This disclosure relates to vented eyewear, and more specifically to eyewear having multiple ventilation states that produce different levels of ventilation.
A wide variety of eyewear products are available. Some eyewear products suffer from various drawbacks, such as insufficient ventilation, insufficient protection (e.g., at lateral portions of the eyewear), insufficient ballistic impact resistance, etc. The embodiments disclosed herein address some of these drawbacks.
Various embodiments disclosed herein relate to eyewear that includes a lens and a frame that is configured to support the lens in a field of view of a wearer. The eyewear can include a gasket attached to the frame, and the gasket can include a flange configured to conform to the face of the wearer. The gasket can be movable relative to the frame between a closed position and an open position, and the open position provides more ventilation through the eyewear than the closed position.
In some embodiments, the lens does not move relative to the frame when the gasket is transitioned between the closed position and the open position.
The gasket can be movable relative to the frame to one or more intermediate positions that provide more ventilation than the closed position and less ventilation than the open position.
In some embodiments, the frame can include a pair of ear stems.
The gasket can be removably attached to the frame. The lens and frame can be configured to be wearable without the gasket (e.g., in a reduced protective configuration). In some embodiments, the gasket can be removably attachable to the lens (or lenses) of the eyewear. For example, the gasket can have a subframe that is configured to engage the lens (or lenses) of the eyewear.
The gasket can include a subframe configured to abut against the frame when the gasket is in the closed position. In some embodiments, the subframe can be configured to deform when the gasket is in the open position, and the deformation of the subframe can be configured to increase the ventilation through the eyewear as compared to an undeformed configuration of the subframe. In some embodiments, the subframe can be substantially rigid, and the subframe can be configured to pivot about a nose portion between the open position and the closed position.
Various embodiments disclosed herein relate to eyewear that includes a lens and a frame configured to support the lens in a field of view of a wearer. The eyewear can include a gasket that is removably attachable to the frame. In some embodiments, the gasket can be removably attachable to the lens (or lenses) of the eyewear. The gasket can include a flange configured to conform to the face of the wearer.
In various embodiments, the lens and frame can be configured to be wearable with the gasket in a protective configuration having a low level of ventilation, and the lens and frame can be configured to be wearable without the gasket in a reduced protective configuration having a high level of ventilation.
The gasket can include a gasket retention member configured to removably attach the gasket to the frame. The gasket retention member can include a grippable portion positioned at the top of the gasket. In some embodiments, the grippable portion and gasket retention member can provide a quick release that allows the gasket to be removed from the frame while the frame is being worn, without removal of the eyewear from the wearer's face. The gasket retention member can include a clip configured to engage a bridge portion of the frame. In some embodiments, the grippable portion can extend forward past the front end of the frame.
Various embodiments disclosed herein relate to eyewear that includes a lens having a front surface and a back surface and a frame configured to support the lens in a field of view of a wearer. The eyewear can include a gasket having a subframe that includes a front side and a back side. The gasket can include a flange on the back side of the subframe, and the flange can be configured to conform to the face of the wearer. The gasket can include a front seal on the front side of the subframe, and the front seal can be configured to abut against the back surface of the lens.
In some embodiments, the front seal can be attached to the flange. In some embodiments, the flange and the front seal can be integrally formed. The subframe can include one or more holes extending from the front side of the subframe to the back side of the subframe. A material can extend through the one or more holes to interconnect the flange to the front seal. In some embodiments, a material can extend around the outside of at least a portion of the subframe to interconnect the flange to the front seal.
In some embodiments, the gasket can be configured to allow ventilation through the eyewear. For example, the front seal can include one or more vent gaps that provide ventilation. In some embodiments, the flange can include one or more vent gaps that provide ventilation. In some embodiments, the subframe can include one or more vent gaps that provide ventilation. In some embodiments, the gasket can include a porous material that provides ventilation.
The gasket can include a gasket retention member configured to removably attach the gasket to the frame. The gasket retention member can include a grippable portion positioned at the top of the gasket, and the gasket can be configured to be removable from the frame while the frame is worn. In some embodiments, the lens and frame can be configured to be wearable without the gasket.
Various embodiments disclosed herein relate to eyewear that includes a lens and a frame configured to support the lens in a field of view of a wearer. The lens can be movable with respect to the frame between a closed position and an open position, and the open position can provide more ventilation through the eyewear than the closed position. The eyewear can include a lens retaining member configured to toggle the lens between the closed position and the open position, and the lens retaining member can be configured to retain the lens in the closed position in the event of a lens impact event.
The lens retaining member can include a front arm positioned forward of the lens when in the closed position and one or more positioning features that can be configured to engage one or more corresponding features on the frame to retain the lens in the closed position. The front arm can be coupled to the one or more positioning features at a junction that is rearward of the one or more corresponding features on the frame such that a force applied to the front arm by an impact on the lens is transferred to the one or more positioning features through the junction to prevent disengagement of the one or more positioning features from the one or more corresponding features on the frame. In some embodiments, the positioning features can be positioned on a front side of the lens retaining member, and the juncture can be on a back side of the lens retaining member.
Various embodiments disclosed herein relate to eyewear having a lens and a frame configured to support the lens in a field of view of a wearer. The lens can be movable with respect to the frame between a closed position and an open position, and the open position can provide more ventilation through the eyewear than the closed position. The frame can have a nose portion. The lens in the open position can be spaced apart from the nose portion of the frame such that a linear line can be drawn from a location outside the eyewear, between the nose portion and the lens, and to a location inside the eyewear that is rearward of the frame. The eyewear can include at least one ridge disposed between the nose portion of the frame and the lens such that the at least one ridge intersects the linear line. In some embodiments, all of one or more openings between the lens and the nose portion of the frame through which a linear line extends from a location outside the eyewear to a location inside the eyewear and rearward of the frame can have a width of about 1.5 mm or less.
Various embodiments disclosed herein relate to eyewear that includes a lens comprising one or more tabs and a frame configured to support the lens in a field of view of a wearer. The lens can be movable with respect to the frame between a closed position and an open position, and the open position can provide more ventilation through the eyewear than the closed position. The frame can include one or more grooves configured to receive the one or more tabs therein. The grooves and tabs can be configured to cause the lens to deform when in the open position, and the deformation of the lens can increase ventilation in the eyewear as compared to an undeformed configuration of the lens.
Various embodiments disclosed herein can relate to an eyewear attachment that can include a subframe and a flexible flange extending rearward from the subframe. The flexible flange can be configured to rest against and conform to the face of a wearer. The eyewear attachment can include a retention member configured to removably attach the eyewear attachment to eyewear. The retention member can include a grip for releasing the eyewear attachment from the eyewear, the grip positioned at a top of the eyewear attachment.
In some embodiments, the eyewear attachment can be used with eyewear that includes a lens and a frame configured to support the lens in a field of view of a wearer. The eyewear attachment can be removably coupled to the eyewear, and the lens and frame can be configured to be wearable without the eyewear attachment. The eyewear attachment can be removably coupled to a portion of the frame that is disposed proximate a top periphery of the lens. In some embodiments, the eyewear attachment is removably coupled to an engagement portion of the frame, and the grip can extend forward past the engagement portion of the frame.
In some embodiments, the retention member can include a clip configured to engage a bridge portion of the eyewear. The grip can extend forward past the clip. The eyewear attachment can be configured to be removable from the eyewear while the eyewear is being worn. The eyewear attachment can include a nose piece engagement member that is configured to engage a nose piece on the eyewear.
Various embodiments disclosed herein can relate to an eyewear attachment that includes a subframe having a front side and a back side, a retention member configured to removably couple the subframe to eyewear, a flexible flange on the back side of the subframe, where the flexible flange is configured to rest against and conform to the face of the wearer, and a front element on the front side of the subframe. The front element can be configured to abut against a back surface of a lens of the eyewear.
The eyewear attachment can be used with eyewear that includes a lens and a frame. The frame can be configured to support the lens in a field of view of a wearer. The eyewear attachment can be removably coupled to the eyewear. The lens and frame can be configured to be wearable without the eyewear attachment. The eyewear attachment can be removably coupled to the frame.
The front element can be a front seal that includes a flexible material that is configured to seal against at least a portion of the back surface of the eyewear lens. The front element can be attached to the flexible flange. The flexible flange and the front element can be integrally formed of the same material. The subframe can include one or more holes extending from the front side of the subframe to the back side of the subframe, and a material can extend through the one or more holes to interconnect the flexible flange to the front element. A material can extend around the outside of at least a portion of the subframe to interconnect the flexible flange to the front element. In some embodiments, the eyewear attachment can be configured to allow ventilation through the eyewear. For example, at least one of the front element, the flexible flange, and the subframe can include a porous material and/or vent gaps that provide ventilation.
The retention member can include a grip positioned at the top of the eyewear attachment, and in some embodiments, the eyewear attachment can be configured to be removable from the eyewear while the eyewear is worn.
The flexible flange can include a right orbital and a left orbital. The right orbital can be configured to at least partially seal around the wearer's right eye, and the left orbital can be configured to at least partially seal around the wearer's left eye. The enclosed volume inside the right orbital can be separated from an enclosed volume inside the left orbital to impede exchange of air between the enclosed volumes inside the right and left orbitals.
Various embodiments disclosed herein can relate to a method of removing an eyewear attachment. The method can include wearing eyewear and an eyewear attachment. The eyewear can include a lens and a frame supporting the lens in a field of view of a wearer. The eyewear attachment can include a subframe, a flexible flange conforming to the face of the wearer, and a retention member removably coupling the subframe to the eyewear. The retention member can include a grip disposed at a top of the eyewear attachment. The method can include pulling generally upwardly on the grip to disengage the retention member from the eyewear and to remove the eyewear attachment from the eyewear while the frame and lens are being worn.
