The disclosure relates to a hat including an eyewear retainer.
Headwear may be utilized to shield a wearer from environmental hazards, such as sunlight, debris, rain, etc. A wearer may also perform various activities while wearing headwear. During some conditions and/or activities, a wearer may stow eyewear, such as eyeglasses or sunglasses away temporarily. In order to allow quick retrieval of the stowed eyewear, some hats provide openings to accept earpieces of eyewear. For example, U.S. Pat. No. 6,671,885 (Viggiano) discloses slots in a side of a crown of a hat that allow for insertion of earpieces of eyewear. However, while performing activities, such as moving his/her head around or down, a wearer may easily dislodge eyewear stowed in such openings.
For example, the inventors have recognized some disadvantages with the eyewear retainers of Viggiano. In Viggiano, attempts to secure the eyewear are made by lining the openings with a hook and loop material. However, in order to provide the intended security, the wearer would continually adjust the openings by detaching opposing segments of the hook and loop material to one another to accept the eyewear, then reattaching opposing segments of the hook and loop material to one another around the earpieces of the eyewear. Furthermore, the hook and loop material itself does not have any adhesive quality with respect to the surface of the earpieces, but rather merely creates a smaller pocket for the earpieces. Further still, the large area of hook and loop material provided in the hat of Viggiano would create a dense region of additional material along the crown of the hat, affecting aesthetics, airflow, and flexibility/comfort of the hat.
The disclosure provides embodiments of an eyewear retainer that mitigate the above-described issues. For example, headwear according to the following disclosure may include a headwear body including a crown, a hat brim extending from the crown, and one or more slits disposed on a side panel of the crown, each slit providing access to a pocket formed in the side panel of the crown, the pocket including one or more strips of a retaining material coupled to an inner surface of the pocket. By providing a lining for an eyewear retaining pocket as described herein, the disclosed embodiments enable eyewear to be inserted, secured, and removed without adjustment of the retainer by the user. The disclosed striping of retaining material in the pocket also promotes air flow through the pocket to help cool a wearer and retains flexibility and comfort of the hat. Further features of eyewear retainer embodiments are described below.
The disclosure may be better understood from reading the following description of non-limiting embodiments, with reference to the attached drawings, wherein below:
An updated Sunglass Lock technology is included in the disclosed headwear, which may provide the dual functionality of increased security during eyewear storage and increased airflow to a wearer's head. For example, an interior of a pocket and/or channel formed in a side of the headwear may have an internal side (e.g., closest to a wearer's head) that provides ventilation to the wearer's head via ventilating material of a sweatband. The interior of the pocket and/or channel may also have an external side (e.g., closest to an outer environment of the headwear, farther from the head of the wearer than the internal side) that includes one or more strips of retaining material (e.g., silicone in one non-limiting example) to assist in gripping eyewear within the interior of the pocket and/or channel. Therefore, when an earpiece of eyewear is inserted into the pocket/channel, the strips may be positioned on one side of the earpiece and the ventilation material of the sweatband may be positioned on an opposite side of the earpiece. In this way, one side of the pocket/channel may provide retention features, while the opposite side of the pocket/channel may provide ventilation access for increased air flow to a wearer's head. The eyewear retainer may utilize various venting slit sizes/segmentations and possible liners to make the eyewear “lock” in even more securely. Additional features of an eyewear retainer and/or associated slip stream venting are described and illustrated in more detail below with respect to
A completely new sizing system, described and illustrated in more detail below with respect to
The example headwear provided in this disclosure may provide a silhouette that is similar to an early 20th century German or Russian Forager Cap and may include a unique technical twist with a plurality of technical features, as well as a flexible application of trims and fabrics. For example, the headwear may be configured with a material composition that is effective for providing camouflage, blocking UV rays, transferring heat away from the head, resisting and/or repelling water, etc. Structural supports may be embedded in various regions of the headwear to provide additional support of a biased shape of the headwear.
