It is common for people to be exposed to various types of radiation. Often excessive exposure to radiation can be hazardous to one's health. One type of radiation that frequently raises a health concern is ultraviolet (UV) radiation. UV radiation is subdivided into three types: UV-A, UV-B, and UV-C. UV-C radiation has wavelengths in the range of 200 to 285 nanometers (nm) and is totally absorbed by the earth's atmosphere. UV-B, from about 285 to 318 nm, is known to cause skin cancer in humans. UV-A, from about 315 to 400 nm, is mostly responsible for tanning. However, UV-A has also been found to play some role in skin cancer and is the cause of eye cataracts, solar retinitis, and corneal dystrophies.
Although several UV radiation measuring and warning instruments have been developed and made commercially available, these instruments are disadvantageous for various reasons. One disadvantage is that the instruments are often a stand alone, special purpose device. As a result, a user must separately wear the special purpose device, which can be intrusive and often inconvenient. Another disadvantage is that those instruments, even if separate but attachable to other devices, hinder or impede the design for the devices.
Thus, there is a need for improved approaches to measure and inform persons of UV radiation levels.
Eyewear having monitoring capability, such as for radiation or motion, is disclosed. Radiation, such as ultraviolet (UV) radiation, infrared (IR) radiation or light, can be measured by a detector. The measured radiation can then be used in providing radiation-related information to a user of the eyewear. Motion can be measure by a detector, and the measured motion can be used to determine whether the eyewear is being worn.
In one embodiment, the invention pertains to eyewear having radiation monitoring capability. Radiation, such as ultraviolet (UV) radiation, infrared (IR) radiation or light, can be measured by a detector. The measured radiation can then be used in providing radiation-related information to a user of the eyewear. Advantageously, the user of the eyewear is able to easily monitor their exposure to radiation.
In one embodiment, all components for monitoring radiation can be integrated with the eyewear, such as the frame (e.g., a temple of the frame) of the eyewear. Since any of the components provided can be integrated with the eyewear, the disturbance to design features of the eyewear can be reduced. As an example, the eyewear normally includes a pair of temples, and the components for monitoring radiation can be embedded within one or both of the temples. In one implementation, all components for monitoring radiation are integrated into a temple of the frame of the eyewear. As an example, these components can be formed together on a substrate as a module.
In one embodiment, the eyewear includes a detector, electrical circuitry and an output device. The eyewear can also include one or both of a battery and a solar cell to provide power to the electrical circuitry and possibly other components. Further, the eyewear can also include one or more additional sensors. Still further, the eyewear can also include communication capabilities.
The invention can be implemented in numerous ways, including as a system, device, apparatus, and method. Several embodiments of the invention are discussed below.
As eyewear, one embodiment of the invention can, for example, include at least: a frame including at least a first temple and a second temple; a radiation detector for sensing an amount of radiation; and an electronic circuit operatively connected to the radiation detector. The electronic circuit provides at least radiation information based on at least the amount of radiation sensed by the radiation detector. The radiation detector and the electronic circuit are at least partially internal to the first temple of the frame.
As eyewear, another embodiment of the invention can, for example, include at least: a frame including at least a first temple and a second temple; a radiation detector for sensing an amount of radiation; and an electronic circuit operatively connected to the radiation detector. The electronic circuit provides at least radiation information based on at least the amount of radiation sensed by the radiation detector. The radiation detector includes at least an optical filter for reducing passage of predetermined undesired radiation therethrough, and a photodetector for sensing at least a portion of radiation that passes through the optical filter. The photodetector and the electronic circuit are internal to the frame. Further, the frame has an opening adjacent the optical filter to allow at least a portion of the radiation that passes through the optical filter to impinge on the photodetector.
As a consumer product for monitoring radiation, one embodiment of the invention can, for example, include at least: a radiation detector for sensing an amount of radiation; and an electronic circuit operatively connected to the radiation detector. The electronic circuit provides at least radiation information based on at least the amount of radiation sensed by the radiation detector. The radiation detector and the electronic circuit are at least partially embedded in the consumer product. The radiation being detected by the radiation detector is principally solar radiation from the sun. The consumer product can also be wearable by a user.
Other aspects and advantages of the invention will become apparent from the following detailed description taken in conjunction with the accompanying drawings which illustrate, by way of example, the principles of the invention.
The invention will be readily understood by the following detailed description in conjunction with the accompanying drawings, wherein like reference numerals designate like structural elements, and in which:
Eyewear having monitoring capability, such as for radiation or motion, is disclosed. Radiation can be measured by a detector. The measured radiation can then be used in providing radiation-related information to a user of the eyewear. Motion can be measured by a detector, and the measured motion can be used to determine whether the eyewear is being worn.
In one embodiment, an electronic circuit having radiation monitoring capability. Radiation, such as ultraviolet (UV) radiation, infrared (IR) radiation or light, can be measured by the electronic circuit. The measured radiation can then be used in providing radiation-related information to a user of the electronic circuit
In one embodiment, all components for monitoring radiation can be integrated with eyewear, such as a frame (e.g., a temple of the frame) of the eyewear. Since any of the components provided can be integrated with the eyewear, the disturbance to design features of the eyewear can be reduced. As an example, the eyewear normally includes a pair of temples, and the components for monitoring radiation can be embedded within one or both of the temples. In one implementation, all components for monitoring radiation are integrated into a temple of the frame of the eyewear. As an example, these components can be formed together on a substrate as a module.
In one embodiment, the eyewear includes a detector, electrical circuitry and an output device. The eyewear can also include one or both of a battery and a solar cell to provide power to the electrical circuitry and possibly other components. Further, the eyewear can also include one or more additional sensors. Still further, the eyewear can also include communication capabilities.
In another embodiment, some or all of the components for monitoring radiation can be partially or completely tethered to the eyewear. In still another embodiment, some or all of one or more auxiliary sensors used therewith could be partially or completely tethered to the eyewear. Tethering components allows for increased design freedom with the eyewear as well as additional area with which to house the components.
The eyewear can contain lenses, either vision corrective lenses or non-corrective lenses. Examples of eyewear using corrective lenses include, for example, prescription glasses, bi-focal glasses, reading glasses, driving glasses, and progressive glasses. Examples of eyewear, using corrective or non-corrective lenses, are sunglasses, fit-over glasses, safety glasses, sports glasses, swim masks or goggles and ski goggles. The eyewear can also include wrap-around glasses (with wrap-around lenses), fit-over glasses, or auxiliary frames (which attach to existing frames). Still further, the eyewear can include a strap for glasses, such as a strap to hold glasses on one's head. The strap can include some or all of the components for monitoring radiation, such components can be attached or at least partially embedded in the strap.
Embodiments of the invention are discussed below with reference to
The UV monitoring system 300 includes electrical circuitry 302. The electrical circuitry 302 can be one or more electrical components, such as integrated circuits, analog components, and/or digital components. One or more solar cells 304 provide power to the electrical circuitry 302. In other words, when light impinges upon the one or more solar cells 304, power is produced and supplied to the electrical circuitry 302. The electrical circuitry 302 receives a UV level indication from a UV detector 306. In one embodiment, the UV detector 306 includes a photodetector 305 and an optical filter 308. The optical filter 308 can be integral with or positioned proximate to the photodetector 305 so that the optical filter 308 passes radiation associated with the ultraviolet wavelength range, and such radiation is supplied to the photodetector 305. As a result, the UV level indication produced by the UV detector 306 is an indication of the UV radiation impinging upon glasses or the user thereof. The electrical circuitry 302 receives the UV level indication from the UV detector 306 and determines whether an output should be signaled by an output device 310. The output device 310 can take a variety of different forms. For example, the output device 310 can be a display device, such as a LED or LCD display. A display device can produce a visual output. The output device 310 can also be a speaker or a vibration device. The speaker can produce an audio output. For example, the audio output can be a buzzing sound, a beep or a synthesized voice message.
The one or more auxiliary sensors 402 utilized in the UV monitoring system 400 shown in
The chart 500 indicates that one type of auxiliary sensor is a “being worn” sensor. The “being worn” sensor would indicate whether the glasses are being worn by its user. The “being worn” sensor can be performed using, for example, a thermal sensor, a motion detector, a stress sensor or a switch.
In one embodiment, a motion detector is used as a “being worn” sensor. A threshold can be set, such that if the amount of motion detected exceeds the threshold, the eyewear is assumed to be worn. The motion detector can, for example, be achieved by a mechanical means or an accelerometer.
In another embodiment, the “being worn” sensor includes one or more thermal sensors. In the case where two sensors are used, one sensor can be at approximately the middle of a temple, such as in a region that touches the head of the user wearing the glasses, and the other sensor can be positioned at the end of the same temple close to the hinge. If the temperature differential between the two sensors is beyond a certain preset value, the eyewear would be assumed to be worn.
In yet another embodiment, the “being worn” sensor includes a stress sensor at the hinge of the temple. The assumption is that when the eyewear is worn, the hinge is typically slightly stretched because typically the width of the head of the user is slightly wider than the width between the temples when the two temples are in the extended positions. If the value of the stress sensor is beyond a certain preset value, the glasses would be assumed to be worn.
In still yet another embodiment, the “being worn” sensor can be implemented as a switch. For example, the switch can utilize optical, magnetic or mechanical means. In one embodiment, the switch can be positioned at the temple of the eyewear, such as a forward end of the temple proximate to a corresponding lens holder. Different embodiments of such sensors is also described in U.S. Provisional Patent Application No. 60/583,169, filed Jun. 26, 2004, entitled “ELECTRICAL COMPONENTS FOR USE WITH EYEWEAR, AND METHODS THEREFOR,” which has been incorporated herein by reference, see, e.g., section entitled “EYEGLASSES WITH USER INPUT CAPABILITY.”
Another type of auxiliary sensor is an environmental sensor. The environmental sensor can sense environmental conditions, such as one or more of temperature (e.g., ambient temperature), pressure, humidity and toxins (e.g., chemicals, radiation, etc.).