Various embodiments disclosed herein can relate to eyewear that includes a lens, a frame configured to support the lens in a field of view of a wearer, and a lens retaining member coupled to a brow portion of the frame. The lens retaining member can be rotatable between a closed position and an open position. The closed position of the lens retaining member can retain the lens on the frame in a closed configuration such that the lens is in the field of view of the wearer. The open position of the lens retaining member can retain the lens on the frame in an open configuration such that the lens is in the field of view of the wearer. The open configuration of the lens can provide more ventilation through the eyewear than the closed configuration of the lens.
The lens retaining member can include a back arm disposed rearward of the lens and configured to push the lens to the open configuration when the lens retaining member is moved to the open position. The lens retaining member can include a front arm disposed forward of the lens and configured to push the lens to the closed configuration when the lens retaining member is moved to the closed position. The lens retaining member can include one or more positioning features configured to engage one or more corresponding features on the frame to maintain the lens retaining member in the closed position.
The eyewear can be a goggle that includes a flexible flange configured to rest against and conform to the face of the wearer. In some embodiments, the lens can substantially seal against the frame when the lens is in the closed configuration. The lens can include one or more tabs, and the frame can include one or more grooves configured to receive the one or more tabs therein. The tabs can slide within the grooves when the lens moves between the closed configuration and the open configuration. The frame can include a first lateral side and a second lateral side, and the brow portion can extend between the first and second lateral sides. In some embodiments, the lens retaining member can be substantially centered on the brow portion of the frame.
Various embodiments disclosed herein can relate to eyewear that includes a lens and a frame configured to support the lens in a field of view of a wearer. The lens can be movable with respect to the frame between a closed position and an open position. The lens can be configured to be in the field of view of the wearer when in the open position and when in the closed position. The open position can provide more ventilation through the eyewear than the closed position. A lens retaining member can be configured to toggle the lens between the closed position and the open position. The lens retaining member can be rotatable between a first position associated with the closed position of the lens and a second position associated with the open position of the lens. The lens retaining member can be configured to impede the lens from moving from the closed position to the open position in response to a force pushing the lens toward the open position.
The lens retaining member can include a front arm positioned forward of the lens when the lens is in the closed position, and the lens can apply a force on the front arm when the lens is pushed toward the open position. The lens retaining member can include one or more positioning features on a first side of the lens retaining member, and the one or more positioning features can be configured to engage one or more corresponding features on the frame when the lens is in the closed position. The front arm can be coupled to the one or more positioning features at a junction on a second side of the lens retaining member such that the force applied to the front arm by the lens imparts a force on to the one or more positioning features in a direction that further secures the lens in the closed position.
In some embodiments, the second side of the lens retaining member can be substantially opposite the first side of the lens retaining member. The one or more positioning features can be on a front side of the lens retaining member, and the junction can be on a back side of the lens retaining member. The one or more positioning features can include hooks. The one or more corresponding features on the frame can include teeth.
In some embodiments, the lens retaining member can include one or more positioning features configured to engage one or more corresponding features on the frame when the lens is in the closed position. The lens retaining member can include a locking element that can be configured such that the force that pushes the lens toward the open position causes the locking element to press against the one or more positioning features to impede the one or more positioning features from disengaging from the one or more corresponding features on the frame so as to impede the lens from moving from the closed position to the open position.
The lens retaining member can include a front arm positioned forward of the lens when the lens is in the closed position, and the locking element can be disposed on a front side of the front arm.
In some embodiments, the lens retaining member can be movable between the first position associated with the closed position of the lens, the second position associated with the open position of the lens, and a releasing position configured to enable the lens to be removed from the frame.
Various embodiments disclosed herein can relate to eyewear that includes a lens and a frame that has a nose portion. The frame can be configured to support the lens in a field of view of a wearer. The lens can be movable with respect to the frame between a closed position and an open position, and the open position can provide more ventilation through the eyewear than the closed position. The lens in the open position can be spaced apart from the nose portion of the frame such that a linear line extends from a location outside the eyewear, between the nose portion and the lens, and to a location inside the eyewear that is rearward of the frame. At least one ridge can be disposed between the nose portion of the frame and the lens and the at least one ridge can intersect the linear line.
The at least one ridge can be configured such that, when the lens is in the open position, all of one or more openings between the lens and the nose portion of the frame through which a linear line extends from a location outside the eyewear to a location inside the eyewear and rearward of the frame have a width of about 1.5 mm or less. The nose portion can include one or more openings extending through the nose portion and configured to increase ventilation through the eyewear when the lens is in the open position. The nose portion can include a plurality of ridges and the one or more openings can be disposed between the plurality of ridges.
The brow portion of the frame can include a plurality of openings. The plurality of openings in the brow portion can be in communication with the inside of the eyewear to provide ventilation when the lens is in the open position, and in some embodiments, the plurality of openings in the brow portion are not in communication with the inside of the eyewear when the lens is in the closed position.
Various embodiments disclosed herein can relate to an eyewear attachment for coupling to eyewear. The eyewear attachment can include a subframe and a flexible flange extending rearward from the subframe. The flexible flange can be configured to rest against and conform to the face of a wearer. The eyewear attachment can include an engagement member extending forward from the subframe and a retention member configured to couple to a frame of the eyewear. The engagement member can engage the retention member such that the eyewear attachment is configured to be disposed between the face of the wearer and the eyewear frame. The engagement member can be engageable with the retention member at a first location for positioning the eyewear attachment in an open position and a second location for positioning the eyewear attachment in a closed position. The open position is configured to provide more ventilation through the eyewear than the closed position.
The eyewear attachment can be used with eyewear that includes a lens and a frame configured to support the lens in a field of view of a wearer. The eyewear attachment can be coupled to the frame. The retention member can be removably coupled to the frame, and the lens and the frame can be configured to be wearable without the eyewear attachment. In some embodiments, the lens does not move relative to the frame when the eyewear attachment is moved between the closed position and the open position.
In some embodiments, the subframe can be configured to deform when the eyewear attachment is in the open position, and the deformation of the subframe can be configured to increase the ventilation through the eyewear as compared to an undeformed configuration of the subframe. The subframe can be configured to abut against the frame when the eyewear attachment is in the closed position. The eyewear attachment can be configured to be movable relative to the frame to one or more intermediate positions that provide more ventilation than the closed position and less ventilation than the open position.
Various embodiments disclosed herein can relate to an eyewear attachment for use with eyewear. The eyewear attachment can include a flexible flange configured to rest against and conform to the face of a wearer and an engagement member coupled to the flexible flange and configured to couple the eyewear attachment to an eyewear frame in a closed position and in an open position. The flexible flange can be configured to move relative to the frame between the closed position and the open position, and the open position can be configured to provide more ventilation through the eyewear than the closed position.
The eyewear attachment can be used with eyewear that includes a lens and a frame configured to support the lens in a field of view of a wearer. The eyewear attachment can be coupled to the frame. In some embodiments, the lens does not move relative to the frame when the eyewear attachment is moved between the closed position and the open position. The frame can include a pair of ear stems and a brow portion extending between the pair of ear stems. The engagement member can couple the eyewear attachment to the brow portion of the frame. The engagement member can be substantially centered on the brow portion of the frame.
The eyewear attachment can be removably coupled to the frame. The lens and the frame can be configured to be wearable without the eyewear attachment. The eyewear can be configured to substantially seal against the wearer's face when the eyewear attachment is in the closed position. The eyewear attachment can be configured to be movable relative to the eyewear frame to one or more intermediate positions that provide more ventilation than the closed position and less ventilation than the open position.
The eyewear attachment can include a subframe. The subframe can be configured to abut against the eyewear frame when the eyewear attachment is in the closed position. The subframe can be configured to deform when the eyewear attachment is in the open position, and the deformation of the subframe can be configured to increase the ventilation through the eyewear as compared to an undeformed configuration of the subframe. The eyewear attachment can be configured to remain attached to a nose portion of the eyewear frame when the eyewear attachment moves from the closed position to the open position.
The eyewear attachment can include a retention member that can be configured to couple to the frame. The flexible flange and engagement member can be movably coupled to the retention member. The engagement member can include one or more slots having one or more detents that separate the one or more slots into a first portion and a second portion. The retention member can include one or more prongs configured to engage the one or more slots. The prongs can be positioned in the first portion of the one or more slots when the flexible flange is in the closed position, and the prongs can be positioned in the second portion of the one or more slots when the flexible flange is in the first position. The retention member can be configured to removably couple to the eyewear frame. The retention member can be configured to couple to a brow portion of the eyewear frame, and the engagement member can be positioned on a brow portion of the eyewear attachment.
Various embodiments disclosed herein can relate to a method of ventilating eyewear. The method can include wearing eyewear and an eyewear attachment. The eyewear can include a lens and a frame supporting the lens in a field of view of a wearer. The eyewear attachment can include a retention member coupled to the frame, a subframe, a flexible flange conforming to the face of the wearer, and an engagement member with an arm extending forward from the subframe. The engagement member can engage the retention member to couple the eyewear attachment to the frame. The eyewear attachment can be in a closed position. The method can include pressing the arm rearward to move the eyewear attachment relative to the frame to an open position. The open position can provide more ventilation through the eyewear than the closed position.
