The resiliency enables the soft eyecup 106 to conform to the area surrounding each user's eyes. Once the soft eyecup 106 is compressed, it easily retains its form and springs back to its original compression. Thus, the goggles 100 can be used on many different shaped eye areas.
The rear portion 122 of the soft eyecup 106 is contoured so that it provides a comfortable seal against a swimmer's face, yet secure enough to prevent water from seeping into the eyecups 106. The front portion 124 of the soft eyecup 106 has an opening 126. As seen most clearly in
An outer groove 136 is located on the outer surface 130 of the soft eyecup 106. The outer groove 136 is sized to receive an extended ridge 138 located on the inner eyecup retainer 110. The outer groove 136 is generally a substantially rectangular shaped aperture for receiving a mating ridge 138. Preferably, a gap 140 is provided between the ridge 138 and the bottom of the groove 136 to provide some tolerance for easier assembly and to eliminate a vacuum effect when the mating ridge 138 and the groove 136 are engaged.
The inner eyecup retainer 110 is formed of a relatively rigid material, such as a plastic, or, more particularly, polycarbonates, propionates, or polypropylenes. This enables a secure and tight fit between the inner eyecup retainer 110 and the eyecup 106. The inner eyecup retainer 110 has a recess 142 sized to fit snugly around the outside surface 130 of the eyecup 106. Recess 142 also is shaped to provide a snug fit between the outer cap 112 and the inner eyecup retainer 110. The inner surface 148 of the inner eyecup retainer 110 has a ridge 138 and a recess 142.
The ridge 138 engages the outer groove 136 on the eyecup 106 to secure the inner eyecup retainer 110 into the eyecup 106. The recess 142 provides expansion space for the resilient eyecup 106 to expand when it is compressed during assembly, and the recess 142 assists in providing a tight seal. This connection enables a user to have secure goggles 100 while simultaneously allowing an eyewear professional to access the lenses 108 freely without having to pry it from the assembly. The contour of the outer surface 144 of the inner eyecup retainer 110 corresponds to the contour of the inner surface 146 of the outer cap 112 to provide a smoother and aesthetically appealing connection.
The outer cap 112 is formed of a relatively rigid material, such as a plastic. Optimal plastics may include polycarbonates and polypropylenes. The outer cap 112 has an opening 150, or first aperture, that is sized to fit over the inner eyecup retainer 110. The outer cap 112 is releasably attached to the inner eyecup retainer 110 with a corresponding recess 156 and a protrusion 157 located at the nasal portion of the inner eyecup retainer 110 and the outer cap 112. Additionally, as depicted in
As seen most clearly in
Turning now to
The positions of the recesses 156, 160 and the protrusions 157, 158 could be reversed such that the recesses 156, 160 are on the outer surface 144 of the inner retainer 110 and the protrusions 157, 158 are disposed on the inner surface 146 of the outer cap 112. Therefore, when the goggles 100 are assembled, the connectors including the protrusions 157, 158 and the recesses 156, 160 hold the outer cap 112 into place with respect to the inner retainer 10. In other words, protrusions 157, 158 are both located on the outer surface 144 of the inner retainer 110, but at opposing ends. Recesses 156, 160 are both located on the inner surface 146 of the outer cap 112, but at opposing ends. Thus, from the connectors of the protrusions 157, 158 and the recesses 156, 160, this engagement creates the snapping relationship securing the outer cap 112 to the retainer 110.
Eyecup retainer 110 pivots to disengage from the outer cap 112. This disengagement is caused by protrusion 157 releasing from recess 156 at the nasal portion 114 of the goggles 100 and likewise, protrusion 158 releasing from recess 160 at the temple portion 118 of the goggles 100. This “sandwiching” effect traps the lenses 108 and prevents them from popping out of the goggles 100. There is a spring force, working together with the connectors, that locks in the lens 108.
The temple portion 118 of the outer cap 112 is designed to be connected to a head strap (not illustrated). The head strap is indirectly connected to the outer cap 112 by connecting to a head strap retaining member 120. The head strap retaining member 120 may be used to control the length of the head strap and adjust it for a proper fit. A slot is provided in the outer cap 112 for connection with the head strap retaining member 120. A head strap is laced through a head strap retaining member 120 and can be adjusted to suit a user's size. Head strap retaining member 120 is composed of a suitable material to support the adjustability of the head strap and the flexibility of eyecup assemblies 102, 104. Suitable strap attachment members are available from Liberty Sport with, for example, their Sting Ray model of swim goggles. By having both the bridge strap 116 and the head strap connected to the outer cap 112, in use, pressure is applied on the lens 108 so that it stays in place. Preferably, the head strap is a split strap to provide more positive positioning on a wearer's head.
The lens 108 of the present invention is preferably substantially planar. The outer edge of the lens 108 is preferably a v-shaped bevel since optical equipment is typically designed to construct v-shaped bevels, but nevertheless, the edge may be any suitable shape. The bevel is received in the groove 134 to engage the soft eyecup 106. Due to the lens 108 thickness, if necessary, the bevel connection could be stepped such that there is more than one level, thus allowing for multi-tiered lenses to be connected and snapped into the eyecup assembly 102, 104. This would depend on the required prescription or taper of the lenses.