Still another type of auxiliary sensor is a physical sensor. The physical sensor can sense physical conditions of the user of the glasses. Examples of physical sensors include sensing one or more of distance traveled, location, speed, calories consumed, temperature, alertness, and vital signs (e.g., heart rate, blood pressure, etc.) associated with the user of the glasses. The distance traveled could represent the horizontal distance traveled or the vertical distance (i.e. elevation) traveled. As one example, a pedometer can provide an estimate of distance traveled The speed can be acquired or determined, such as the rate of movement along the horizontal distance traveled and/or the vertical distance. As another example, calories consumed can be determined (e.g., estimated) based on various physical and/or environmental conditions that can be measured or determined. Still other physical sensors can sense emotions of the user. For example, the physical sensor could sense whether the user is calm, excited, happy, sad, angry, etc. The physical sensor can also more generally sense user activity level. As an example, the user activity level can be used to provide a lifestyle indication. For example, a lifestyle indication might show that the user was active today or, alternatively, lazy today. Such a lifestyle indication can be displayed as a text or graphic symbol to let the user or others aware of the activity level.
In one embodiment, one particular type of physical sensor is a heart-beat sensor. The heart-beat sensor measures the heart beat of the wearer of the eyewear. One implementation for the heart-beat sensor utilizes an infrared emitter and an infrared detector as a component. The infrared emitter can be a LED and the infrared detector can be a photodiode with an infrared filter. The component can be located at a temple of the eyewear, with both the emitter and the detector both facing the user when the eyewear is worn. In operation, the infrared emitter shines infrared radiation towards the user, and the detector captures the infrared signals reflected back by the skin of the user. The magnitude of the reflected signals depends on the amount of blood flowing below the skin, which, in turn, depends on the heart beat. The rate of emission by the emitter and reception by the detector can be in a frequency range much higher than the heart beat, such as three thousands cycles per second. And the signals from the detector can be low-pass filtered before they are measured to identify the heart beat of the user. For example, the low-pass filter can be centered at 1 Hz.
In should be understood that the sensors might rely on more than one measured criteria. The one or more measured criteria might be used to determine the sensor output. The determination of the sensor output can involve estimation or prediction.
The auxiliary sensors can be provided in a redundant or fault-tolerant manner. For example, sensors can be provided in pairs. When one sensor of a pair malfunctions, the other one can replace it. In another embodiment, any of the auxiliary sensor information can be processed in a differential manner to examine changes to the auxiliary sensor information. The auxiliary sensors can by powered by a battery, solar energy, or kinetic energy. For reduced power consumption, the auxiliary sensors can remain in a low-power state unless data is being acquired by the auxiliary sensors. In yet another embodiment, two or more of the auxiliary sensors can communicate with one another (wired or wirelessly) to exchange data or control information.
In general, the auxiliary sensors can be fully or partially embedded in the eyewear or a base tethered to the eyewear. Alternatively, one or more of the auxiliary sensors can be separate from the eyewear, or any base tethered thereto, and wirelessly communicate with the eyewear or base.
The UV monitoring circuits according to the invention can also include switches, such as a “being-worn” switch, skin type, reset switch and/or an on/off switch. A “being-worn” switch was, for example, discussed above with reference to
The UV monitoring process 800 begins with a decision 802 that determines whether the glasses are being worn. As noted above, the determination of whether the glasses are being worn can be done in a variety of ways. In any case, when the decision 802 determines that the glasses are not being worn, then the UV monitoring process 800 waits until the glasses are being worn. In other words, when the glasses are not being worn, the UV monitoring process 800 can stop, block (pause or wait) or deactivate until it is determined that the glasses are being worn.
On the other hand, when the decision 802 determines that the glasses are being worn, a UV radiation level is acquired 804. For example, the UV radiation level can be acquired 804 from electronic circuitry which can include a UV detector. Next, UV information is determined 806 based on the UV radiation level (radiation data). For example, the UV information can pertain to normalized or calibrated radiation data, accumulated radiation data, or processed radiation data. Hence, although the UV radiation level (radiation data) could be output to the user, by outputting the UV information to the user of the glasses, more useful information (e.g., easier to comprehend) can be presented to the user. Other examples of UV information are referenced elsewhere, such as the UV radiation information discussed below in
Next, the UV information can be output 808 to the output device. The UV information need not always be output 808 to the output device. For example, the UV information could be output 808 to the output device depending upon whether it signals a particular condition to the user. As another example, the UV information could be output to the output device on request by the user. As still another example, the UV information could be output to the output device based on a sensed condition or event. Next, a decision 810 can determine whether the UV monitoring process 800 should continue. When the decision 810 determines that the UV monitoring process 800 should not continue, then the UV monitoring process 800 waits until it is time to be continued. This allows the UV monitoring process 800 to be performed periodically or as needed, which can lead to reduced power consumption and/or more meaningful output information to the user. While the UV monitoring process 800 is waiting, some or all of the UV monitoring system can be in a reduced power consumption state. Nevertheless, when the decision 810 determines that the UV monitoring process 800 should continue, the UV monitoring process 800 returns to repeat the decision 802 and subsequent operations.
The UV monitoring process 900 begins with a decision 902 that determines whether adequate solar energy is present. In this embodiment, solar cells provide adequate solar energy for the UV monitoring process 900 to be performed. In other words, the UV monitoring system (and thus the glasses) operate in the presence of light. When the decision 902 determines that adequate solar energy (e.g., sunlight or artificial light) is not present, then the UV monitoring process 900 awaits adequate solar energy. In one implementation, the UV monitoring system performing the UV monitoring process 900 can automatically turn-off or deactivate when inadequate solar energy is present. Such operation facilitates passive UV monitoring with minimal user participation.
On the other hand, when the decision 902 determines that adequate solar energy is present, a decision 904 determines whether the glasses are being worn. When the decision 904 determines that the glasses are not being worn, then the UV monitoring process 900 returns to repeat the decision 902 and subsequent operations. In effect, the UV monitoring process 900 is not performed when the decision 904 determines that the glasses are not being worn by the user. As noted above, the determination of whether the glasses are being worn can be done in a variety of ways.
Optionally, a delay can be inserted when the decision 904 determines that the glasses are not being worn so as to save power consumption. Such a delay would allow the UV monitoring process 900 to stop, halt, inactivate or otherwise wait for the period of the delay prior to returning to the decision 902 and subsequent operations. While the UV monitoring process 900 is stopped, halted, inactivated or otherwise waiting, some or all of the UV monitoring system can be in a reduced power consumption state.
Alternatively, when the decision 904 determines that the glasses are being worn, a decision 906 can determine whether an interval timer has expired. The interval timer can determine how frequently the UV radiation level is checked and/or how frequently radiation information is output to a display. The interval timer can also thus lead to reduced power consumption (i.e., low-power mode for the electronic circuitry). When the decision 906 determines that the interval timer has not expired, the UV monitoring process 900 waits for the interval timer to expire. During this period of waiting, the UV monitoring process 900 can place some or all of the UV monitoring system in a low-power mode. Alternatively, during this period of waiting, the UV monitoring process 900 can perform processing of other auxiliary sensors that can produce other sensor data which can be processed in conjunction with UV radiation levels.
Once the decision 906 determines that the interval timer has expired, a UV radiation level is acquired 908. Then, UV radiation information is output 910 to the user of the glasses based on the UV radiation level. For example, the UV radiation information can pertain to an instantaneous radiation level, an accumulated radiation level, or some reference radiation indication. An example of a reference radiation indication can be a numerical value, text or a graphic indication. One example of a numerical value implementation is a value representing a percentage of recommended daily dosage. Another example of a numerical value implementation is a value representing UV intensity. One example of a text implementation would be a word (e.g., “ok”, “Burnt”, etc.). One example of a graphic implementation would be a bar-type graph. Another example of a graphic implementation would be a graphic symbol (e.g., a lobster symbol, a fire flames symbol, a picture of a sun, or a smiley face).
Next, the interval timer can be reset 912 and the UV monitoring process 900 can thereafter return to repeat the decision 902 and subsequent operations. As a result, the UV monitoring provided by the UV monitoring process 900 can be continuously performed so long as adequate solar energy is present and the glasses are being worn.
The UV monitoring process 1000 begins with a decision 1002 that determines whether adequate solar energy (e.g., sunlight or artificial light) is available. When the decision 1002 determines that adequate solar energy is not available, then the UV monitoring process 1000 is deactivated, blocked or effectively not invoked. In this embodiment, solar cells provide adequate solar energy for the UV monitoring process 1000 to be performed. In other words, the glasses operate in the presence of sufficient light. When the decision 1002 determines that adequate solar energy is not present, then the UV monitoring process 1000 awaits adequate solar energy.
Once the decision 1002 determines that adequate solar energy is available, then the UV monitoring process 1000 proceeds. Here, the UV monitoring process 1000 can optionally determine whether the glasses are being worn. In any case, as shown in
Next, the UV radiation level is accumulated 1006 during a time period. Here, the UV radiation levels acquired over a predetermined period of time are accumulated 1006 so that the radiation information is based on an accumulation of radiation that has been acquired over the predetermined period of time. For example, the predetermined period of time can be one hour, four hours, eight hours, twelve hours, twenty-four hours, two days, four days, one week, one month or one year.
Thereafter, a decision 1008 determines whether a UV radiation warning is needed. Here, the accumulated UV radiation level can be compared with a threshold to determine whether the accumulated UV radiation is excessive. In one implementation, the threshold can vary with, or be personalized to, different users, such as based on skin type, age, or skin condition. A user of the glasses can input data (e.g., skin type) by way of at least one switch or button. In another implementation, a plurality of threshold levels can be used, e.g., to provide a progression of UV radiation levels (and notifications). Alternatively, the glasses can use predetermined settings and offer several versions (e.g., different glasses for different skin types).
When the decision 1008 determines that the UV radiation warning is not needed, then the UV monitoring process 1000 returns to repeat the decision 1002 and subsequent operations so that the UV radiation level can continuously or periodically be monitored. In one embodiment, the UV monitoring process 1000 can reset the accumulated UV radiation after the period of time has been exceeded. In another embodiment, the accumulated UV radiation can be reset after no significant UV radiation is present for a period of time (e.g., 6-12 hours), after no significant solar energy is present for a period of time (e.g., 6-12 hours), or after not being worn for a period of time (e.g., 6-12 hours), whereby each evening, for example, the reset can automatically occur. In another embodiment, the UV monitoring system, and thus the UV monitoring process 1000, can be automatically turned off (which also resets) after the period of time has been exceeded or after no significant UV radiation is present for a period of time.