In some embodiments, the lens does not move relative to the frame when the eyewear attachment is moved between the closed position and the open position. In some embodiments, the flexible flange remains in contact with the wearer's face as the eyewear attachment moves relative to the frame to the open position, and the frame moves away from the wearer's face as the eyewear attachment moves relative to the frame to the open position.
The abovementioned and other features of the embodiments disclosed herein are described below with reference to the following drawings. The drawings are intended to illustrate example embodiments, and do not limit the inventions. The drawings contain the following Figures:
While the present description sets forth specific details of various embodiments, it will be appreciated that the description is illustrative only and should not be construed in any way as limiting. Additionally, although particular embodiments may be disclosed or shown in the context of unitary lens eyewear systems, dual lens eyewear systems can also be used. Further, although embodiments disclosed herein can be used with eyeglasses that have removable and replaceable lenses, embodiments are also contemplated in which the eyeglasses are not intended to provide for removable or replaceable lenses.
The eyeglass 102 can include a lens 108 and a frame 110 configured to position the lens 108 in a field of view of a wearer. The frame 110 can include a pair of ear stems 112a and 112b. The eyeglass 102 can also include a nose piece 114 configured to rest on the nose of a wearer. In some embodiments, the eyeglass 102 can include a lens retaining member 116 that can be configured to removably secure the lens 108 to the frame 110, thereby allowing the wearer to interchange the lens 108 of the eyeglass 102. For example, the lens 108 can be interchanged for a different lens if the lens 108 become damaged or dirty, and the lens 108 can be interchanged for a different lens having different optical properties depending on the conditions of use. The lens retaining member 116 can be configured to retain the lens 108 on the frame 110 in the event of impact to the lens 108 (e.g., a ballistic impact). Additional details relating to the eyeglass 102 are disclosed in U.S. Patent Publication No. 2011/0194065 (the “'065 Publication”), published on Aug. 11, 2011, and titled “EYEWEAR WITH ENHANCED BALLISTIC RESISTANCE,” the entirety of which is incorporated by reference herein and made a part of this specification for all that it discloses.
The gasket retention member 106 can be coupled to the frame 110, for example, to a brow portion 118 of the frame 110. In some embodiments, the gasket retention member 106 can be removably attachable to the frame 110. The gasket retention member 106 can include one or more engagement members that are configured to engage corresponding engagement members, or an engagement area, on the frame 110 to removably secure the gasket retention member 106 to the frame 110. The engagement members can cause engagement by a snap-fit, a friction-fit, a clip, etc.
With further reference to
The face flange 134 can be attached to the subframe 132, for example, by an adhesive. The subframe can include a brow portion 136 that has a front surface that is contoured to correspond to the shape of the back surface of the brow portion 118 of the frame 110 of the eyeglass 102. Thus, when the gasket 104 is coupled to the eyeglass 102 in a closed configuration, the front surface of the brow portion 136 of the gasket subframe 132 can abut against the back surface of the brow portion 118 of the eyeglass frame 110, which can create a seal to substantially prevent dust and debris from passing between the gasket subframe 132 and the eyeglass frame 110 at the brow portions thereof. The subframe 132 can include a lens orbital 138 that is configured to have a shape that generally conforms to the perimeter of the lens 108. In some embodiments, when the gasket 104 is attached to the eyeglass 102 in a closed configuration, the lens 108 can abut against the lens orbital 138 along at least a portion of the perimeter of the lens 108, which can create a seal that substantially prevents dust and debris from passing between the lens 108 and the lens orbital 138. In some embodiments, the brow portion 136 and lens orbital 138 of the subframe 132 can be integrally formed of the same material, while in other embodiments, the brow portion 136 can be formed separately from the lens orbital 138, and can be attached thereto (e.g., by an adhesive). In some embodiments, the lens orbital 138 can be formed from a generally flexible and resilient material. The brow portion 136 can be formed of the same material as the lens orbital 138, or of a more rigid material.
The gasket 104 can include a gasket engagement member 140 that is configured to couple the gasket to the eyeglass 102. For example, the gasket engagement member 140 can be configured to engage the gasket retention member 106 to removably attach the gasket 104 to the eyeglass 102. The gasket engagement member 140 can include an arm 142 extending forward from the gasket subframe 132, such as from the brow portion 136 thereof. In some embodiments, the arm 142 can be integrally formed with some or all of the gasket subframe 132 (e.g., integrally formed with the brow portion 136 thereof). In other embodiments, the arm 142 can be separately formed from the subframe 132 and attached thereto. In some embodiments, the arm 142 can be formed of a rigid or semi-rigid material. The arm 142 can be configured to fit slidably into the gap 124 shown in
The arm 142 can include a pair of prongs 144a and 144b extending out from the sides of the arm 142. The prongs 144a and 144b can be configured to engage the advancing slots 130a and 130b on the gasket retention member 106. As can be seen in
With reference now to
The arm 142 can be pushed back so that the prongs 144a and 144b are positioned rearward of the back detent 148b to transition the gasket 104 in an open position relative to the eyeglass 102, as shown in
As can be seen in
In some embodiments, the eyewear 100 can provide for filtered ventilation. For example, in
Many modifications can be made to the eyewear 100. For example, the gasket can be attachable to the eyeglass in various suitable manners.
The gasket engagement member 240 can be configured to couple the gasket 204 to the eyeglass 202. For example, the gasket engagement member 240 can be configured to engage the gasket retention member 206 to removably attach the gasket 204 to the eyeglass 202. The gasket engagement member 240 can include an arm 242 extending forward from the gasket subframe 232, such as from the brow portion 236 thereof. In some embodiments, the arm 242 can be integrally formed with some or the entire gasket subframe 232 (e.g., integrally formed with the brow portion 236 thereof). In other embodiments, the arm 242 can be separately formed from the subframe 232 and attached thereto. In some embodiments, the arm 242 can be formed of a rigid or semi-rigid material.
The arm 242 can include a pair of advancing slots 230a and 230b configured to engage the prongs 244a and 244b of the gasket retention member 206. The advancing slots 230a and 230b can include one or more detents 248 configured to separate the advancing slots 230a and 230b into two or more portions. For example, as shown in
The at least one detent 248 can enable the gasket engagement member 240 to toggled between multiple configurations providing different amounts of air flow, as discussed herein. In some embodiments, a single detent 248 can be used to define two configurations: a closed configuration (as shown in
In operation, the wearer can toggle the eyewear 200 to the open configuration by pressing the engagement member 240 (e.g., the arm 242) generally rearward (e.g., rearward and downward), which can cause the gasket 204 to move rearward relative to the frame 210. In some embodiments, the gasket 204 can abut against the face of the wearer, and pressing the arm 242 can cause the frame 210 to move forward away from the face of the wearer as the eyewear 200 changes to the open configuration. To toggle the eyewear 200 to the closed configuration, the user can press the eyeglass 202 (e.g., the frame 210 or the lens 208) rearward (e.g., posteriorly, towards the face of the wearer). The force on the eyeglass 202 can cause the engagement between the engagement member 240 and the retention member 206 to transition from an open position to a closed position. The gasket 204 can move forward (e.g., anteriorly) relative to the frame 210 to close the eyewear 200. In some embodiments, the gasket 204 can abut against the face of the wearer, and pressing the eyeglass 202 rearward can cause the frame 210 to move rearward to toggle the eyewear to the closed position. The user can open the eyewear 200 by pressing on a single location, as well as close the eyewear 200 by pressing on a single location, as opposed to pinching two objects together, pushing two locations simultaneously, holding one object or portion while moving a different object or portion, etc. Accordingly, the eyewear 200 can be opened and/or closed with a single hand, with a single hand wearing a glove, and/or with a single hand while holding an object, etc. The wearer does not need to grip anything to open and/or close the eyewear 200. This can be advantageous by allowing the wearer to open the eyewear 200 (e.g., to defog the eyewear) and/or close the eyewear 200 while the wearer's hands are engaged with other objects (e.g., during a combat situation).
The face flange 306 can have contours configured to fit to that face of a wearer, and the face flange can include a flexible, resilient material so that the face flange 306 can conform to the features of the wearer's face. In some embodiments, the face flange 306 can have a front portion 310 that is configured to attach to the frame 304, such as by an adhesive, a rear portion 312 that is configured to receive the face of the wearer, and an intermediate portion 314 extending between the front portion 310 and the rear portion 312. In some embodiments, the intermediate portion 314 can be vented and/or can include a porous material, such as foam, so that air exchange is permitted through the intermediate portion 314 of the face flange 306 even when the goggle 300 is in the closed configuration. However, in some embodiments, the air flow through the face flange 306 is insufficient to rapidly defog the lens 302 of the goggle 300. For example, the face flange 306 can be displaced rearward from the lens 302 such that air flow from the face flange 306 does not sufficiently clear air from the area adjacent to the lens 302. Accordingly, the goggle 300 can be configured to allow the lens 302 to be toggled between multiple positions to provide different amounts of air flow through the goggle 300 near the lens 302, as discussed herein. In some embodiments, the goggle 300 can be configured to be usable with a prescription eyewear attachment. For example, a prescription eyewear attachment (not shown) can include a prescription lens (or two prescription lenses) which can be mounted onto the goggle 300 in the wearer's field of view. For example the prescription eyewear attachment can include a subframe, which can include a first attachment portion. The goggle 300 can include a second, complementary prescription attachment portion 313 that is configured to engage the first attachment portion on the prescription eyewear attachment to couple the prescription eyewear attachment to the goggle 300. The first and second attachment portions on the prescription eyewear attachment and/or the goggle 300 can include various snap or interference fit features, clip mechanisms, or other attachment mechanisms as would be apparent to one of skill in the art based on the present disclosure.