The installation of a lens 108 into an eyecup assembly 102, 104 is as follows. First, the assembly of the left and right sides 102, 104 is disassembled, if it has been previously assembled. To do this, the outer cap 112 is flexed to unsnap the connectors of the protrusions 157, 158 and the recesses 156, 160. Protrusion 157 is disengages from 156 and then, protrusion 158 is disengaged from recess 160. The outer cap 112 is then set aside. A lens 108 of the desired prescription is then placed into the inner groove 132 in the soft eyecup 106. The recess 142, or second aperture, on the inner eyecup retainer 110 lets the soft eyecup material deform into the recess 142, and therefore eases the insertion of the lens 108. Furthermore, this helps to provide a watertight seal around the edge of the swim goggles 100 and the wearer's face. Once the lens 108 is in place, the outer cap 112 is replaced onto the inner retainer 110 and snapped back into place with the connectors. The inner surface 146 of the outer cap 112 presses against the front surface 170 of the eyecup 106, thereby helping to provide a better seal.
A second exemplary embodiment of the present invention is illustrated in
As illustrated in
The front portion 324 of the eyerim 302 has an opening 326 for receiving the lens 308. An inner groove 332 is located on the inner surface 328 near the opening 326. Preferably, the surfaces 334 of the inner groove 332 are beveled to mate with the edge of the lens 308. The eyerim 302 is sized to receive extended ridges 338 of the outer cap 312. These ridges 338 engage the eyerim 302 to snap around the lens 308 and secure the lenses 308 to the eyerim 302. The extended ridges 338 are generally substantially rectangular shaped projections for engaging apertures in the exterior surface of the eyerims 302. Preferably, a gap 340 is provided between the ridges 338 and the apertures to provide some tolerance for easier assembly and to eliminate a vacuum effect when the mating ridges 338 and the apertures of the eyerims 302 are engaged.
The outer cap 312 is formed of a relatively rigid material, such as a plastic, or, more particularly, polycarbonates, propionates, or polypropylenes. This enables a secure and tight fit between the eyerim 302 and the outer cap 312, thus protecting the lenses 308 from popping out of the eyepiece assembly 300.
A third exemplary embodiment of the present invention is illustrated in
In this embodiment, the glasses 400 have a front retaining piece 402 that is combined with a one piece chassis 404. When the front retaining piece 402 is combined with the chassis 404, the assembly forms a square-shaped 426 or a v-shaped groove 406 or openings for receiving a lens 408. The lens retainer 402 holds the lens 408 in place. An eyecup similar to that of the goggles 100, described in the first embodiment, can be inserted into the back of the chassis 404 and act as a seal and a guard against wind and debris. Half of the groove 406, 426 is formed on the front retaining piece 402 and half on the chassis 404.
The front retaining piece 402 is made from a rigid impact resistant material and shaped to create the front part of the glasses 400. The front retaining piece 402 is mated with the chassis 404 by snapping into the chassis 404 to lock the lenses 408 into place. The lenses 408 are sandwiched between the front retaining piece 402 and the chassis 404. The chassis 404 is also formed of a rigid impact resistant material. The edges are beveled or stepped and form grooves 406, 426, as seen in
Referring to
In the illustrated embodiment, the lens 408 is placed directly into the groove 406. If desired, a soft liner or an eyecup (not shown) can be used between the lenses 408 and the groove 406. The eyecup or liner will act as a cushion for the lenses 408 to be positioned and will help absorb any impacts. Additionally, it would provide extra protection around the eyes, which is ideal for a wearer engaged in sport activities.
A fourth exemplary embodiment of the present invention is illustrated in
In this embodiment, the glasses 500 have two front retaining slots or pieces 502, 502′ combined with a one piece chassis 506 having two openings to receive lenses 508. When the front retaining pieces 502, 502′ are combined with the chassis 506, the assembly forms a square-shaped or a v-shaped groove for receiving a lens 508. The front retaining pieces 502, 502′ are made from a rigid impact resistant material and shaped to create the front part of the glasses 500. The front retaining pieces 502, 502′ are snapped into the chassis 506 to lock the lenses 508 into place. The lenses 508 are sandwiched between the front retaining pieces 502, 502′ and the chassis 506.
The front retaining pieces 502, 502′ are then connected to each other via the nose portions 504 with a connection assembly. The connection assembly is best described as a bridge (not shown). The bridge includes two outwardly opening retention slots to receive interlocking portions of the nose portions 504 of the front retaining pieces 502, 502′. The nose portions 504 could be glued or snapped into the bridge. In all other respects, this embodiment is substantially the same as previously described.
While various embodiments have been chosen to illustrate the invention, it will be understood by those skilled in the art that various changes and modifications can be made therein without departing from the scope of the invention as defined in the appended claims.
This application claims the benefit of U.S. Provisional Application 60/661,501, filed Mar. 15, 2005. That application is hereby incorporated by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
60661501 | Mar 2005 | US |