On the other hand, when the decision 1008 determines that a UV radiation warning is needed, then a UV radiation warning is output 1010 to the user. The warning can be varied or personalized to the user, and/or can vary depending on the user, user preference, UV radiation level, or auxiliary sensor data. In one implementation, the warning can pertain to a recommendation (e.g., SPF recommendation, get out of sun, high exposure warning, etc.). The radiation warning can be output 1010 via the output device. For example, as noted above, the output device can be a display, a speaker or a vibration device. Hence, the warning can be output to the user by displaying text or graphics, audio sounds, or physical actions. Following the output 1010 of the UV radiation warning, the UV monitoring process 1000 can return to repeat the decision 1002 and subsequent operations so that UV monitoring can continue.
Although the circuitry in
The monitoring process 1100 begins with a decision 1002 that determines whether adequate solar energy (e.g., light) is available. In one implementation, the monitoring system performing the monitoring process 1100 includes at least one solar cell or at least one phototransistor, and the solar cell or phototransistor can be used to determine whether there is adequate solar energy available. Hence, when the decision 1102 determines that adequate solar energy is not available, then the monitoring process 1100 is deactivated, blocked or effectively not invoked. In this embodiment, solar cells can provide adequate solar energy for the monitoring process 1000 to be performed. In another embodiment, a phototransistor can detect whether adequate solar energy is available. In other words, the glasses operate in the presence of sufficient light. When the decision 1102 determines that adequate solar energy is not present, then the monitoring process 1100 awaits adequate solar energy. In this condition, the monitoring system can be in a low power condition (e.g., essentially disabled).
Once the decision 1102 determines that adequate solar energy is available, then the monitoring process 1100 proceeds. Here, the monitoring process 1100 can optionally determine whether the glasses are being worn. In any case, as shown in
On the other hand, when the decision 1104 determines that the glasses are being worn, a radiation level is acquired 1108. For example, the radiation level can be acquired by a detector (e.g., UV detector). Next, the radiation level is accumulated 1110. Here, the radiation levels acquired can be accumulated so that radiation information can be based on an accumulation of radiation that has been acquired while the glasses are being worn.
Thereafter, a decision 1112 determines whether a radiation warning is needed. Here, the accumulated radiation level can be compared with a threshold to determine whether the accumulated radiation is excessive. In one implementation, the threshold can vary with, or be personalized to, different users, such as based on skin type, age or skin condition. In another implementation, a plurality of threshold levels can be used, e.g., to provide a progression of radiation levels (and notifications). A user of the glasses can input data (e.g., skin type, preferences) by way of at least one switch or button. Alternatively, the glasses can use predetermined settings and offer several versions (e.g., different glasses for different skin types).
When the decision 1112 determines that the radiation warning is not needed, then the monitoring process 1100 deactivates 1114 the radiation warning. Alternatively, when the decision 1112 determines that the radiation warning is needed, then the monitoring process 1100 activates 1116 the radiation warning. The warning can be varied or personalized to the user, and/or can vary depending on the user, user preference, radiation level, or auxiliary sensor data. The radiation warning can be produced at an output device. For example, as noted above, the output device can be a display, a speaker or a vibration device. In one implementation, the warning is a graphical symbol or text that signals the user of the glasses that they have received a significant amount of radiation. Following the deactivation 1114 and the activation 1116, the monitoring process 1100 can return to repeat the decision 1102 and subsequent operations so that monitoring can continue.
The radiation warning can remain active anywhere from a brief period to continuously depending on the type of warning being provided, user preference or manufacturer setting. For example, an audio alert might sound for a few seconds, while a displayed alert might remain on for a longer duration. The radiation warning can be output differently depending on the power situation of the monitoring system. If the monitoring system is being solar powered, then the radiation warning can remain active until deactivated. However, when the monitoring system is being battery powered, the radiation warning might be active for only a brief period.
In one embodiment, the threshold used by the level comparator 1206 can correspond to a recommended daily dosage of such radiation. For example, if the radiation detector 1202 is primarily detecting UV radiation, the recommended daily dosage would pertain to UV radiation.
The electronic circuit 1300 includes a phototransistor 1302 and a resistor (R1) 1304 coupled in series between a supply voltage (Vs) and ground. In this embodiment, the phototransistor 1302 implements a radiation detector. As radiation (of an appropriate frequency range) strikes the phototransistor 1302, a voltage V1 appears at a first node connecting the phototransistor 1302 to the resistor (R1) 1304. The voltage V1 induces a current 11 that passes through a diode 1305 and a resistor (R2) 1306. A voltage V2 at a second node then begins to rise from ground level to the level of V1 by the charging of a capacitor (C1) 1308 at a rate dependent on the amount of the current 11 and the capacitance of the capacitor (C1) 1308 and the resistances of the resistors (R2 and R3) 1306 and 1310, respectively. A Schmitt trigger inverter 1312 couples to the second node and receives the voltage V2 at its input. When the voltage V2 exceeds the turn-on voltage for the inverter 1312, the output of the inverter 1312 goes low and couples to a third node via a diode 1314. At this point, the low voltage (V3) at the third node couples to an input of a Schmitt trigger inverter 1316, which outputs a high voltage (V4) at a fourth node which charges a resistor (R4) 1318 and capacitor (C2) 1320. The resistor (R4) 1318 couples between the third and fourth nodes. The capacitor (C2) couples between the third node and ground. Once the voltage V3 has risen sufficiently, the inverter 1316 switches to output a low voltage (V4), thereby discharging the capacitor (C2) 1320. Hence, the inverter 1316, the resister (R4) 1318 and the capacitor (C2) 1320 form an oscillator. The outputs for the electronic circuit 1300 are complementary, a positive output from the fourth node and a negative output from an inverter 1322 coupled to the fourth node. These complementary outputs are applicable for driving a LCD type display device.
Although not shown in
The electronic circuit 1300 can facilitate low power operation. In one implementation, the resistor (R1) 1304 can be made large. In another implementation, power dissipated by resistor (R1) can be conserved by using a radiation detector, such as a phototransistor, that is responsive to the radiation of interest but with very low sensitivity to the radiation of interest. In the case of a phototransistor, sensitivity can be reduced by covering the phototransistor with a layer of aluminized Mylar. Aluminized Mylar can attenuate light passing through it by a factor of approximately one-thousand (1000). In still another implementation, the supply voltage (Vs) supplied to the phototransistor 1302 can be periodic, so that power consumed by the resister (R1), which, in this case, need not be a high resistance, is substantially reduced, yet the phototransistor 1302 has an extended dynamic range. The sensitivity of the radiation measurement can also be adjusted by changing the duty-cycle of the periodic supply voltage (Vs). These various implementations for low power operation can be used singly or in combination.
Although the resistance and capacitance values for the electronic circuit 1300 and the periodic supply voltage circuit 1350 can vary widely with implementation and application, some exemplary values are as follows. For example, for the electronic circuit 1300, the resistor (R1) 1304 can be 22 k ohms, the resistor (R4) 1318 can be 330 k ohms, and the capacitor (C2) 1320 can be 0.1 microfarads (μf). The resistor (R2) 1306 and the resistor (R3) 1310 can, for example, be in the range of 1-50 M ohms. The capacitor (C1) 1308 can, for example, be in the range of 1-100 μf. For example, for the periodic supply voltage circuit 1350, the resistor (R5) 1354 can be 10 M ohms, the resistor (R6) 1358 can be 200 k ohms, and the capacitor (C3) 1360 can be 0.01 μf.
In any case, when the output manager 1406 determines that an output indication is to be provided, the output manager 1406 provides an output signal to an output driver 1408. The output driver 1408 controls an output device so as to produce an output indication. The output indication can be textual (including numerical) and/or graphical. For example, as a numerical output, the output could indicate a percentage of acceptable radiation for a day that has been already detected. As another example, the output could be a graphical output that pertains a symbol or a graph. In one embodiment, the output provided by the output device is a visual output on a display device. However, in general, the output can be visual and/or audio. For example, examples of audio outputs are beeping sounds, synthesized speech, or prerecorded audio messages.
The output manager 1406 receives the frequency signal from the radiation-to-frequency converter 1404 and can determines when an output indication should be provided. In one implementation, the output manager 1406 can include a divider that divides down the frequency signal from the radiation-to-frequency converter 1404 such that the output manager 1406 causes the output driver 1408 to produce an output indication based on an amount of radiation that has effectively been detected. As an example, a predetermined amount of radiation to be effectively detected can be controlled by altering the amount of division provided by the divider. Hence, the amount of division utilized by the output manager 1406 can correspond to a radiation threshold amount, such as a recommended daily dosage of ultraviolet radiation. The amount of division provided by the divider can also depend on or vary in view of one or more of user preferences, position (e.g., proximity to equator), intensity level of radiation, user characteristics (e.g., skin color or type), or auxiliary sensor data, etc. Alternatively, the output manager 1406 can include a counter that counts based on the frequency signal from the radiation-to-frequency converter 1404, wherein the amount of count utilized by the output manager 1406 can also correspond to a radiation threshold amount.
In an alternative embodiment, the radiation-to-frequency converter 1404 can instead be a radiation-to-pulse-width converter. The radiation-to-pulse-width converter can convert the radiation indication into a pulse-width signal. The pulse-width signal is supplied to an output manager 1406. The output manager 1406 arranges when an output is to be provided for the radiation monitoring system 1400. In one embodiment, the output manager 1406 determines that an output indication should be provided based on the width of the pulse of the pulse-width signal.