The engagement portion 322 of the frame 304 can include positioning features, such as the teeth 332a and 332b, that are configured to define a plurality of positions for the lens retaining member 308. A pair of lower teeth 332a can be positioned on the sides or ends of the engagement bar 328, and a pair of upper teeth 332b can be positioned on the sides or ends of the engagement bar 328, as shown, although other configurations are possible. For example, a single set of teeth 332a and 332b can be used, or a different number of teeth (e.g., one tooth, or three, four, of five teeth) can be used depending on the desired number of lens positions. The lens retaining member 308 can include positioning features, such as the hooked arms 334a and 334b, that are configured to engage the positioning features on the frame 304, such as the teeth 332a and 332b.
To transition the goggle 300 to the open configuration (shown in
To transition the goggle 300 to the releasing configuration (shown in
The lens retaining member 308″ can include one or more positioning features (e.g., hooked arm 334″) that are configured to engage with one or more corresponding features on the frame (e.g., tooth 332″) for positioning the lens retaining member 308″. For example, when the lens retaining member 308″ is in the closed position, the hooked arm 334″ can be disposed on a first side of (e.g., below) the tooth 332″ (see
In some embodiments, the lens retaining member 308″ does not have a dedicated position for releasing the lens 302″. In some embodiments, the lens retaining member 308″ can deform past the open position (shown in
In some embodiments, the lens 302″ is not removable by actuating the lens retaining member 308″. This can prevent the lens 302″ from being unintentionally released by unintentionally actuating the lens retaining member 308″ past the open position to the releasing position. In some embodiments, the tab 336″ can abut against or be positioned near a portion of the frame when in the open position, and the portion of the frame can serve as a stop to prevent a force on the tab 336″ from actuating the lens retaining member 308″ past the open position.
Accordingly, a method of moving the lens to an open position to increase ventilation through the goggle 300″ can include pushing the tab 336″ (e.g., in a generally upward direction) to move (e.g., rotate) the lens retaining member 308″ from the closed position to the open position. The rear arm 318″ can push the lens 302″ forward to the open position to increase ventilation through the eyewear. Thus, the lens 302″ can be opened by pushing on a single location, as opposed to pinching two objects together, pushing two locations simultaneously, holding one object or portion while moving a different object or portion, etc. The lens 302″ can be closed by pushing the lens 302″ (e.g., rearward) or by pushing the front arm 320″ (e.g., rearward). Thus, the lens 302″ can be closed by pushing on a single location. Accordingly, the lens 302″ can be opened and/or closed with a single hand, with a single hand wearing a glove, and/or with a single hand while holding an object, etc. The wearer does not need to grip anything to open and/or close the lens 302″. This can be advantageous by enabling the wearer to increase ventilation (e.g., to defog the eyewear) and/or close the goggle 300 while the wearer's hands are engaged with other objects (e.g., during a combat situation).
In some embodiments, the lens 302 can pivot about one or more pivot locations (e.g., at the bottom of the lens 302) when the lens 302 moves between the closed, open, and releasing positions. As can be seen in
In some embodiments, the goggle 300 can include additional lens retention features and the goggle 300 can include features that are configured to increase the size of the air vents, e.g., at the sides and/or bottom of the lens 302. For example, as shown in
The nose portion of the frame 304 can also include one or more ridges 356 formed on the top thereof. The ridges 356 can be configured to reduce the size of openings the lead into the interior of the goggle 300. In some embodiments, it can be desirable to eliminate, or minimize the size of, openings in the goggle 300 through which a linear line can be drawn from a location outside the goggle 300 to a location inside the goggle 300 (e.g., that is behind the frame 304). Linear openings, like that shown in
As mentioned above, the ridges 356 on the nose portion of the frame 304 can be configured to eliminate, or reduce the size of, linear openings into the goggle 300.
In some embodiments, the lens 302 can be removable from the frame 304, so that the lens 302 can be interchanged with other lenses.
In some embodiments, the goggle 300 can be impact resistant. For example, the goggle 300 can be configured to resist ballistic impacts, for example, for combat uses. The lens retaining member 308 can be configured to retain the lens 302 onto the frame 304 in the event of an impact on the lens 302. And the lens retaining member 308 can be configured to maintain the closed lens 302 in the closed position in the event of an impact on the lens 302. With reference to
With reference to
In some instances, a lens impact can also cause the frame 304 to deform. In some cases, the brow portion 324 of the frame can deform by deflecting upward, which can cause the lens 302 to disengage from the lens retaining member 308 and/or release from the frame 304. In some embodiments, the lens 302 can includes one or more engagement features that are configured to engage corresponding engagement features on the frame 304 to prevent or reduce deformation of the frame 304 and/or facilitate retention of the lens 302 on the frame 304 in the event of a lens impact. The engagement features can be positioned on the brow portion 324 of the frame 304 and on the upper periphery of the lens 302. For example, with reference now to
In some embodiments, the goggle 300 can have unfiltered venting when in an open configuration (e.g., venting between the lens 302 and frame 304, or venting at other locations that are not covered or filtered). In some embodiments, the goggle 300 can include filtered venting (e.g., through the intermediate portion 314 shown in
With reference to
The lens retaining member 308′ can engage an engagement bar 328′ in a manner similar to the goggle 300′. In some embodiments, the engagement bar 328′ can be separately formed from the frame 304′ and coupled to the frame 304′ (e.g., using a clip, snap-fit, friction fit, adhesive, or other suitable attachment mechanism). For example,
In some embodiments, the engagement bar 328 can include a pair of teeth 332′ configured to engage the lens retaining member 308′ in a manner similar to the teeth 332a and 332b discussed in connection with the goggle 300. In some embodiments, a single tooth can be used instead of the pair of teeth 332′. The lens 302′ can be toggled between a closed position and an open position, wherein the open position provides more ventilation through the goggle 300′ than the closed position. When the lens 302′ is in the open position, the lens 302′ can be removed from the goggle 300′ without toggling the lens retaining member 308′ to a separate, lens removal position. The lens 302′ can be removed (when in the open position), for example by applying a force to the lens in the forward direction (e.g., by pressing on the back surface of the lens 302′ or by inserting one or more fingers around the edges of the lens 302′ can pulling the lens 302′ forward), which can cause the front arm 320′ of the lens retaining member 308′ to deform (as discussed below), thereby allowing the lens 302′ to slip past the front arm 320′ of the lens retaining member 308′. Then the lens 302′ can be lifted upward to disengage the tabs 342a′ and 342b′ from the slots 344a′ and 344b′ (which are shown in
With further reference to
In some embodiments, the hooked arms 334′ can be coupled to the arms 318′ and 320′ at a junction 362′ on the back of the lens retaining member 308′ to prevent the lens retaining member 308′ from unintentionally rotating to the open position in the event of lens impact (e.g., a ballistic impact). In some embodiments, the lens retaining member 308′ can includes a locking element 331′ that can prevent unintentional rotation of the lens retaining member 308′ to the open position. The locking element 331′ can be configured to lock the hooked arms 334′ against the teeth 332′ in the event of a lens impact event. For example, the locking element 331′ can be positioned on the front of the front clip 320′ such that a locking surface 333′ is positioned near the hooked arm 334′ on one or both sides of the lens retaining member 308′. An impact on the lens can cause the lens 302′ to rebound forward, thereby pressing on the front arm 320′ of the lens retaining member 308′ and causing the front arm 320′ to deform and rotate forward. The locking element 331′ can rotate along with the front arm 320′, which can cause the locking surface 333′ to abut against the hooked arm 334′ and press the hooked arm 334′ against the tooth 332′. The stronger the lens 302′ is pushed forward, the stronger the locking element 331′ presses the hooked arms 334′ against the teeth 332′, thereby preventing the hooked arms 334′ from unintentionally disengaging from the teeth 332′.
When in the open position (e.g., with the hooked arms 334′ disengaged from the teeth 332′ and disposed above the teeth 332′), the front arm 320′ of the lens retaining member 308′ can deform forward sufficiently to allow removal of the lens 302′ before the locking element 331′ abuts against the hooked arms 334′ to prevent further movement of the front arm 320′.
The lens 302′ can include tabs 346a′ and 346b′ disposed at the temporal sides of the lens 302′, which can be configured to engage slots 348a and 348b in the frame 304′ in a manner similar to the goggle 300. When the lens 302′ is toggled to the open position, the slots 348a′ and 348b′ and tabs 346a′ and 346b′ can cause the lens 302′ to deform in a manner similar to the goggle 300. In some embodiments, the slots 348a and 348b can be disposed on an upper portion of the temporal side of the frame 304′, which can facilitate the deformation of the lens 302′ to improve ventilation when the lens 302′ is in the open position. For example, with reference to
In some embodiments, the goggle 300′ can provide for filtered ventilation. For example, in
The eyeglass 402 can include a lens 408 and a frame 410 configured to position the lens 408 in the line of sight of a wearer. The eyeglass 402 can include ear stems 412a and 412b and a nose piece 414 to support the eyeglass 402 on the wearer's face. Although the eyeglass 402 is shown having a single lens 408 that is configured to extend over both eyes of the wearer, the eyeglass 402 can have two lenses. In some embodiments, the eyeglass 402 can include a lens retaining member 416 that can be configured to removably secure the lens 408 to the frame 410, thereby allowing the wearer to interchange the lens 408 of the eyeglass 402. For example, the lens 408 can be interchanged for a different lens if the lens 408 become damaged or dirty, and the lens 408 can be interchanged for a different lens having different optical properties depending on the conditions of use. The lens retaining member 416 can be configured to retain the lens 408 on the frame 410 in the event of impact to the lens 408 (e.g., a ballistic impact).