A tactical wearer of headwear may frequent locations such as a shooting range and wear a traditional cadet/patrol style hat. Such hats traditionally have a high front panel that carries around the entire circumference. The present disclosure provides headwear that maintains the traditional military style look in the front with a lower profile appearance in the back. Wearing shooting ear muffs (ear pro) all day may make more traditional military-style hats bunch up on the sides and may generally be uncomfortable for extended use. The present disclosure provides headwear with a crown pattern that may include a one piece pattern with specifically curved darts to match the natural curvature of a wearer's head in the rear. The pattern differs from ball caps (traditional 6 and 5 panel caps) as well as performance hats (rounded in the front and rear). The hat offers the wearer the traditional military style silhouette with the comfort of a ball cap along with the convenience of stowing sunglasses (eye pro) in a secure sunglass lock system and features an unbreakable sizing system on the rear. It is to be understood that the silhouette described above provides just one example of headwear that may include the various features described in this disclosure, and one or more of the features may be interchangeable and/or included on various styles of headwear.
These and other features (described in more detail below) may be provided in various combinations of headwear embodiments to provide a robust, flexible, and functional cap that performs well in any environment and stands up to heavy use. Although illustrated and described as a cap, it is to be understood that any one or more of the features described herein may be included in any suitable style of hat, including, without limitation, a charter hat, a sun fedora, a boonie hat, a capotain, a gat, a hardee hat, a homburg, a panama, a sombrero, a sun visor, a top hat, a legionnaire hat, a flap hat, and/or any other suitable head covering.
In the illustrated example, a front panel 106 may be of a generally rectangular shape (e.g., with parallel substantially straight vertical sides, a substantially straight bottom side that curves around a circumference of the crown of the hat, and a top side that curves/extends upward) curved around the circumference of the hat body. In some embodiments, each panel (or the entirety of the hat body/brim) may include the same type of fabric or other material. In other embodiments, one or more panels (or the hat brim) may include a different type of material than the other panels.
For example, as illustrated in
Headband 108 may form another panel of the hat body and/or a junction between the hat body and the foldable brim 102. Headband 108 may extend around the circumference of the base of the hat body and house the sizing mechanism 110 described in more detail below with respect to
One or more additional panels may form the remainder of hat body 104. The panels may be configured to provide a head-mapping contour, allowing for a low-profile fit. For example, front panel 106 may include the highest point of the hat body, and the panels along the side and top of the hat may converge toward one another as the panels extend to the rear of the hat. This head-mapping crown feature will be described in more detail below with respect to
Foldable brim 102 may be configured to fold inward, such that the outer edges of the brim converge toward one another in a downward direction (when the hat is oriented as illustrated in
In order to provide more robust folding operation, slit 112 may be reinforced by self-fabric exterior bias material (e.g., bias material that is the same as the outer material of the brim). The slit may be reinforced at an associated seam with grosgrain or another suitable material to keep out debris and add lateral strength. For example, a piece of fabric may be folded over each edge of the slit. The additional reinforcement described above may be provided by attaching a piece of material to the underside of each seam (e.g., under the edges of each side of the slit), the material stretching between the edges of the slit. Accordingly, when folded, the piece of reinforcement material under the slit may be exposed, rather than a brim substrate or other element. The material under the slit may be formed of the same material and/or have the same pattern as the material on the upper side of the brim in some examples in order to provide a seamless transition between the brim and the reinforced slit opening.