The radiation monitoring system 1420 includes a sensor 1422. The sensor 1422 senses radiation, such as ultraviolet radiation or infrared radiation. The sensor 1422 outputs a radiation indication to a radiation-to-frequency converter 1424. The radiation-to-frequency converter 1424 outputs a frequency signal ϕ1 to a divider 1426. The divider 1426 divides the frequency signal ϕ1 and outputs a divided frequency signal QN. The divided frequency signal QN is supplied to a latch 1428. As shown in
Still further, the radiation monitoring system 1420 includes a power supply 1434 that supplies power to various components under the radiation monitoring system 1420. The power supply 1434 outputs a positive voltage (V+), a ground signal (GND), and a negative voltage (B−). The signals provided by the power supply 1434 are supplied to various components of the radiation monitoring system 1420 as shown in
As noted above, the radiation monitoring system 1420 is an example of a more detailed embodiment of the radiation monitoring system 1400 illustrated in
The power supply 1475 includes a battery 1476 that is coupled between a positive voltage terminal (V+) then a negative voltage terminal (B−). The power supply 1475 also includes a transistor 1477. In one embodiment, the transistor 1477 is an enhancement type n-channel MOSFET. The drain terminal of the transistor 1477 is coupled to the ground terminal of the power supply 1475, and a source terminal of the transistor 1477 is coupled to the negative voltage terminal (B−). A gate terminal of the transistor 1477 couples to a first node 1478. The first node 1478 is coupled to the negative voltage terminal (B−) by a capacitor 1479-1, and is coupled to the positive voltage terminal (V+) by a resistor 1479-2 and a switch S2a. The switch S2a is closed when the power supply 1475 is “on.” The power supply 1475 also includes a switch S2b that is closed when the power supply 1475 is “off.” Hence, only one of the switches S2a and S2b are closed at any one point. When the switch S2b is closed, the first node 1478 is coupled to the negative voltage terminal (B−) so that the transistor 1477 is “off.” On the other hand, when the switch S2a is closed, the first node 1478 is able to hold a positive voltage which activates the transistor 1477. When the transistor 1477 is activated, the negative voltage provided on the negative voltage terminal (B−) is provided at the ground (GND) terminal. As an example, the resistance of the resistor 1479-2 can be 100 k ohms, and the capacitance of the capacitor 1479-1 can be 0.01 microfarads, and the battery can provide 3 Volts (e.g., 35 mA-H). The transistor 1477 can be implemented by a 2N708 chip, for example.
In one embodiment, a radiation detector can be mounted on a substrate and couple to other circuitry so that radiation monitoring can be performed. The manner in which the radiation detector is mounted to the substrate can vary with implementation. In one implementation, the substrate is a printed circuit board (PCB) that supports not only the radiation detector but also the other circuitry.
Optionally, the back side of the printed circuit board 1481 at the vicinity of the phototransistor 1483 can attenuate or block radiation that might otherwise impinge on and be sensed by the phototransistor 1483. As shown in
Finally, the top of the UV detector arrangement 1480, except for the optical filter 1489, can be encapsulated by a top encapsulant 1490. For example, the top encapsulant 1490 can be epoxy. The bottom of the UV detector arrangement 1480 can be encapsulated by a bottom encapsulant 1492. For example, the bottom encapsulant 1492 can be epoxy. The epoxy used for the encapsulant 1490 or 1492 can be opaque (e.g., block epoxy) to further assist in blocking radiation.
Optionally, the back side of the printed circuit board 1481 at the vicinity of the phototransistor 1483 can attenuate or block radiation that might otherwise impinge on and be sensed by the phototransistor 1483. As shown in
The phototransistor 1483 or 1483′ shown in
The power supply 3040 includes a battery 3042 that is coupled between a positive voltage terminal (B+) and ground terminal (GND). The power supply 3040 includes an on/off switch S3. When the switch S3 is closed the power supply is turned on. In one implementation, the switch S3 is a push button switch that is normally open (i.e., not close). The power supply 3040 also includes a resistor 3044 and a transistor 3046. In one embodiment, the transistor 3046 is an enhancement type p-channel MOSFET. The drain terminal of the transistor 3046 is coupled to the ground terminal (GND) of the power supply 3040 via a resistor 3048, and a source terminal of the transistor 3046 is coupled to the positive voltage terminal (B+) of the battery 3042. A gate terminal of the transistor 3046 is coupled to a first node 3049. The first node 3049 is coupled to the positive voltage terminal (B+) by the resistor 3044, and can be coupled to the ground terminal (GND) via the switch S3. The power supply 3040 also includes a transistor 3050, having a gate terminal coupled to a second node 3051, a source terminal connected to the ground terminal (GND), and a drain terminal connected to a third node 3052. In one embodiment, the transistor 3050 is an enhancement type n-channel MOSFET. Further, the power supply 3040 includes a transistor 3054, a resistor 3056 and a capacitor 3058. In one embodiment, the transistor 3054 is an enhancement type p-channel MOSFET. The gate terminal of the transistor 3054 connects to the third node 3052, the source terminal of the transistor 3054 connects to the positive voltage terminal (B+), and the drain terminal of the transistor 3054 connects to a voltage output terminal (V+). The resistor 3056 and the capacitor 3058 are connected in parallel between the positive voltage terminal (B+) and the third node 3052.
The operation of the power supply 3040 can be briefly explained as follows. When the switch S3 is press (momentarily), the transistor 3046 pulls the second node 3051 to approximately the positive voltage terminal (B+), which activates the transistor 3050. When the transistor 3050 is activated, the third node is pulled to approximately ground, which activates the transistor 3054. When the transistor 3054 is activated, the voltage output terminal (V+) is capable of outputting power for use by other circuitry. Since the switch S3 is soon released, the transistors 3046 and 3050 deactivate. However, the transistor 3054 remains on for a period of time determined by a time constant determined by the resistor 3056 and the capacitor 3058. Hence, during the period of time, charge from the capacitor 3058 is slowly discharged. Once substantially discharged, the transistor 3054 deactivates, thus ceasing output of any power to the other circuitry. In effect, the power supply 3040 automatically turns off after the period of time. As an example, the period of time can be 12 hours (e.g., representing daily usage of a radiation monitoring system). The power supply 3040 can also receive a reset signal that serves to restart any “auto-off” timing that may be used.
It should be noted that a power supply for a radiation monitoring system can implemented in various ways. The power supply 1475 illustrated in
In this embodiment, the latch-driver circuitry 4100 has the capability to separately drive a plurality of different segments. These segments can be segments of a LCD display and can be combined to form symbols or charts. For example, in one embodiment, the LCD segments can be utilized to form a bar graph output.
The latch-driver circuitry 4100 includes a latch 4102 that receives an input associated with output Q19 from a divider (e.g., the binary counter 4000). The output of the latch 4102 is supplied to a LCD driver 4104. The LCD driver 4104 includes NAND gates 4106 and 4108. The outputs of the NAND gates 4106 and 4108 are supplied to a LCD segment-14110. The LCD driver 4104 also includes frequency signals ϕ2 and/ϕ2 from an oscillator 4112.
The latch-driver circuitry 4100 further includes a latch 4114, a LCD driver 4116 and a LCD segment-24418. The latch 4114 receives an input signal associated with the output Q20 from the divider (e.g., the binary counter 4000). Likewise, for one or more other outputs from the divider (e.g., the binary counter 4000), the latch-driver circuitry 4100 can include a latch, a LCD driver and a LCD segment. In this regard, the output QN from the divider represents a generic output signal which is supplied to a latch 4120. The output of the latch 4120 is supplied to a LCD driver 4122. The output of the display driver 4122 is coupled to a LCD segment-N 4124. Additionally, each of the latches 4102, 4114 and 4120 receives a reset signal from a switch S1.
Still further, the output QN is coupled to an enable terminal of the divider (e.g., the binary counter 4000) via an inverter 4126. When the signal QN is high, the LCD segments are fully illuminated; hence, the enable signal output by the inverter 4126 is “low” so that the divider (e.g., the binary counter 4000) is disabled, until reset.
The driver circuitry 4200 includes a LCD driver 4202 that receives the outputs Q20 and Q21 from the divider (e.g., the binary counter 4000). These signals Q20 and Q21 are supplied to a NOR gate 4206 whose output is supplied to NAND gates 4208 and 4210. The outputs of the NAND gates 4208 and 4210 are supplied to a LCD graphic segment-14204. As shown in
Additionally, the output Q20 is supplied to a LCD driver 4212 whose output in turn drives a LCD graphic segment-24214. Further, the output Q21 is supplied to a LCD driver 4216 whose output in turn drives a LCD graphic segment-34218. As shown in
The driver circuitry 4200 also includes an oscillator 4220 that supplies the output frequency signals ϕ2 and/ϕ2 to the LCD drivers 4202, 4212 and 4216. The driver circuitry 4200 further includes an inverter 4222 coupled to the output Q21. The output of the inverter 4222 is coupled to the enable terminal of the divider (e.g., the binary counter 4000) so that the divider (e.g., the binary counter 4000) is stopped once the output Q21 is “high.”
In this embodiment, the driver circuitry 4300 has the capability to separately drive a plurality of different segments. These segments are segments of a LCD display and can be combined to form numerical values. For example, in one embodiment, the segments can be utilized to output numerical values from 0-9. In other embodiments, the range of numerical outputs could be more or less than 0 through 9.
The driver circuitry 4300 receives a plurality of outputs from a divider (e.g., the binary counter 4000), such as outputs Q19, Q20, Q21 and Q22. These outputs are supplied to a BCD-to-7 segment converter 4302. The output of the converter 4302 is supplied to a 7-segment LCD driver 4304. The 7-segment LCD driver 4304 couples to a 7-segment display 4306. Here, the outputs from the divider (e.g., the binary counter 4000) are converted such that a numerical range is output on the 7-segment display 4306. For example, the 7-segment display 4306 can display a number from 0 to 9 indicating a quantity or intensity of radiation. A NAND gate 4308 is coupled to the output Q19 and the output Q22 so as to decode a value of “9” at the outputs and cause the enable signal to go “low”, thereby ceasing operation of the divider (e.g., binary counter 4000) when such reaches its maximum value.
The radiation monitoring system can also be implemented by primarily digital design.