The eyeglass 402 can be configured to be wearable with or without the gasket 404. The gasket 404 can be attached to the eyeglass 402 to provide improved protection (e.g., from wind, dust, and debris) for the wearer's eyes. With the gasket 404 attached, the eyewear 400 can provide reduced ventilation as compared to the eyeglass 402 worn without the gasket 404. In some embodiments, the gasket 404 can be easily removed from the eyeglass 402 (e.g., without removal of the eyewear 400 from the wearer's face). With the gasket 404 removed, the eyewear 400 can have increased ventilation as compared to wearing the eyeglass 402 with the gasket 404 attached thereto. Thus, the wearer can attach the gasket 404 when additional protection is desired (e.g., in windy or dusty conditions), and the wearer can quickly remove the gasket 404 when additional ventilation is desired or when the additional protection is no longer needed. The eyewear 400 can be useful in various settings, including military settings in which the wearer may experience temporary conditions for which additional eye protection is desirable (e.g., jumping out of an aircraft or a dust storm). When the additional eye protection is no longer needed, the wearer can quickly remove the gasket 404 while continuing to wear the eyeglass 402. Because the gasket 404 can be removed quickly and with one hand, the wearer can remain focused on other tasks (e.g., on a combat situation) while removing the gasket 404. Because the gasket 404 can be removed without removing the eyeglass 402, the eyewear 400 can provide ballistic protection to the wearer's eyes during the removal of the gasket 404.
The gasket retention member 406 can include a grippable portion 442 (also referred to herein as a grip) that is configured to allow the user to grip the grippable portion 442 and pull the gasket 404 generally upwardly to disengage the gasket retention member 406 from the eyeglass 402 (e.g., by disengaging the clips 420a and 420b from the frame 410). The grippable portion 442 can extend forward from a bridge portion 423 that extends between the clips 420a and 420b, or the grippable portion 442 can form at least a portion of the bridge portion 423. For example, the bridge portion 423 and/or grippable portion 442 can extend generally horizontally between the clips 420a and 420b (e.g., between the forward portions of the arms 421a and 421b). The clips 420a and 420b can be spaced apart with an open space forming the gap 425 between the clips 420a and 420b. When the gasket 404 is attached to the frame 410. The lens retaining member 416 can be disposed between the clips 420a and 420b in the open space formed by the gap 425, thereby properly aligning the gasket 404 with the frame 410. If the frame 410 does not include specially shaped engagement portions that are configured to receive the clips 420a and 420b, the engagement between the gap 425 and the lens retaining member 416 can cause the clips 420a and 420b to engage the desired portion of the frame 410 to properly align the gasket 404 with the frame 410. Accordingly, the gasket 404 can be used with eyeglasses 402 that have a generally uniform frame shape without specially shaped engagement areas corresponding to the shape of arms 421a and 421b. Such gasket 404 can be especially beneficial in instances where specially shaped engagement areas on a frame are aesthetically undesirable or result in weak spots on the frame (e.g., for thin, indented engagement portions on the frame).
In operation, the user can attach the gasket 404 (or eyewear attachment) to the eyeglass 402 by holding the gasket 404 by the grip 442 and lowering the gasket 404 into the space between the eyeglass 402 and the wearer's face. The gasket 404 can be lowered until the gasket retention member 406 contacts the eyeglass 402 (e.g., the frame 410). The user can press downward (e.g., on the grip 442) to cause the gasket retentions member 406 to removably couple to the eyeglass 402. For example, the clips 420a and 420b can couple to the frame 410 when the user presses downward to attach the gasket 404. Thus, the user can attach the gasket 404 to the eyeglass 420 while the eyeglass 402 is being worn, without removing the eyeglass 402 from the wearer's face. The user can attach the gasket 404 to the eyeglass 402 with only one hand, which can be inside a glove, while the eyeglass 402 is being worn. In some embodiments, the wearer can remove the eyeglass 402 from the wearer's face and can attach the gasket 404 to the eyeglass 402 while the eyeglass 402 is not being worn. And the eyeglass 402 and gasket 404 together can be placed onto the wearer's face. As discussed herein, to remove the gasket 404 from the eyeglass 402, the wearer can press upward on the grip 442. Pressing upward on the grip 442 can cause the gasket retention member 406 to decouple from the eyeglass 402. For example, the clips 420a and 420b can decouple from the frame 410 when the user presses upward on the grip 442. The wearer can hold the grip 442 and lift the gasket 404 upward out of the space between the eyeglass 402 and the wearer's face. Thus, the wearer can remove the gasket 404 from the eyeglass 402 with only one hand, which can be inside a glove, while the eyeglass 402 is being worn, without removing the eyeglass 402 from the wearer's face. This can be advantageous for enabling the wearer to maintain protection of the eyes while removing the gasket 404.
As shown in
In some embodiments, the gasket 404 can include a nose piece engagement member 437 that is configured to engage the nose piece 414, which can stabilize the attachment of the gasket 404 to the eyewear 402. As can be seen in
As can be seen in
In some embodiments, the front seal 435 can be attached to, or integrally formed with, the face flange 434, which can facilitate the securing of the front seal 435 and face flange 434 to the subframe 432. For example, in some embodiments, the flexible material can extend from the front seal 435 to the face flange 434. In some embodiments, the subframe 432 can include holes 453 that extend therethrough. As shown in
In some embodiments, the gasket 404 can be vented to allow exchange of air between the interior of the eyewear 400 and the outside area when the gasket 404 worn attached to the eyeglass 402. As shown in
The ventilation provided by the gasket 404 can reduce or prevent fogging on the interior of the eyewear 400. As discussed above, the gasket 404 can be configured to be easily and quickly removable in the event that the ventilation provided by the gaps 455 is insufficient to prevent fogging. In some embodiments, the front seal 435 can form a seal between the lens 408 and a majority of the orbitals 438a and 438b (e.g., forming a seal at substantially all portions of the orbital except at the gaps 455). For example, the front seal 435 can form a seal between the lens 408 and at least about 80%, at least about 90%, or at least about 95% of the orbitals 438a and 438b. In some embodiments, the gaps 455 can cause the front seal 435 to form a seal between the lens 408 and less than or equal to about 98%, less than or equal to about 95%, less than or equal to about 93%, or less than or equal to about 90%, of the orbitals 438a and 438b. In some embodiments, the face flange 434 and/or the subframe 432 can include gaps (not shown) that provide ventilation similar to the gaps 455 discussed herein.
In some embodiments, the seal between the wearer's face and the gasket 404 (e.g., the face flange 434) can be more important than the seal formed between the lens 408 and the gasket 404 (e.g., the front seal 435) for protecting the wearer's face from dust and debris. Thus, the front seal 435 can form a seal between the lens 408 and the orbitals 438a and 438b of less than the values disclosed above. The face flange 434 can be formed of a flexible material that is configured to conform to the face of the wearer. Although a single orbital can be used in some embodiments, the use of two orbitals 438a and 438b with a face flange 434 having right and left portions that correspond to the two orbitals 438a and 438b can facilitate sealing of the gasket 404 against the wearer's face. For example, the right and left portions of the face flange 434 can be separately enclosed so that if the seal is compromised for one side, the other side can remain sealed. Also, the use of a face flange 434 having separate portions for the two orbitals 328a and 438b can reduce the occurrence of leakage around the nose portion, as compared to a face flange that extends across a user's nose.
In some embodiments, the subframe 432, the face flange 434, and/or the front seal 435 can include an open-cell foam or other porous material that allows air exchange between the interior of the eyewear 400 and the surrounding area. For example, the venting gaps formed in the face flange 434, the subframe 432, and/or the front seal 435 can be covered and/or filled with the open-cell foam or other porous material. In some embodiments, the foam or other material can allow air to pass therethrough while substantially preventing dust or other debris from passing therethrough, thereby providing ventilation while also providing protection from dust and debris. In some embodiments, an anti-fogging coating can be applied to the interior of the eyewear 400 (e.g., to the eyeglass 402 and/or to the gasket 404) to reduce or prevent moisture fogging. Various types of anti-fogging coatings can be used (e.g., moisture absorption coatings, moisture sheer coatings, coatings based on urethanes, and/or coatings based on treated polysiloxanes).
With reference to
Although embodiments have been disclosed in the context of certain examples, it will be understood by those skilled in the art that the present inventions extend beyond the specifically disclosed embodiments to other alternative embodiments and/or uses of the inventions and obvious modifications and equivalents thereof. In addition, while several variations of the inventions have been shown and described in detail, other modifications, which are within the scope of these inventions, will be readily apparent to those of skill in the art based upon this disclosure. It is also contemplated that various combinations or sub-combinations of the specific features and aspects of the embodiments may be made and still fall within the scope of the inventions. It should be understood that various features and aspects of the disclosed embodiments can be combined with or substituted for one another in order to form varying modes of the disclosed embodiments.
This application is a continuation of U.S. patent application Ser. No. 15/288,775, filed on Oct. 7, 2016, now U.S. Pat. No. 9,717,631, and titled “EYEWEAR HAVING MULTIPLE VENTILATION STATES,” which is a continuation of U.S. patent application Ser. No. 14/014,186, filed Aug. 29, 2013, and titled “EYEWEAR HAVING MULTIPLE VENTILATION STATES,” now U.S. Pat. No. 9,463,117, which claims the benefit under 35 U.S.C. § 119(e) of U.S. Provisional Patent Application No. 61/696,008, filed Aug. 31, 2012, and titled “EYEWEAR HAVING MULTIPLE VENTILATION STATES,” the entirety of each of which is hereby incorporated by reference and made a part of this specification for all that it discloses.