Headwear 100 may include one or more pairs of optics (e.g., sunglasses/glasses) holders 114 along the side of the hat body 104. For example, a slit may be present in each of the side panels of the hat body providing access to one or more pockets formed in the panels. As used herein, it is to be understood that a pocket may be formed of two or more materials coupled together in a manner that enables elements to be inserted therein. For example, earpieces/legs of the frames of the optics may be inserted into the pockets as illustrated and described in more detail below with respect to
In some examples, headwear may provide a different silhouette from the illustrated silhouette while maintaining the same core features (e.g., sunglasses holders 114, sizing mechanism 110, head-mapping crown as shown in
The shaping of the head-mapping crown may be formed based on anatomical structures of a head of a wearer (e.g., based on average measurements and/or configurable in different measurements for different sizes of headwear). For example, darts, stitching, and/or panel measurements may be matched to regions of a skull of a wearer. As an additional or alternative example, a central seam may be aligned with a central region of a skull or head of a wearer, and darts/seams may be positioned to be aligned with one or more side regions of a skull or head of a wearer. Opening 204 may be made larger or smaller by adjusting the sizing mechanism. Side edges of the panels 202 may be formed by darts, stitching, or other folding/attachment structures. It is to be understood that the head-mapping crown may be utilized in any other suitable headwear than those illustrated. For example, a full-brim hat (and/or a hat with a larger brim that that illustrated in
A guiding loop 306 may be attached to an outer region of the cap near a plurality of looped fasteners 308, also secured to the outer region of the cap. Guiding loop 306 may be formed of flexible material (e.g., material that is more flexible than the material of strap 302 and/or looped fasteners 308) that may stretch to allow the passage of the sizing clip 304 when the strap is directed through the guiding loop toward the looped fasteners. The guiding loop 306 may also provide an anchor to which the sizing clip may be attached for additional size customization. The looped fasteners may be made of the same material as strap 302 or of a different material (e.g., with a different amount of flexibility). For example, the looped fasteners may be formed by attaching a strip of material to a headband of the cap (e.g., sewing vertical stitching) in multiple locations along the strip while the strip is allowed to loosely gather between attachments. The looped fasteners may be any suitable size relative to the sizing clip 304. In some embodiments, each of the looped fasteners may be a same size (e.g., have a same opening area when not stretched and/or have a same width/height). In other embodiments, one or more looped fasteners may be sized differently from one or more other looped fasteners. Although illustrated along a right side of the headwear, it is to be understood that the looped fasteners and other sizing mechanism elements may be located in any suitable region of the cap. For example, the sizing mechanism may be mirror-reversed or have a shifted location from the illustrated example and still fall within the scope of this disclosure.
The sizing clip 304 may be formed of any suitable material. For example, sizing clip 304 may be formed of metal or a metal alloy for strength, plastic for weight reduction, and/or any suitable combination of materials. As a more detailed example, a combination of materials that may be utilized includes the stretch of an elastic overlap stitched to a military grade 20MM webbing, sewn to a nylon coated steel “G” hook that acts as the hook (e.g., sizing clip 304) that latches onto the webbing sizing loops (e.g., 308) on the other side of the rear hat opening. The sizing clip may include a first closed loop that is attached to an associated loop of material from the strap 302 and a second, partially open loop configured to be removably attached to a selected looped fastener 308. The partially open loop may include two substantially parallel prongs (e.g., an innermost prong 402 of
In some embodiments, a hook 406 (illustrated in
In some embodiments, the opening of the looped material for each looped fastener may be sized to be close to a width of the widest point of the prong of the sizing clip. For example, the loop of the fastener may be sized such that the loop of the fastener stretches during insertion of the prong and snap back to a tight fit once the prong is in a locked position inside of the lopped fastener. Any suitable number of looped fasteners may be provided. A shock cord elastic sizing tape retention loop may be utilized for the looped fasteners and/or the guiding loop.
In other embodiments, multiple pockets may be included in the side of the cap and a single slit may provide access to each pocket, depending upon the direction at which an object passes through the slit. In such an embodiment, two or more slits may be present on the cap to allow access to four or more pockets. It is to be understood that any number or combination of slits and pockets may be used to secure optics or other objects to the cap. The slit may also may segmented in some embodiments. For example, horizontal stitching forming a dart or tack (e.g., 707a, 707b, and 707c) may be provided across the slit in one or more locations to create a more secure holding mechanism for the optics when housed in a given pocket. For example, eyewear including curved earpieces may be inserted above at least one dart or tack, and the dart or tack may provide a security mechanism to catch the curved region of the earpieces if the eyewear inadvertently slides out of the pocket. In the illustrated example, if optical device 704 includes curved earpieces, such earpieces may be caught on dart or tack 707c upon inadvertent sliding out of the pocket in order to keep the optical device retained until the wearer can reinsert the device. The segmentation of the slits may also provide differently sized openings for differently sized optics. Furthermore, the segmentation of the slits may enable earpieces or other frame elements to be inserted relatively high on the crown of the hat (e.g., in an upper-most opening, above a horizontal stitch) or relatively low on the crown of the hat (e.g., in a lower-most opening, below a horizontal stitch and the upper-most opening). For example, sunglasses with larger frames/lenses may be inserted into an uppermost opening of the slit in order to allow the bottom of the sunglasses lenses/frames to rest on the brim of the hat. The darts or tacks 707a-707c may be any suitable size capable of extending across the slit 706. For example, the darts or tacks may be approximately ¼ inch long. As illustrated in
Material may be inserted into the slits 706 and/or around the opening/edges of the slits 706 to further prevent and/or promote movement of the optics out of/into the pockets. For example, material having a relatively more adhesive quality (e.g., rubber, texturized material for gripping, silicone, rough fabric, etc.) may be utilized within a pocket and/or along an interior of the edges of openings of the slits 706 to help retain inserted optics within the pocket. Material having a relatively less adhesive or slicker quality (e.g., metal, leather, smooth plastic/fabric, etc.) may be provided along edges of the slits and/or an outer region of the slits in order to promote insertion of optics into the slits/pocket and/or guide the optics into the slits/pocket.