In addition to the microcontroller 4402, the radiation monitoring system 4400 includes a battery 4404 and a capacitor 4406. The battery 4404 provides power to the microcontroller 4402. The capacitor 4406 together with the sensor 1422 and the microcontroller 4402 can be used to monitor radiation. The microcontroller 4402 also determines whether and what to display on the LCD panel 1432. In one implementation, the microcontroller 4402 can include a display driver for driving the LCD panel 1432. One example of a suitable microcontroller for the microcontroller 4402 is the 4-bit microcontroller TM8704 available from Tenx Technology, Inc.
In one embodiment, the monitoring of radiation by the radiation monitoring system 4400 is performed using a pulse-width measurement technique. In such an embodiment, periodically, the microcontroller 4402 outputs a HIGH signal (digital “1” signal) on an OUTPUT pin and then monitors an INPUT pin for a HIGH signal. In one implementation, the sensor 1442 is implemented by a photodiode having its anode connected to the INPUT pin and its cathode connected to the OUTPUT pin. When the photodiode detects radiation, the photodiode conducts. Then, the HIGH signal on the OUTPUT pin propagates to the INPUT pin and charges up the capacitor 4406. The higher the intensity of the radiation, the faster the capacitor 4406 is charged to the HIGH signal. The duration of time between the outputting of the HIGH signal on the OUTPUT pin and the detection of a HIGH signal on the INPUT pin is dependent on the radiation intensity detected by the sensor 1422 and the capacitance of the capacitor 4406. The microcontroller 4402 measures this duration of time. The radiation intensity measured by the microcontroller 4402 is thus inversely proportional to the period of time. An intensity value can be computed as a value that is proportional to a constant divided by the period of time. This intensity value is then accumulated with the prior accumulated intensity value to determine a current accumulated intensity value. The current accumulated intensity value is then compared to one or more threshold levels to determine an output indication to be displayed on the LCD panel 1432. As discussed elsewhere in this patent application, the output indication can take many different forms. One exemplary form is a series of increasing bars that are activated as the accumulated current intensity value exceeds a corresponding series of threshold levels.
In one embodiment, upon turn-on of the radiation monitoring system 4400, such as via a switch (SW1) 4408, the current accumulated intensity value maintained by the microcontroller 4402 can be cleared or set to zero. Hence, the turn-on can also act as a reset. In an alternative embodiment, the current accumulated intensity value could be very gradually reduced to provide a slow discharge of the accumulated intensity value as a function of time. In the alternative embodiment, the current accumulated intensity value need not be reset.
In one embodiment, to assist in the efficient power utilization of the radiation monitoring system 4400, the microcontroller 4402 can be placed in a low power state when not acquiring a radiation measurement. This can be achieved by a sleep, halt or stop mode or other approaches to reduce power consumption. Then, periodically the microcontroller would briefly operate in an active or non-low power state to acquire and accumulate the radiation measurement. The periodicity can vary with implementation, such as from fifteen (15) seconds to fifteen (15) minutes. The greater the period the longer battery life, but the less the accuracy. A reasonable solution might use a period on the order of about three (3) minutes. In acquiring the period of time (for the radiation measurement), a maximum time-out can be provided so that power is not wasted. Typically, if the radiation monitoring system is monitoring light or UV radiation in the dark (or for UV, the environment has very low UV, such as at night or inside a car with windows closed), then the time period being measured would time-out. Thereafter, if desired, the periodicity by which re-measurement is performed can be made longer so as to further conserve power. In another embodiment, once the radiation monitoring system 4400 is turned-on, it can remain on for a predetermined period of time and then automatically turn itself off (or enter a very low power mode). For example, after being turned-on with no user input for eight (8) hours, the radiation monitoring system 4400 can automatically turn itself off.
The radiation monitoring system 4400 can also include a second switch (SW2) 4410 to enable a user's skin type to be selected. For example, the second switch 4410 can provide different switch positions for different skin types (e.g., light, medium and dark). The switch position can affect the various threshold levels that are used when comparing with the current accumulated intensity value to determine an output indication to be displayed on the LCD panel 1432. As an example, when the output indication is presented as a series of five segments (S1-S5) of increasing bars that are activated as the accumulated current intensity value exceeds a series of threshold levels, Table I provided below provides illustrative threshold levels for various skin types.
The times (durations) provided in Table I are in units of hours and are times for the various segments of the LCD panel to activate in the presence of medium-to-light radiation (e.g., UV index (UVI) of about 3). It should be noted that if the radiation present were greater than medium-to-light, then these times in Table I would be shorter. Likewise, if the radiation present were less than medium-to-light, then these times in Table I would be longer.
The UV sensor 1506 utilized in the UV detection systems 1500, 1520 and 1540 may use an optical filter with an optical sensor. For example, the optical sensor can respond to light, UV and infrared radiations, and the sensitivity of the optical filter causes the optical sensor to capture primarily the target radiation (e.g., UV) wavelengths of light. Hence, the UV sensor 1506 can include such optical filter. For example, the optical filter can be implemented as a coating on the optical filter. Alternatively, the optical filter can also be a separate component that is positioned proximate to the optical sensor when the end product is assembled. In other words, an optical filter can be another component of the UV detection system, or can be a separate component that is inserted when assembled into the end product. In one embodiment, an optical adhesive can be used to secure the optical filter to the optical sensor.
In general, the UV detection system according to the invention can make use of zero or more switches. One type of switch is a button switch, such as a push-button switch. As an example, the switch can serve as a reset switch, an on/off switch, or an on (and reset) switch.
The module housing 1700 is a housing for a module, such as a UV detection system. The module housing 1700 is then placed into an opening, cavity or container of an eyewear housing, such as a temple region of the eyewear housing. The module housing 1700 protects the module. The module housing 1700 can also be used to regularize or standardize the form factor for the UV detection system, such that the opening, cavity or container of the eyewear housing can be regularized or standardized.
A UV reflector 1814 is mounted on an internal support 1816. Light impinges on the UV reflector 1814 via an opening 1818 in the eyewear housing 1800. The opening 1818 allows radiation to pass through to the UV reflector 1814. In one embodiment, there can be a piece of transparent material at the opening 1818 to prevent dust or dirt from getting through the opening 1818 into the internal cavity 1802. The opening 1818 can also be considered a transparent region in the eyewear housing 1800. The UV reflector 1814 selectively reflects primarily the UV portion of the radiation towards the UV detector 1806. As a result, the reflector 1814 serves as a reflective-type filter, that is, a type of optical filter. For example, the reflector 1814 can be made of a material that substantially reflects UV light but does not reflect non-UV light. An example of one such reflector is known as a UV hot mirror. Also, the eyewear housing 1800 can also include transparent portions 1820 and 1822 which are adjacent to the display device 1810 and the solar cell(s) 1822, respectively. The transparent portion 1820 allows light from the display device 1810 to be seen from the outside of the eyewear housing 1800. The transparent portion 1822 allows light from an external light source to impinge on the solar cell(s) 1812. Alternatively, the display device 1810 could extend to and conform with an outer surface of part of the eyewear housing 1800, and the solar cell(s) 1812 could extend to and confirm with an outer surface of part of the eyewear housing 1800. Alternatively, if a battery were used in place of the solar cell(s) 1822, then the transparent portion 1822 would not be needed.
In one embodiment, a number of previously described transparent regions, portions, or sheets of materials, such as the transparent portions 1820 and 1822 in
The optical sensor or UV sensor can receive impinging light from a variety of different directions (i.e., angle of incidence) depending on implementation. For example, the light can come from an opening in the top of the temple, such as shown in
The UV detection system can also have a “being-worn” switch as noted above. In one embodiment, the “being-worn” switch enables the UV monitoring system to automatically determine when to monitor UV radiation and when not to monitor UV radiation. In particular, the UV radiation can be monitored when an eyeglass frame having the UV detection system is “being-worn” and not when the eyeglass frame is not “being-worn.” The “being-worn” switch can be positioned in the temple portion with the other components of the UV detection system. In one embodiment, the UV detection system is provided, as a module as noted above, and which further includes a switch. The switch can, for example, be a “being worn” switch. By having the switch in the module, the manufacture and assembly of the end-product having the UV detection system can be simplified. As examples, the “being-worn” switch can be an optical, magnetic or mechanical switching device.
The “being-worn” switch can make use of the situation that the temples are in an open position when the eyeglass frame is being worn, and in a closed position when not being worn. In one embodiment, the “being-worn” switch can be positioned at a temple proximate to a region that couples the temple to its corresponding lens holder. For example, the UV detection system (e.g., module) can be provided within the temple region near the end of the temple so that the “being worn” switch is adjacent the lens portion of the eyeglass frame.
The “being worn” switch can also be used by a user to signal the UV detection system to provide its output at an output device, such as a display device. For example, when the “being worn” switch is initially closed (i.e., being worn), the UV detection system can output its text or graphical output to the display device. Typically, the displayed output would be displayed only for a limited period of time (e.g., 10 seconds). Such an approach is power efficient, yet permits the user to obtain the output information when desired. Alternatively, another switch (e.g., dedicated output switch) could be used to cause the output to be displayed for a limited period of time or while the switch is depressed.
The UV detection system can also make use of one or more switches to change operational settings, such as threshold levels, output type, user preferences, user physical characteristics (e.g., skin type), accumulation mode or non-accumulation mode, activation/deactivation of auxiliary sensors.
The UV detection system can make use of one or more variable capacitors or resistors within the design of the electronic circuit to facilitate a manufacturer or dispenser to calibrate the UV detection. Such can assist with quality control as well as consistency or uniformity. The UV detection system can also alter another aspect of the electronic circuitry, such as a count or divide amount (
Calibration or customization of the UV detection system can also be performed after manufacturer by a user or dispenser. As one example, the eyewear can be sold or dispensed with one or more stickers available for placement over the radiation detector (e.g., UV sensor). The stickers can attenuate the radiation impinging on the radiation detector. In other words, the stickers can perform sensitivity adjustment on the UV detection system. Different ones of the stickers can offer different degrees of attenuation. A user can thus select an appropriate sticker based on their skin type (or amount of exposure they prefer) and place it over the radiation detector, thereby calibrating or customizing the UV detection system to the user.