Number | Name | Date | Kind |
---|---|---|---|
245268 | Andross | Aug 1881 | A |
1206457 | Mills | Nov 1916 | A |
1308477 | Blanchard | Jul 1919 | A |
1588775 | Schumacher | Jun 1926 | A |
1839386 | Fischer | Jan 1932 | A |
1910456 | Baker | May 1933 | A |
1918954 | Baker | Jul 1933 | A |
1942393 | Baker | Jan 1934 | A |
1943910 | Baker | Jan 1934 | A |
2042400 | Hon | May 1936 | A |
2098512 | Nerney | Nov 1937 | A |
2391361 | Stevenson | Dec 1945 | A |
2443422 | Hansen | Jun 1948 | A |
2504157 | Rosenheim | Apr 1950 | A |
2652746 | Shanks | Dec 1950 | A |
2556847 | MacLean | Jun 1951 | A |
2610323 | Johnson | Sep 1952 | A |
2671379 | Eloranta | Mar 1954 | A |
2799862 | Rowe | Jul 1957 | A |
2571704 | Gilden | Oct 1961 | A |
3084595 | Watts et al. | Apr 1963 | A |
3214767 | Weber | Nov 1965 | A |
3229303 | Jonassen | Jan 1966 | A |
3233250 | Jonassen | Feb 1966 | A |
3383707 | McNeill | May 1968 | A |
3395964 | Chartrice | Aug 1968 | A |
3552840 | Braget | Jan 1971 | A |
3659931 | Allen | May 1972 | A |
3691565 | Galonek | Sep 1972 | A |
3826564 | Werling, Sr. | Jul 1974 | A |
3829201 | Whiting | Aug 1974 | A |
3901589 | Bienenfeld | Aug 1975 | A |
3931646 | Loughner | Jan 1976 | A |
4023214 | Waldherr | May 1977 | A |
4056853 | Bottazzini et al. | Nov 1977 | A |
4153347 | Myer | May 1979 | A |
4176921 | Matthias | Dec 1979 | A |
4178080 | Elder | Dec 1979 | A |
4264987 | Runckel | May 1981 | A |
4304469 | Solomon | Dec 1981 | A |
4314814 | Deroode | Feb 1982 | A |
4331393 | Bradly, Jr. | May 1982 | A |
4340282 | Murakami | Jul 1982 | A |
4357080 | Solomon | Nov 1982 | A |
4471496 | Gardner, Jr. et al. | Sep 1984 | A |
4515448 | Tackles | May 1985 | A |
4527291 | Nussbickl | Jul 1985 | A |
4616367 | Jean et al. | Oct 1986 | A |
4632526 | Lhospice | Dec 1986 | A |
4662966 | Sumi et al. | May 1987 | A |
4670084 | Durand | Jun 1987 | A |
4674851 | Jannard | Jun 1987 | A |
4686712 | Spiva | Aug 1987 | A |
4715702 | Dillon | Dec 1987 | A |
4730915 | Jannard | Mar 1988 | A |
4747681 | Brower | May 1988 | A |
4759622 | Schmidthaler | Jul 1988 | A |
4813775 | Kaksonen | Mar 1989 | A |
4822158 | Porsche | Apr 1989 | A |
4843655 | Hegendorfer | Jul 1989 | A |
4859048 | Jannard | Aug 1989 | A |
4867550 | Jannard | Sep 1989 | A |
4878749 | McGee | Nov 1989 | A |
4901374 | Van der Woude | Feb 1990 | A |
4951322 | Lin | Aug 1990 | A |
4978209 | Ohba | Dec 1990 | A |
4983030 | Chandler | Jan 1991 | A |
5007727 | Kahaney et al. | Apr 1991 | A |
5016293 | Lickle | May 1991 | A |
5048944 | Porsche | Sep 1991 | A |
5056163 | Chou | Oct 1991 | A |
5069541 | Holmes et al. | Dec 1991 | A |
5144344 | Takahashi et al. | Sep 1992 | A |
5170502 | Hegendorfer et al. | Dec 1992 | A |
5182586 | Bennato | Jan 1993 | A |
5182587 | Hyoi | Jan 1993 | A |
5191364 | Kopfer | Mar 1993 | A |
5208614 | Jannard | May 1993 | A |
5257050 | Wiedner | Oct 1993 | A |
5270743 | Hofmair et al. | Dec 1993 | A |
5291230 | Bradley | Mar 1994 | A |
5308426 | Claveau | May 1994 | A |
5357292 | Wiedner | Oct 1994 | A |
5359370 | Mugnier | Oct 1994 | A |
5373331 | Vallalla et al. | Dec 1994 | A |
5379463 | Schleger et al. | Jan 1995 | A |
5387949 | Tackles | Feb 1995 | A |
5390369 | Tubin | Feb 1995 | A |
5400089 | Danloup et al. | Mar 1995 | A |
5410763 | Bolle | May 1995 | A |
5412438 | Bolle | May 1995 | A |
5418580 | Sondrol | May 1995 | A |
5418581 | Conway | May 1995 | A |
5423092 | Kawai | Jun 1995 | A |
5428407 | Sheffield | Jun 1995 | A |
5455639 | Magdelaine et al. | Oct 1995 | A |
5467148 | Conway | Nov 1995 | A |
5493348 | Harald, Jr. et al. | Feb 1996 | A |
5536828 | Deluca et al. | Jul 1996 | A |
5541674 | Jannard | Jul 1996 | A |
5550599 | Jannard | Aug 1996 | A |
5576775 | Bolle | Nov 1996 | A |
5583583 | Wilson | Dec 1996 | A |
5587747 | Bernheiser | Dec 1996 | A |
5602603 | Bondet | Feb 1997 | A |
5608470 | Sheffield | Mar 1997 | A |
5610668 | Mage | Mar 1997 | A |
5617588 | Canavan et al. | Apr 1997 | A |
5619287 | Tseng | Apr 1997 | A |
5638145 | Jannard et al. | Jun 1997 | A |
5641372 | Okuno | Jun 1997 | A |
5648832 | Houston et al. | Jul 1997 | A |
5652954 | Paiement et al. | Aug 1997 | A |
5657106 | Herald et al. | Aug 1997 | A |
5685022 | Essman et al. | Nov 1997 | A |
5689323 | Houston et al. | Nov 1997 | A |
5708489 | Jannard | Jan 1998 | A |
5727251 | Sherlock et al. | Mar 1998 | A |
5752280 | Hill | May 1998 | A |
5760866 | Wedeck et al. | Jun 1998 | A |
5765223 | McCausland | Jun 1998 | A |
5768716 | Porsche | Jun 1998 | A |
5790230 | Sved | Aug 1998 | A |
5793463 | Hirschman et al. | Aug 1998 | A |
5796461 | Stepan | Aug 1998 | A |
5798017 | Claveau | Aug 1998 | A |
5802622 | Baharad et al. | Sep 1998 | A |
5805261 | Houston et al. | Sep 1998 | A |
5809580 | Arnette | Sep 1998 | A |
5815235 | Runckel | Sep 1998 | A |
5841506 | Karasawa et al. | Nov 1998 | A |
5862529 | Moodie | Jan 1999 | A |
5898468 | Mage | Apr 1999 | A |
5898469 | Wang | Apr 1999 | A |
5903331 | Lin | May 1999 | A |
5914767 | Wedeck et al. | Jun 1999 | A |
5929963 | McNeal | Jul 1999 | A |
5956116 | Ishiyama | Sep 1999 | A |
5963293 | Jannard | Oct 1999 | A |
5969789 | Houston et al. | Oct 1999 | A |
5971536 | Chiu | Oct 1999 | A |
5971538 | Heffner | Oct 1999 | A |
5987702 | Simioni | Nov 1999 | A |
6007199 | Yang | Dec 1999 | A |
6009564 | Tackles et al. | Jan 2000 | A |
6010217 | Houston et al. | Jan 2000 | A |
6010218 | Houston et al. | Jan 2000 | A |
6047410 | Dondero | Apr 2000 | A |
6056399 | Jannard et al. | May 2000 | A |
6062688 | Vinas | May 2000 | A |
D428620 | Maturaporn | Jul 2000 | S |
6086199 | Holland et al. | Jul 2000 | A |
6094751 | Parks | Aug 2000 | A |
6098204 | Arnette | Aug 2000 | A |
6102033 | Baribeau | Aug 2000 | A |
6105177 | Paulson et al. | Aug 2000 | A |
6106116 | Houston et al. | Aug 2000 | A |
6119279 | Haslbeck | Sep 2000 | A |
6131246 | Paulson et al. | Oct 2000 | A |
6168271 | Houston et al. | Jan 2001 | B1 |
6193367 | Lee | Feb 2001 | B1 |
6206519 | Lin | Mar 2001 | B1 |
6224209 | Chen | May 2001 | B1 |
6231179 | Lee | May 2001 | B1 |
6231181 | Swab | May 2001 | B1 |
6233342 | Fernandez | May 2001 | B1 |
6244705 | Ledbetter et al. | Jun 2001 | B1 |
6250756 | Jannard | Jun 2001 | B1 |
6260964 | Kroman | Jul 2001 | B1 |
6273564 | Wedeck et al. | Aug 2001 | B1 |
6276794 | Chiang | Aug 2001 | B1 |