One or more of the slits used for accessing an optics holder may additionally provide ventilation for the cap. For example, the slit may open to a mesh lining of the cap or otherwise provide a path of airflow from an exterior of the cap to an interior of the crown of the cap. Slits 706 may be positioned in any suitable location or configuration on the headwear. For examples, the slits may be positioned higher or lower on the crown, spaced further apart from/closer to one another, shifted along a circumference of the cap, and/or otherwise repositioned relative to the illustrated examples without departing from the scope of this disclosure. Further, it is to be understood that the optics holders described herein may be utilized in any other suitable headwear than those illustrated. For example, a full-brim hat (and/or a hat with a larger brim that that illustrated in
Examples of an eyewear retaining pocket that also provides for slip stream venting are described in more detail in
As illustrated in
In the illustrated example of
At a second layer, (in order from an environment to a wearer's head), one or more strips 816 of retaining material may be provided. The strips 816 may correspond to the strips 810 of
In constructing the pocket 812, the strips 816 may be coupled to the outermost layer 814 (e.g., via heat transfer, sewn, embroidered, glued/adhered, snapped, and/or otherwise attached to the outermost layer). These combined layers may be sewn or otherwise attached to another layer (as represented by dashed lines 823), which may include the ventilation material 820 and/or any other intervening layer not illustrated. The attachment may leave an opening along one edge of the combined layers to allow for insertion of the eyewear therein.
For example, as described above, a pocket may be formed such that eyewear may be inserted from a rear and/or a front of the pocket in some examples. The differential angularity shown in arrangements 828a and 828b may help to retain eyewear in the pocket when inserted from either direction by angling toward the insertion direction, for example. Headwear that includes separate pockets for forward and rear insertion may utilize each of the arrangements 828c and 828d for the respective pockets (e.g., 828c for a forward insertion pocket and 828d for a rear insertion pocket). In some examples, different material may be used for different angles of retaining material. For example, for a forward insertion pocket, arrangement 828a may be used in which angulated material to the right of the pocket are composed of slick material (having less friction or adhesive qualities than the other retaining material) to guide the eyewear into the pocket, while the angulated material to the left of the pocket is composed of more adhesive material to retain the eyewear in the pocket. In this way, the strips of retaining material may work together to increase resistance within the pocket and prevent eyewear from falling out during activity. Other arrangements of retaining material may also be utilized, including spiral, concentric circle, rectangular, and other suitable arrangements of retaining material on crown material.
Positions, orientations, types of material, textures, and/or other features of the strips of retaining material may provide for a retaining pocket that includes multiple locking positions for inserted eyewear. A wearer may select a locking position for eyewear based on a type of eyewear and/or activity being performed. For example, while reading, a wearer may not be moving his/her head extensively, however the wearer may be continually inserting, withdrawing, and reinserting eyewear. In such an example, the wearer may value ease of access of the eyewear above retention of the eyewear, and thus may select a first locking position. For example, the first locking position may correspond to the eyewear being retained and/or in face-sharing contact primarily or only by a first strip of retaining material and/or a first subset of strips of retaining material (e.g., and may not be retained or in face-sharing contact with other strips, such as strips not included in the first subset). This first strip and/or subset of strips may be configured for easy extraction/insertion of eyewear by being composed of a less resistant/tacky/adhesive material, by having a smoother texture, by having a first orientation, and/or by being positioned in a first position closer to an insertion opening (e.g., a slit) of the pocket/front of the headwear (or rear of the headwear, if the pocket is configured for insertion from a rear of the headwear, such as when the headwear is worn backward) than other strips in the pocket.