As previously noted, the optical sensor (e.g., UV sensor) can be implemented by at least one photodetector, such as a phototransistor. Although various different phototransistors can be utilized, one example of a suitable phototransistor is Part No. PT100MCOMP available from Sharp Microelectronics of the Americas. As another example, a suitable phototransistor for the phototransistor is Part No. EL-PT15-21B (1206 phototransistor) available from Everlight Electronics Co., Ltd. As still another example, other suitable phototransistors are GaN or SiC phototransistors. Alternatively, although the discussion above at times refers to phototransistors, the photodetector can also be a photodiode. In the case of a photodiode, similar circuitry to that noted above would be utilized. Although various different photodiodes can be utilized, one example of a suitable photodiode is Part No. PD100MCOMP available from Sharp Microelectronics of the Americas.
The radiation sensors or detectors, including phototransistors and photodiodes, used for radiation monitoring are often designed for sensing or detecting certain types of radiation. For example, a UV sensor or UV detector would be an electronic device that is sensitive to UV radiation, namely, the wavelengths of light pertaining to UV spectrum. While such electronic device may be primarily sensitive to such radiation of interest (e.g., UV radiation), they may also be somewhat sensitive to other radiation. Optical filters can be used to assist these sensors or detectors in sensing the desired type of radiation. Nevertheless, radiation monitoring can be achieved even though the radiation sensors or detectors are sensitive to non-desired radiation so long as they are primarily or principally responsive to the desired radiation.
When the radiation to be monitored is UV radiation, the optical filter described above is typically implemented by a material that passes radiation in the UV wavelength band and blocks radiation not in the UV wavelength band. Various materials can be used in this regard. In one embodiment, the material providing the optical filtering can be known as a UV cold mirror. However, in another embodiment, the optical filter may have other characteristics, such as a material (e.g., polycarbonate) that passes radiation not in the UV wavelength band and blocks radiation in the UV wavelength band. In another embodiment, the optical filter can utilize a material that passes light primarily associated with the ultraviolet wavelength range while substantially blocking light of other wavelengths. Such a material can, for example, be a filter made from quartz-glass with nickel oxide, such is commonly known as Wood's glass. The material implementing the optical filter can also be configured in various ways, such as a plug for an opening or a coating on a surface (or on the photodetector itself). In one embodiment, the material implementing the optical filter can either pass or reflect the UV radiation.
An output (e.g., notification, such as a warning) to the user can vary in content and type. The type can be visual and/or audio. The content can be numerical, graphical, musical, textual, synthesized text, etc. A progression of warnings can be used to give more substantial warning (such as when prior warnings are ignored). The output can also be predetermined, dynamically determined or configurable. Still further, the output can be dependent on user preferences, user physical characteristics (e.g., skin type), auxiliary sensor information (e.g., location), and degree of health risk.
The radiation monitoring system can also include one or more connectors with the eyewear. The connectors can, for example, facilitate electrical or mechanical interconnection with an external electrical device (e.g., computing device, media player, headset, power source). Although the format and size of the connectors can vary, in one embodiment, the connector is a standard audio connector or a peripheral bus connector (e.g., USB connector).
The radiation monitoring system can also include one or more switches with the eyewear. The switches can, for example, facilitate user input or control with respect to the radiation monitoring system. For example, the switches can provide one or more of on/off, reset, on, on (and reset), and calibration. One example of a calibration switch is a skin type switch that provides switch positions for different skin types (e.g., light, medium and dark). The radiation monitoring system can also provide a user with an indication of whether the system is currently on or off, such as by a graphical image on a display device or by a LED.
A radiation monitoring system can also include a memory. The memory can be volatile or non-volatile. The memory can also be removable or non-removable with respect to the eyewear. If the memory is volatile, the radiation monitoring system could include a battery to provide power to the memory so that stored data (e.g., accumulated radiation, user preferences, etc.) can be retained even when adequate solar energy is not available. As an example, the presence of a memory can allow storage of radiation information for an extended period of time to acquire a historical understanding of radiation information.
In one embodiment, an eyeglass frame can include memory that can store acquired radiation information, such stored radiation information can be subsequently uploaded to a computer, in a wired or wireless manner. The radiation information can then be analyzed by the computer. For example, a doctor may require a patient to keep track of his exposure to UV radiation, or other radiations, to assist the doctor to evaluate risks or symptoms.
In another embodiment, a user of an eyeglass frame interact with a switch provided on the eyeglass frame to set a calibration level. As an example, in the case of UV radiation, the calibration level can correspond to the user's skin type. In general, the calibration level causes the amount of acceptable radiation (e.g., threshold levels) to vary.
In still another embodiment, a user can go through a calibration procedure when the user purchases the eyeglasses. The calibration procedure can operate to personalizes the UV detection system for the user. For example, the complexion of the user's skin affects the user's sensitivity to UV. Based on the skin complexion, a UV monitoring system adjusts the levels of acceptable exposure to UV. The calibration procedure can be performed wired or wirelessly. For example, the calibration can be done by a computer, with the calibration data downloaded to the eyeglasses through a connector integral with the eyeglasses.
A radiation monitoring system can also include a communication module. The communication module would allow data transmission to and from the radiation monitoring system (namely, the eyewear) and an external device. The data being transmitted can, for example, be radiation information, configuration data, user preferences, or auxiliary sensor data. The data transmission can be wireless or wireline based. The eyewear can further include a connector operatively connected to the radiation monitoring system. Such a connector can facilitate data transmission with respect to the radiation monitoring system or the eyewear.
A temple of a pair of glasses can be removable of the remainder of the frame. Such facilitates replacement of temples. For example, a convention temple could be removed from a frame and replaced with a temple having a least one electrical component at least partially embedded therein.
A radiation monitoring system can be partially or fully contained in a temple arrangement associated with a temple of a pair of glasses. In one embodiment, the temple arrangement can be removable from the temple. A temple arrangement can be a temple tip, a temple cover or a temple fit-over.
A radiation monitoring system can be partially or fully tethered to a pair of glasses. For example, some of the components for monitoring radiation or one or more auxiliary sensors can be tethered to the eyewear. In one embodiment, the tethered components can be tethered at the neck or upper back region of the user. Tethering components allows for increased design freedom with the eyewear as well as additional area with which to house the components.
Still further, a radiation monitoring system could be partially or completely within a device or a base that can be tethered to eyewear.
A number of embodiments have been described above for an eyeglass frame, i.e., primary frame. Such embodiments are also applicable to an auxiliary frame. An auxiliary frame can attach to a primary frame through different techniques, such as using clips. Another technique to attach an auxiliary frame to a primary frame is by way of magnets. Examples of using magnets as an attachment technique can be found, for example, in U.S. Pat. No. 6,012,811, entitled, “EYEGLASS FRAMES WITH MAGNETS AT BRIDGES FOR ATTACHMENT.”
Although much of the discussion above concentrates on UV monitoring, the invention is generally applicable to radiation monitoring. The radiation can, for example, pertain to one or more of UV, infrared, light and gamma radiation. Light, namely visible light, can be referred to as ambient light.
Also, the above discussion concerning UV sensor or UV monitor is generally applicable to radiation sensors or monitors. One embodiment of a radiation sensor or monitor which principally measures light is a light sensor or a light monitor. More particularly, in measuring light, sunlight is a dominant source of light, such that a radiation sensor or monitor which principally measures light can be referred to as a sun sensor or a sun monitor. In such case, radiation monitoring can be considered light monitoring or sunlight monitoring.
Visible light is part of everyday life and is generally not considered harmful to persons. In one embodiment, the measurement of light can be used to infer a measurement of harmful radiation (e.g., UV radiation).
A number of embodiments have been described where a radiation monitoring system is embedded in a temple of an eyeglass frame. However, in other embodiments, the radiation monitoring system can be in other parts of the eyeglass frame, such as the bridge or lens holder region. Also, for eyewear having shield(s) or wrap-around lenses, the radiation monitoring system can also be in such shield(s) or lenses.
Although much of the above discussion pertains to providing radiation (e.g., radiation) monitoring capabilities in eyewear, it should be understood the any of the various embodiment, implementations, features or aspects noted above can also be utilized is other or on end products besides eyewear. Examples of other such end-products can include: hats (e.g., soft hats, hard-hats, helmets), watches or watch bands, bracelets, bracelet accessories, necklaces, necklace accessories, rings, shoes (e.g., sandals, athletic shoes, beach shoes), shoe accessories, clothing (e.g., tee-shirt, swimming-suit, ties, pants, jackets, etc.), belts, belt accessories, zippers, key rings, purses, beach-tags, containers (e.g., cups, bottle, tube—such as a sun tan lotion bottle or tube); container holders (e.g., can holders, coasters, coolers, etc.), and other consumer products.
If the end product is soft or made of cloth (e.g., clothing, purse, hat, etc.), then the radiation monitoring system (e.g., provided as a module) can be sewn onto the cloth or adhered to the cloth using an adhesive (e.g., adhesive tape). The module, or a case for the module, can have thin flanges about its periphery which can be easily sewn onto the cloth. The case for the radiation monitoring system can be molded into its desired shape (e.g., injection molded, compression molded or vacu-formed). The case can be soft (vinyl, thin polypropylene, soft polyurethane, or PET). Typically, if flanges are utilized for sewing, they would be thin and soft. Alternatively, the case can be hard (e.g., PVC, polypropylene, nylon, polycarbonate, or styrene). If the end product is hard, the case can also be hard.
When the end product is a container, such as the bottle or tube 2318 shown in
The various embodiments, implementations and features of the invention noted above can be combined in various ways or used separately. Those skilled in the art will understand from the description that the invention can be equally applied to or used in other various different settings with respect to various combinations, embodiments, implementations or features provided in the description herein.
The invention can be implemented in software, hardware or a combination of hardware and software. A number of embodiments of the invention can also be embodied as computer readable code on a computer readable medium. The computer readable medium is any data storage device that can store data which can thereafter be read by a computer system. Examples of the computer readable medium include read-only memory, random-access memory, CD-ROMs, magnetic tape, optical data storage devices, and carrier waves. The computer readable medium can also be distributed over network-coupled computer systems so that the computer readable code is stored and executed in a distributed fashion.