6282727 | Lindahl | Sep 2001 | B1 |
6290354 | Safran | Sep 2001 | B1 |
6296357 | Bof | Oct 2001 | B1 |
D452522 | Chiou | Dec 2001 | S |
6349422 | Schleger et al. | Feb 2002 | B1 |
6357873 | Spindelbalker | Mar 2002 | B1 |
6375321 | Lee et al. | Apr 2002 | B1 |
6386703 | Huang | May 2002 | B1 |
6386704 | Wu | May 2002 | B1 |
6428165 | Rivera | Aug 2002 | B1 |
6464353 | Spindelbalker | Oct 2002 | B1 |
6474812 | Moon | Nov 2002 | B1 |
6477717 | Winefordner et al. | Nov 2002 | B1 |
6502937 | Yang | Jan 2003 | B2 |
6533412 | Wang et al. | Mar 2003 | B1 |
6540351 | Meiler | Apr 2003 | B1 |
6543895 | Fukai | Apr 2003 | B2 |
6550912 | Vitaloni | Apr 2003 | B2 |
6550914 | Kopfer | Apr 2003 | B1 |
6561647 | Chen | May 2003 | B1 |
6564804 | Salatka et al. | May 2003 | B2 |
6575570 | Mauri | Jun 2003 | B2 |
6637877 | Hartley et al. | Oct 2003 | B1 |
6641263 | Olney | Nov 2003 | B2 |
D485570 | Teng | Jan 2004 | S |
6702439 | Lee | Mar 2004 | B1 |
6712465 | Teng | Mar 2004 | B1 |
6715157 | Mage | Apr 2004 | B2 |
6718561 | Dondero | Apr 2004 | B2 |
6732383 | Cleary et al. | May 2004 | B2 |
6742890 | Teng | Jun 2004 | B1 |
6742891 | Chen | Jun 2004 | B2 |
6749299 | Hsu | Jun 2004 | B1 |
6783235 | Lin | Aug 2004 | B1 |
6786592 | Rivera | Sep 2004 | B2 |
6793336 | Min | Sep 2004 | B2 |
6804835 | Chou | Oct 2004 | B2 |
6817709 | Min | Nov 2004 | B2 |
6834951 | Xie | Dec 2004 | B2 |
6854845 | Goldman et al. | Feb 2005 | B1 |
6857738 | Bove et al. | Feb 2005 | B1 |
6863394 | Nelson et al. | Mar 2005 | B1 |
6863395 | Teng | Mar 2005 | B1 |
6877169 | Acquaviva | Apr 2005 | B2 |
6908193 | Cyr | Jun 2005 | B2 |
D508255 | Wu | Aug 2005 | S |
6923537 | Hartley et al. | Aug 2005 | B2 |
6926403 | Yi et al. | Aug 2005 | B2 |
6926404 | Bassahon et al. | Aug 2005 | B2 |
6928663 | Tappeiner | Aug 2005 | B1 |
6929364 | Jannard | Aug 2005 | B1 |
6938277 | Lindahl | Sep 2005 | B2 |
6942338 | Ku | Sep 2005 | B2 |
6948813 | Parks | Sep 2005 | B2 |
6953247 | Duffy et al. | Oct 2005 | B1 |
D511540 | Hsu | Nov 2005 | S |
6959988 | Sheldon | Nov 2005 | B1 |
6964067 | Hartman | Nov 2005 | B1 |
6964477 | Teng | Nov 2005 | B1 |
6969170 | Smith | Nov 2005 | B1 |
6969171 | Lane et al. | Nov 2005 | B2 |
D513033 | Hsu | Dec 2005 | S |
6994434 | Blanchette et al. | Feb 2006 | B2 |
7000263 | McNeal | Feb 2006 | B2 |
7003802 | Broersma | Feb 2006 | B2 |
7029114 | Smith | Apr 2006 | B2 |
7036152 | Gafforio et al. | May 2006 | B2 |
7036927 | Kopfer | May 2006 | B2 |
7039959 | Dondero | May 2006 | B2 |
7058991 | Hartman | Jun 2006 | B2 |
7083276 | Olney | Aug 2006 | B2 |
7090346 | Tsai | Aug 2006 | B2 |
7091634 | Yi et al. | Aug 2006 | B2 |
7100215 | Shiue | Sep 2006 | B2 |
7137426 | Neri et al. | Nov 2006 | B2 |
7137700 | DiChiara et al. | Nov 2006 | B2 |
7150525 | Yang | Dec 2006 | B1 |
7163289 | Wedeck et al. | Jan 2007 | B2 |
D537097 | Freeman | Feb 2007 | S |
D537860 | Freeman | Mar 2007 | S |
7192134 | Teng | Mar 2007 | B2 |
7200875 | Dondero | Apr 2007 | B2 |
7204589 | Pieterman | Apr 2007 | B2 |
7219992 | Wu | May 2007 | B1 |
7219993 | Chiou | May 2007 | B1 |
7222958 | Chiou | May 2007 | B1 |
7222959 | Jannard | May 2007 | B2 |
7234808 | Bruck | Jun 2007 | B2 |
7237891 | Min | Jul 2007 | B2 |
7241007 | Cody | Jul 2007 | B2 |
7244022 | Lee | Jul 2007 | B2 |
7261410 | Chen | Aug 2007 | B1 |
7267434 | Lane et al. | Sep 2007 | B2 |
7267737 | Neri et al. | Sep 2007 | B2 |
7278733 | Olney | Oct 2007 | B2 |
7296887 | Hsiung | Nov 2007 | B1 |
7328999 | Zelman | Feb 2008 | B2 |
7343631 | Lin | Mar 2008 | B2 |
7347545 | Jannard et al. | Mar 2008 | B1 |
7364287 | Lee et al. | Apr 2008 | B2 |
7370961 | Lerner et al. | May 2008 | B2 |
7384141 | Zelman | Jun 2008 | B2 |
7390086 | Lee | Jun 2008 | B2 |
7396124 | Wang | Jul 2008 | B1 |
7407281 | Tagawa | Aug 2008 | B2 |
7425065 | Wang | Sep 2008 | B2 |
7431453 | Hogan | Oct 2008 | B2 |
7434929 | Jackson | Oct 2008 | B2 |
7441889 | Zelman | Oct 2008 | B2 |
7452068 | Collier et al. | Nov 2008 | B2 |
7452069 | Lipawsky | Nov 2008 | B2 |
7478906 | Fielding | Jan 2009 | B2 |
7481529 | Chen | Jan 2009 | B1 |
7497569 | Webb | Mar 2009 | B2 |
7520217 | Roberts et al. | Apr 2009 | B2 |
7520604 | Choi | Apr 2009 | B2 |
7520605 | Chen | Apr 2009 | B1 |
7526813 | Tominaga et al. | May 2009 | B2 |
7553013 | Tsai | Jun 2009 | B2 |
7556373 | VanAtta et al. | Jul 2009 | B2 |
7563341 | Ferguson et al. | Jul 2009 | B2 |
7585072 | Wang-Lee | Sep 2009 | B1 |
7585073 | Paolino | Sep 2009 | B2 |
7594280 | Lindahl | Sep 2009 | B2 |
7594723 | Jannard et al. | Sep 2009 | B2 |
7604346 | Wang | Oct 2009 | B2 |
7648233 | Blanshay et al. | Jan 2010 | B2 |
7658492 | Siu | Feb 2010 | B2 |
7681257 | Broersma | Mar 2010 | B1 |
7686449 | Jannard et al. | Mar 2010 | B2 |
7703913 | Huang | Apr 2010 | B2 |
D615580 | Baden et al. | May 2010 | S |
D616485 | Thixton | May 2010 | S |
7712894 | Tsai | May 2010 | B2 |
7712896 | Lee | May 2010 | B1 |
7725959 | Wang-Lee | Jun 2010 | B2 |
D622303 | Thixton | Aug 2010 | S |
D622304 | Baden et al. | Aug 2010 | S |
7771043 | Welchel et al. | Aug 2010 | B2 |
7780810 | Hamano | Aug 2010 | B2 |
7810174 | Matera | Oct 2010 | B2 |
D629035 | Moritz | Dec 2010 | S |
7850301 | DiChiara | Dec 2010 | B2 |
7856673 | Reed | Dec 2010 | B2 |
7887181 | Chen | Feb 2011 | B1 |
7908668 | Folkesson | Mar 2011 | B2 |
D639845 | Fuchs | Jun 2011 | S |
D640725 | Moritz et al. | Jun 2011 | S |
D640727 | Moritz et al. | Jun 2011 | S |
7954942 | Calilung et al. | Jun 2011 | B2 |
D646708 | Baden et al. | Oct 2011 | S |
8028350 | Hogen | Oct 2011 | B2 |
D649178 | Moritz | Nov 2011 | S |
D653697 | Taylor | Feb 2012 | S |
D653698 | Taylor | Feb 2012 | S |
D659180 | Moritz | May 2012 | S |
8192015 | Taylor et al. | Jun 2012 | B2 |
8235523 | Yang | Aug 2012 | B2 |
8303109 | Matera | Nov 2012 | B2 |
8307466 | Hsu | Nov 2012 | B2 |
8316470 | McNeal et al. | Nov 2012 | B2 |
D675666 | Thixton et al. | Feb 2013 | S |
8408695 | Calilung et al. | Apr 2013 | B2 |
8414119 | Yeh | Apr 2013 | B2 |
8424474 | Berns | Apr 2013 | B2 |
8469510 | Belbey et al. | Jun 2013 | B2 |
8534830 | Taylor et al. | Sep 2013 | B2 |
8661562 | Calilung et al. | Mar 2014 | B2 |
8668330 | Reyes et al. | Mar 2014 | B2 |
8746877 | Belbey et al. | Jun 2014 | B2 |
8800067 | Saylor et al. | Aug 2014 | B2 |
8850626 | Reyes et al. | Oct 2014 | B2 |