When performing activities that subject the head to frequent/intense movement and/or position the head downward (e.g., during gardening), a user may select a second locking position. For example, the first locking position may correspond to the eyewear being retained and/or in face-sharing contact primarily or only by a second strip of retaining material, a second subset of strips of retaining material, and/or a combination of the first and second strips/subsets of strips (e.g., and may not be retained or in face-sharing contact with other strips, such as strips not included in the first and/or second subset). The second strip and/or subset of strips may be configured for heavier retention of eyewear by being composed of a more resistant/tacky/adhesive material, by having a rougher/more varied texture, having a second orientation (different from the first orientation, for example), and/or by being positioned in a second position farther from an insertion opening (e.g., a slit) of the pocket/front of the headwear (or rear of the headwear, if the pocket is configured for insertion from a rear of the headwear, such as when the headwear is worn backward) than other strips in the pocket (e.g., such as the first strip and/or subset of strips).
Although only two locking positions are described herein for illustrative purposes, it is to be understood that any number of locking positions may be provided in the retaining pocket of the headwear. In some examples, the strips and/or other element in the retaining pocket may include features for providing feedback regarding successful locking in a selected position. For example, notching, stitching, and/or other elements may be provided to present a haptic and/or audible feedback upon insertion in a selected locking position. In one example, a notch near and/or within the strips for each locking position may enable a user to determine when a desired locking position is achieved by providing a haptic “snap” as the eyewear is inserted to each position (e.g., when the eyewear is inserted to a level that is deep enough to ensure retention via all strips of that locking position).
The example headwear described above provides many technical advantages. For example, optic holders may allow a wearer to secure protective eyewear in exterior crown slits and reduce chance of losing glasses. If the wearer is wearing the hat backward (e.g., for spotting or scope use), the reverse-facing holders may be used to still secure protective eyewear or other optics for easy access. An arrangement of retaining material in a retaining pocket may help to secure the eyewear while simultaneously allowing air to flow through the pocket and to a wearer's head.
It will be understood that the configurations and/or approaches described herein are exemplary in nature, and that these specific embodiments or examples are not to be considered in a limiting sense, because numerous variations are possible. The subject matter of the present disclosure includes all novel and nonobvious combinations and sub-combinations of the various structures and configurations, and other features, functions, acts, and/or properties disclosed herein, as well as any and all equivalents thereof.
The present application claims priority to U.S. Provisional Patent Application No. 62/028,772 entitled “FORAGE HAT,” filed Jul. 24, 2014, the entire contents of which are hereby incorporated by reference for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
1947480 | Meyer | Feb 1934 | A |
5048160 | Goodrich | Sep 1991 | A |
5121507 | Brown | Jun 1992 | A |
5604960 | Good | Feb 1997 | A |
5632046 | Green | May 1997 | A |
5948707 | Crawley | Sep 1999 | A |
6237159 | Martin | May 2001 | B1 |
6298495 | Totani | Oct 2001 | B1 |
6671885 | Viggiano | Jan 2004 | B2 |
7140047 | Kronenberger | Nov 2006 | B2 |
7979921 | Cotutsca | Jul 2011 | B2 |
8740379 | Berger | Jun 2014 | B2 |
20060048277 | Yeadon | Mar 2006 | A1 |
20060152671 | Risso | Jul 2006 | A1 |
20150351478 | Yurevich | Dec 2015 | A1 |
Number | Date | Country | |
---|---|---|---|
20160021962 A1 | Jan 2016 | US |
Number | Date | Country | |
---|---|---|---|
62028772 | Jul 2014 | US |