The advantages of the invention are numerous. Different embodiments or implementations may yield one or more of the following advantages. One advantage of the invention is that radiation monitoring can be inconspicuously performed in conjunction with eyewear. Another advantage of the invention is that electrical components for radiation monitoring can be embedded within a frame (e.g., temple) of eyewear. Still another advantage of the invention is that radiation monitoring can be intelligently performed such that it operates only at likely appropriate times to improve accuracy and usefulness. Yet another advantage of the invention is that eyewear may further include one or more auxiliary sensors that can cause additional output to be provided to the user.
Numerous specific details are set forth in order to provide a thorough understanding of the invention. However, it will be understood by those skilled in the art that the invention may be practiced without these specific details. The description and representation herein are the common meanings used by those experienced or skilled in the art to most effectively convey the substance of their work to others skilled in the art. In other instances, well-known methods, procedures, components, and circuitry have not been described in detail to avoid unnecessarily obscuring aspects of the present invention.
In the foregoing description, reference to “one embodiment” or “an embodiment” means that a particular feature, structure, or characteristic described in connection with the embodiment can be included in at least one embodiment of the invention. The appearances of the phrase “in one embodiment” in various places in the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments mutually exclusive of other embodiments. Further, the order of blocks in process flowcharts or diagrams representing one or more embodiments of the invention do not inherently indicate any particular order nor imply any limitations in the invention.
The many features and advantages of the invention are apparent from the written description and, thus, it is intended by the appended claims to cover all such features and advantages of the invention. Further, since numerous modifications and changes will readily occur to those skilled in the art, it is not desired to limit the invention to the exact construction and operation as illustrated and described. Hence, all suitable modifications and equivalents may be resorted to as falling within the scope of the invention.
This application is a continuation of U.S. patent application Ser. No. 16/703,805, filed Dec. 4, 2019, now U.S. Pat. No. 11,326,941, and entitled “EYEWEAR WITH DETECTION SYSTEM,” which is hereby incorporated by reference herein, and which is a continuation of U.S. patent application Ser. No. 16/426,351, filed May 30, 2019, now U.S. Pat. No. 10,539,459, and entitled “EYEWEAR WITH DETECTION SYSTEM,” which is hereby incorporated by reference herein, and which is a continuation of U.S. patent application Ser. No. 16/102,859, filed Aug. 14, 2018, now U.S. Pat. No. 10,359,311, and entitled “EYEWEAR WITH RADIATION DETECTION SYSTEM,” which is hereby incorporated by reference herein, and which is a continuation of U.S. patent application Ser. No. 15/343,472, filed Nov. 4, 2016, now U.S. Pat. No. 10,060,790, and entitled “EYEWEAR WITH RADIATION DETECTION SYSTEM,” which is hereby incorporated by reference herein, and which is a continuation application of U.S. patent application Ser. No. 14/313,989, filed Jun. 24, 2014, now U.S. Pat. No. 9,488,520, entitled “EYEWEAR WITH RADIATION DETECTION SYSTEM,” which is hereby incorporated by reference herein, and which is a continuation application of U.S. patent application Ser. No. 12/322,377, filed Feb. 2, 2009, now U.S. Pat. No. 8,770,742, entitled “EYEWEAR WITH RADIATION DETECTION SYSTEM”, which is hereby incorporated herein by reference, and which is a continuation application of U.S. patent application Ser. No. 11/078,855, filed Mar. 11, 2005, now U.S. Pat. No. 7,500,746, entitled “EYEWEAR WITH RADIATION DETECTION SYSTEM”, which claims priority to: (i) U.S. Provisional Patent Application No. 60/562,798, filed Apr. 15, 2004, entitled “EYEWEAR WITH ULTRAVIOLET DETECTION SYSTEM,” and which is hereby incorporated herein by reference; (ii) U.S. Provisional Patent Application No. 60/583,169, filed Jun. 26, 2004, entitled “ELECTRICAL COMPONENTS FOR USE WITH EYEWEAR, AND METHODS THEREFOR,” and which is hereby incorporated herein by reference; (iii) U.S. Provisional Patent Application No. 60/592,045, filed Jul. 28, 2004, entitled “EYEGLASSES WITH A CLOCK OR OTHER ELECTRICAL COMPONENT,” and which is hereby incorporated herein by reference; (iv) U.S. Provisional Patent Application No. 60/605,191, filed Aug. 28, 2004, entitled “ELECTRICAL COMPONENTS FOR USE WITH EYEWEAR, AND METHODS THEREFOR,” and which is hereby incorporated herein by reference; (v) U.S. Provisional Patent Application No. 60/618,107, filed Oct. 12, 2004, and entitled “TETHERED ELECTRICAL COMPONENTS FOR EYEGLASSES,” which is hereby incorporated herein by reference; (vi) U.S. Provisional Patent Application No. 60/620,238, filed Oct. 18, 2004, entitled “EYEGLASSES WITH HEARING ENHANCED AND OTHER AUDIO SIGNAL-GENERATING CAPABILITIES,” and which is hereby incorporated herein by reference; (vii) U.S. Provisional Patent Application No. 60/647,836, filed Jan. 31, 2005, and entitled “EYEGLASSES WITH HEART RATE MONITOR,” which is hereby incorporated herein by reference; and (viii) U.S. Provisional Patent Application No. 60/647,826, filed Jan. 31, 2005, and entitled “EYEWEAR WITH ELECTRICAL COMPONENTS,” which is hereby incorporated herein by reference. In addition, this application is related to: (i) U.S. patent application Ser. No. 10/822,218, filed Apr. 12, 2004, now U.S. Pat. No. 7,792,552, and entitled “EYEGLASSES FOR WIRELESS COMMUNICATIONS,” which is hereby incorporated herein by reference; (ii) U.S. patent application Ser. No. 10/964,011, filed Oct. 12, 2004, now U.S. Pat. No. 7,192,136, and entitled “TETHERED ELECTRICAL COMPONENTS FOR EYEGLASSES,” which is hereby incorporated herein by reference; (iii) U.S. patent application Ser. No. 11/006,343, filed Dec. 7, 2004, now U.S. Pat. No. 7,116,976, and entitled “ADAPTABLE COMMUNICATION TECHNIQUES FOR ELECTRONIC DEVICES,” which is hereby incorporated herein by reference; and (iv) U.S. patent application Ser. No. 11/078,857, filed Mar. 11, 2005, and entitled “RADIATION MONITORING SYSTEM,” which is hereby incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
320558 | Hull | Jun 1885 | A |
669949 | Underwood | Mar 1901 | A |
1255265 | Zachara | Feb 1918 | A |
1917745 | Weiss | Jul 1933 | A |
2249572 | Lieber | Jul 1941 | A |
2638532 | Brady | May 1953 | A |
2794085 | Angelis | May 1957 | A |
2818511 | Ullery et al. | Dec 1957 | A |
2830132 | Borg | Apr 1958 | A |
2874230 | Carlson | Feb 1959 | A |
2904670 | Calmes | Sep 1959 | A |
3060308 | Fortuna | Oct 1962 | A |
3104290 | Rosemond et al. | Sep 1963 | A |
3119903 | Rosemond et al. | Jan 1964 | A |
3597054 | Winter | Aug 1971 | A |
3710115 | Jubb | Jan 1973 | A |
3858001 | Bonne | Dec 1974 | A |
3883701 | Delorenzo | May 1975 | A |
4165487 | Corderman | Aug 1979 | A |
4254451 | Cochran, Jr. | Mar 1981 | A |
4283127 | Rosenwinkel et al. | Aug 1981 | A |
4322585 | Liautaud | Mar 1982 | A |
4348664 | Boschetti et al. | Sep 1982 | A |
4389217 | Baughman et al. | Jun 1983 | A |
4526473 | Zahn, III | Jul 1985 | A |
4535244 | Burnham | Aug 1985 | A |
4608492 | Burnham | Aug 1986 | A |
4683587 | Silverman | Jul 1987 | A |
4751691 | Perera | Jun 1988 | A |
4757714 | Purdy et al. | Jul 1988 | A |
4773095 | Zwicker et al. | Sep 1988 | A |
4806011 | Bettinger | Feb 1989 | A |
4822160 | Tsai | Apr 1989 | A |
4822161 | Jimmy | Apr 1989 | A |
4851686 | Pearson | Jul 1989 | A |
4856086 | McCullough | Aug 1989 | A |
4859047 | Badewitz | Aug 1989 | A |