8881316 | Reyes et al. | Nov 2014 | B2 |
8911076 | Calilung et al. | Dec 2014 | B2 |
9122078 | Calilung et al. | Sep 2015 | B2 |
9188792 | Calilung et al. | Nov 2015 | B2 |
9192520 | Cater et al. | Nov 2015 | B2 |
9241833 | Cater et al. | Jan 2016 | B2 |
9463117 | Belbey et al. | Oct 2016 | B2 |
9709817 | Calilung et al. | Jul 2017 | B2 |
9717631 | Cater | Aug 2017 | B2 |
20020039928 | Spurgeon et al. | Apr 2002 | A1 |
20030048405 | Rivera | Mar 2003 | A1 |
20030067584 | Mauri | Apr 2003 | A1 |
20030188376 | Dondero | Oct 2003 | A1 |
20040025232 | Hartley et al. | Feb 2004 | A1 |
20040083540 | Dondero | May 2004 | A1 |
20040139532 | Parks | Jul 2004 | A1 |
20040141146 | Blanchette et al. | Jul 2004 | A1 |
20040141147 | Cyr | Jul 2004 | A1 |
20040160570 | Polovin | Aug 2004 | A1 |
20050070434 | Drake | Mar 2005 | A1 |
20050105041 | Lerner et al. | May 2005 | A1 |
20050132478 | Canavan | Jun 2005 | A1 |
20050160521 | Hussey | Jul 2005 | A1 |
20050268385 | Hartman et al. | Dec 2005 | A1 |
20050270477 | Curci et al. | Dec 2005 | A1 |
20050286013 | Aylor | Dec 2005 | A1 |
20060048289 | Shiue | Mar 2006 | A1 |
20060119790 | Tsai | Jun 2006 | A1 |
20060179554 | Barton | Aug 2006 | A1 |
20060191062 | Matera | Aug 2006 | A1 |
20060238700 | Del Vecchio | Oct 2006 | A1 |
20060250571 | Li | Nov 2006 | A1 |
20060256281 | Li | Nov 2006 | A1 |
20060283555 | Green | Dec 2006 | A1 |
20070006425 | Woodbury | Jan 2007 | A1 |
20070024806 | Blanshay | Feb 2007 | A1 |
20070033718 | Lin | Feb 2007 | A1 |
20070091253 | Chao | Apr 2007 | A1 |
20070109490 | Collier et al. | May 2007 | A1 |
20070121059 | Chiou | May 2007 | A1 |
20070153230 | Musal et al. | Jul 2007 | A1 |
20070182916 | Blanshay et al. | Aug 2007 | A1 |
20070240812 | Bortolato | Oct 2007 | A1 |
20070261782 | Frye et al. | Nov 2007 | A1 |
20080036961 | Zhou | Feb 2008 | A1 |
20080072365 | Alberto | Mar 2008 | A1 |
20080094567 | Choi | Apr 2008 | A1 |
20080137028 | Webb | Jun 2008 | A1 |
20080155736 | Paulson et al. | Jul 2008 | A1 |
20080198323 | Yu | Aug 2008 | A1 |
20080266515 | Hou | Oct 2008 | A1 |
20080301858 | Wang-Lee | Dec 2008 | A1 |
20080304005 | DiChiara | Dec 2008 | A1 |
20090007388 | Villeneuva | Jan 2009 | A1 |
20090015784 | Van Atta | Jan 2009 | A1 |
20090019620 | Reed | Jan 2009 | A1 |
20090038057 | Tews | Feb 2009 | A1 |
20090038059 | McNeal et al. | Feb 2009 | A1 |
20090044317 | Tews | Feb 2009 | A1 |
20090066906 | Huang | Mar 2009 | A1 |
20090079931 | Yang | Mar 2009 | A1 |
20090122254 | Van Der Heijde et al. | May 2009 | A1 |
20090151037 | Hsu | Jun 2009 | A1 |
20090217444 | Pan | Sep 2009 | A1 |
20090225271 | Radmard et al. | Sep 2009 | A1 |
20090300830 | Mage | Dec 2009 | A1 |
20090313746 | Wang | Dec 2009 | A1 |
20090323015 | Siu | Dec 2009 | A1 |
20100186153 | Reyes et al. | Jul 2010 | A1 |
20100201937 | Gardaz | Aug 2010 | A1 |
20100231850 | Hones | Sep 2010 | A1 |
20110170049 | Chen | Jul 2011 | A1 |
20110194065 | Belbey et al. | Aug 2011 | A1 |
20110242479 | Radmard et al. | Oct 2011 | A1 |
20110258758 | Renaud-Goud et al. | Oct 2011 | A1 |
20110279771 | Chen | Nov 2011 | A1 |
20120127421 | Li | May 2012 | A1 |
20120255104 | Didier | Oct 2012 | A1 |
20120257159 | Silver | Oct 2012 | A1 |
20130019374 | Schwartz | Jan 2013 | A1 |
20130083285 | McNeal et al. | Apr 2013 | A1 |
20130104300 | Park | May 2013 | A1 |
20140063437 | Cater et al. | Mar 2014 | A1 |
20140063438 | Cater et al. | Mar 2014 | A1 |
20140078460 | Chang et al. | Mar 2014 | A1 |
20160216533 | Calilung et al. | Jul 2016 | A1 |
20170100287 | Calilung et al. | Apr 2017 | A1 |
20170160562 | McCabe et al. | Jun 2017 | A1 |
Number | Date | Country |
---|---|---|
201780416 | Mar 2011 | CN |
102004058631 | Jun 2006 | DE |
0 496 292 | Jan 1991 | EP |
0 495 767 | Jul 1992 | EP |
0 702 803 | Mar 1996 | EP |
1382989 | Jan 2004 | EP |
1428061 | Jun 2004 | EP |
1 810 648 | Jul 2007 | EP |
1 830 221 | Sep 2007 | EP |
2 042 910 | Apr 2009 | EP |
2 090 921 | Aug 2009 | EP |
1 126 329 | Nov 1956 | FR |
1290346 | Apr 1962 | FR |
2 088 866 | Jan 1972 | FR |
2 626 682 | Aug 1989 | FR |
2 684 292 | Jun 1993 | FR |
2 800 173 | Apr 2001 | FR |
468443 | Jul 1937 | GB |
512419 | Sep 1939 | GB |
2055222 | Feb 1981 | GB |
2181859 | Apr 1987 | GB |
2199155 | Jun 1988 | GB |
2278459 | Nov 1994 | GB |
62-3774 | Jul 1926 | JP |
56-126611 | Feb 1955 | JP |
56-066915 | Jun 1981 | JP |
57-176119 | Nov 1982 | JP |
59-79827 | May 1984 | JP |
59-104127 | Jun 1984 | JP |
60-094624 | Jun 1985 | JP |
60-146218 | Aug 1985 | JP |
60-143420 | Sep 1985 | JP |
61-160422 | Oct 1986 | JP |
219021 | Feb 1990 | JP |
02-240360 | Sep 1990 | JP |
07-032628 | Feb 1995 | JP |
07-64028 | Mar 1995 | JP |
07-140423 | Jun 1995 | JP |
7-234385 | Sep 1995 | JP |
3021121 | Feb 1996 | JP |
08-062544 | Mar 1996 | JP |
10-239642 | Sep 1998 | JP |
2002-228986 | Aug 2002 | JP |
2003-536093 | Dec 2003 | JP |
2005-067551 | Mar 2005 | JP |
2009-139921 | Jun 2009 | JP |
2010-224130 | Oct 2010 | JP |
2012-509497 | Apr 2012 | JP |
10-2014-0027745 | Mar 2014 | KR |
WO 9429763 | Dec 1994 | WO |
WO 9721135 | Jun 1997 | WO |
WO 9741815 | Nov 1997 | WO |
WO 9964918 | Dec 1999 | WO |
WO 03023495 | Mar 2003 | WO |
WO 2005119343 | Dec 2005 | WO |
WO 2007049070 | May 2007 | WO |
WO 2008125743 | Oct 2008 | WO |
WO 2010021419 | Feb 2010 | WO |
WO 2011117909 | Sep 2011 | WO |
WO 2013154582 | Oct 2013 | WO |
WO 2014124352 | Aug 2014 | WO |
WO 2015148770 | Oct 2015 | WO |
Entry |
---|
Oakley Wind Jacket, released at least as early as Aug. 30, 2011. |
PIVLOCK V2—Smith Optics Elite, dated Nov. 7, 2013, available at: https://www.youtube.com/watch?v=WIVQVmO1x0g. |
Invitation to Pay Additional Fees for PCT Patent Application No. PCT/US2013/057309, dated Dec. 17, 2013. |
International Search Report and Written Opinion for PCT Patent Application No. PCT/US2013/057309, dated Feb. 24, 2014. |
International Preliminary Report on Patentability for PCT Patent Application No. PCT/US2013/057309, dated Mar. 3, 2015, in 10 pages. |
Number | Date | Country | |
---|---|---|---|
20180008467 A1 | Jan 2018 | US |
Number | Date | Country | |
---|---|---|---|
61696008 | Aug 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15288775 | Oct 2016 | US |
Child | 15663155 | US | |
Parent | 14014186 | Aug 2013 | US |
Child | 15288775 | US |