4882769 | Gallimore | Nov 1989 | A |
4904078 | Gorike | Feb 1990 | A |
4942629 | Stadlmann | Jul 1990 | A |
4962469 | Ono et al. | Oct 1990 | A |
4967268 | Lipton et al. | Oct 1990 | A |
4985632 | Bianco et al. | Jan 1991 | A |
5008548 | Gat | Apr 1991 | A |
5015086 | Okaue et al. | May 1991 | A |
5020150 | Shannon | May 1991 | A |
5026151 | Waltuck et al. | Jun 1991 | A |
5036311 | Moran et al. | Jul 1991 | A |
5050150 | Ikeda | Sep 1991 | A |
5064410 | Frenkel et al. | Nov 1991 | A |
5093576 | Edmond et al. | Mar 1992 | A |
5106179 | Kamaya et al. | Apr 1992 | A |
5144344 | Takahashi et al. | Sep 1992 | A |
5148023 | Hayashi et al. | Sep 1992 | A |
5151600 | Black | Sep 1992 | A |
5161250 | Ianna et al. | Nov 1992 | A |
5172256 | Sethofer et al. | Dec 1992 | A |
5264877 | Hussey | Nov 1993 | A |
5306917 | Black et al. | Apr 1994 | A |
5353378 | Hoffman et al. | Oct 1994 | A |
5359370 | Mugnier | Oct 1994 | A |
5359444 | Piosenka et al. | Oct 1994 | A |
5367345 | da Silva | Nov 1994 | A |
5379464 | Schleger et al. | Jan 1995 | A |
5382986 | Black et al. | Jan 1995 | A |
5394005 | Brown et al. | Feb 1995 | A |
5452026 | Marcy, III | Sep 1995 | A |
5452480 | Ryden | Sep 1995 | A |
5455637 | Kallman et al. | Oct 1995 | A |
5455640 | Gertsikov | Oct 1995 | A |
5457751 | Such | Oct 1995 | A |
5463428 | Lipton et al. | Oct 1995 | A |
5475798 | Handles | Dec 1995 | A |
5500532 | Kozicki | Mar 1996 | A |
D369167 | Hanson et al. | Apr 1996 | S |
5510961 | Peng | Apr 1996 | A |
5513384 | Brennan et al. | Apr 1996 | A |
5533130 | Staton | Jul 1996 | A |
5541641 | Shimada | Jul 1996 | A |
5581090 | Goudjil | Dec 1996 | A |
5585871 | Linden | Dec 1996 | A |
5589398 | Krause et al. | Dec 1996 | A |
5590417 | Rydbeck | Dec 1996 | A |
5606743 | Vogt et al. | Feb 1997 | A |
5608808 | da Silva | Mar 1997 | A |
5634201 | Mooring | May 1997 | A |
5671035 | Barnes | Sep 1997 | A |
5686727 | Reenstra et al. | Nov 1997 | A |
5694475 | Boyden | Dec 1997 | A |
5715323 | Walker | Feb 1998 | A |
5737436 | Boyden et al. | Apr 1998 | A |
5777715 | Kruegle et al. | Jul 1998 | A |
5818381 | Williams | Oct 1998 | A |
5835185 | Kallman et al. | Nov 1998 | A |
5900720 | Kallman et al. | May 1999 | A |
5903395 | Rallison et al. | May 1999 | A |
5923398 | Goldman | Jul 1999 | A |
5941837 | Amano et al. | Aug 1999 | A |
5946071 | Feldman | Aug 1999 | A |
5949516 | McCurdy | Sep 1999 | A |
5966746 | Reedy et al. | Oct 1999 | A |
5980037 | Conway | Nov 1999 | A |
5988812 | Wingate | Nov 1999 | A |
5991085 | Rallison et al. | Nov 1999 | A |
5992996 | Sawyer | Nov 1999 | A |
5995592 | Shirai et al. | Nov 1999 | A |
6010216 | Jesiek | Jan 2000 | A |
6013919 | Schneider et al. | Jan 2000 | A |
6028627 | Helmsderfer | Feb 2000 | A |
6046455 | Ribi et al. | Apr 2000 | A |
6060321 | Hovorka | May 2000 | A |
6061580 | Altschul et al. | May 2000 | A |
6091546 | Spitzer | Jul 2000 | A |
6091832 | Shurman et al. | Jul 2000 | A |
6115177 | Vossler | Sep 2000 | A |
6132681 | Faran et al. | Oct 2000 | A |
6145983 | Schiffer | Nov 2000 | A |
6154552 | Koroljow et al. | Nov 2000 | A |
6176576 | Green et al. | Jan 2001 | B1 |
6225897 | Doyle et al. | May 2001 | B1 |
6231181 | Swab | May 2001 | B1 |
6236969 | Ruppert et al. | May 2001 | B1 |
6243578 | Koike | Jun 2001 | B1 |
6259367 | Klein | Jul 2001 | B1 |
6270466 | Weinstein et al. | Aug 2001 | B1 |
6292213 | Jones | Sep 2001 | B1 |
6292685 | Pompei | Sep 2001 | B1 |
6301050 | DeLeon | Oct 2001 | B1 |
6301367 | Boyden et al. | Oct 2001 | B1 |
6307526 | Mann | Oct 2001 | B1 |
6311155 | Vaudrey et al. | Oct 2001 | B1 |
6343858 | Zelman | Feb 2002 | B1 |
6346929 | Fukushima et al. | Feb 2002 | B1 |
6349001 | Spitzer | Feb 2002 | B1 |
6349422 | Schleger et al. | Feb 2002 | B1 |
6409335 | Lipawsky | Jun 2002 | B1 |
6409338 | Jewell | Jun 2002 | B1 |
6426719 | Nagareda et al. | Jul 2002 | B1 |
6431705 | Linden | Aug 2002 | B1 |
6474816 | Butler et al. | Nov 2002 | B2 |
6478736 | Mault | Nov 2002 | B1 |
6506142 | Itoh et al. | Jan 2003 | B2 |
6511175 | Hay et al. | Jan 2003 | B2 |
6513532 | Mault et al. | Feb 2003 | B2 |
6517203 | Blum et al. | Feb 2003 | B1 |
6539336 | Vock et al. | Mar 2003 | B1 |
6542081 | Torch | Apr 2003 | B2 |
6546101 | Murray et al. | Apr 2003 | B1 |
6554763 | Amano et al. | Apr 2003 | B1 |
6582075 | Swab et al. | Jun 2003 | B1 |
6619799 | Blum et al. | Sep 2003 | B1 |
6629076 | Haken | Sep 2003 | B1 |
6717737 | Haglund | Apr 2004 | B1 |
6729726 | Miller et al. | May 2004 | B2 |
6736759 | Stubbs et al. | May 2004 | B1 |
6764194 | Cooper | Jul 2004 | B1 |
6769767 | Swab et al. | Aug 2004 | B2 |
6771423 | Geist | Aug 2004 | B2 |
6788309 | Swan et al. | Sep 2004 | B1 |
6792401 | Nigro et al. | Sep 2004 | B1 |
6816314 | Shimizu et al. | Nov 2004 | B2 |
6824265 | Harper | Nov 2004 | B1 |
6857741 | Blum | Feb 2005 | B2 |
6871951 | Blum et al. | Mar 2005 | B2 |
6879930 | Sinclair et al. | Apr 2005 | B2 |
6912386 | Himberg et al. | Jun 2005 | B1 |
6929365 | Swab et al. | Aug 2005 | B2 |
6932090 | Reschke et al. | Aug 2005 | B1 |
6947219 | Ou | Sep 2005 | B1 |
7004582 | Jannard et al. | Feb 2006 | B2 |
7013009 | Warren | Mar 2006 | B2 |
7023594 | Blum | Apr 2006 | B2 |
7030902 | Jacobs | Apr 2006 | B2 |
7031667 | Horiguchi | Apr 2006 | B2 |
7033025 | Winterbotham | Apr 2006 | B2 |
7059717 | Bloch | Jun 2006 | B2 |
7073905 | Da Pra′ | Jul 2006 | B2 |
7079876 | Levy | Jul 2006 | B2 |
7123215 | Nakada | Oct 2006 | B2 |
7192136 | Howell et al. | Mar 2007 | B2 |
7255437 | Howell | Aug 2007 | B2 |
7265358 | Fontaine | Sep 2007 | B2 |
7274292 | Velhal et al. | Sep 2007 | B2 |
7289767 | Lai | Oct 2007 | B2 |
7312699 | Chornenky | Dec 2007 | B2 |
7331666 | Swab et al. | Feb 2008 | B2 |
7376238 | Rivas et al. | May 2008 | B1 |
7380936 | Howell et al. | Jun 2008 | B2 |
7401918 | Howell et al. | Jul 2008 | B2 |
7405801 | Jacobs | Jul 2008 | B2 |
7429965 | Weiner | Sep 2008 | B2 |
7438409 | Jordan | Oct 2008 | B2 |
7438410 | Howell et al. | Oct 2008 | B1 |
7445332 | Jannard et al. | Nov 2008 | B2 |
7481531 | Howell et al. | Jan 2009 | B2 |
7500746 | Howell et al. | Mar 2009 | B1 |
7500747 | Howell et al. | Mar 2009 | B2 |
7512414 | Jannard et al. | Mar 2009 | B2 |
7517083 | Blum | Apr 2009 | B2 |
7527374 | Chou | May 2009 | B2 |
7543934 | Howell et al. | Jun 2009 | B2 |
7581833 | Howell et al. | Sep 2009 | B2 |
7621634 | Howell et al. | Nov 2009 | B2 |
7648236 | Dobson | Jan 2010 | B1 |
7677723 | Howell et al. | Mar 2010 | B2 |
7760898 | Howell et al. | Jul 2010 | B2 |
7771046 | Howell et al. | Aug 2010 | B2 |
7792552 | Thomas et al. | Sep 2010 | B2 |
7806525 | Howell et al. | Oct 2010 | B2 |
7922321 | Howell et al. | Apr 2011 | B2 |
7976159 | Jacobs et al. | Jul 2011 | B2 |
8109629 | Howell et al. | Feb 2012 | B2 |
8142015 | Paolino | Mar 2012 | B2 |
8174569 | Tanijiri et al. | May 2012 | B2 |
8337013 | Howell et al. | Dec 2012 | B2 |
8430507 | Howell et al. | Apr 2013 | B2 |
8434863 | Howell et al. | May 2013 | B2 |
8465151 | Howell et al. | Jun 2013 | B2 |
8485661 | Yoo et al. | Jul 2013 | B2 |
8500271 | Howell et al. | Aug 2013 | B2 |
8770742 | Howell et al. | Jul 2014 | B2 |
8905542 | Howell et al. | Dec 2014 | B2 |
9033493 | Howell et al. | May 2015 | B2 |
9244292 | Swab et al. | Jan 2016 | B2 |
9400390 | Osterhout et al. | Jul 2016 | B2 |
9405135 | Sweis et al. | Aug 2016 | B2 |
9488520 | Howell et al. | Nov 2016 | B2 |
9547184 | Howell et al. | Jan 2017 | B2 |
9690121 | Howell et al. | Jun 2017 | B2 |
9922236 | Moore et al. | Mar 2018 | B2 |
10042186 | Chao et al. | Aug 2018 | B2 |
10060790 | Howell et al. | Aug 2018 | B2 |
10061144 | Howell et al. | Aug 2018 | B2 |
10310296 | Howell et al. | Jun 2019 | B2 |
10345625 | Howell et al. | Jul 2019 | B2 |
10359311 | Howell et al. | Jul 2019 | B2 |
10515623 | Grizzel | Dec 2019 | B1 |
10539459 | Howell et al. | Jan 2020 | B2 |
10571715 | Rizzo, III et al. | Feb 2020 | B2 |
10624790 | Chao et al. | Apr 2020 | B2 |
10777048 | Howell et al. | Sep 2020 | B2 |
10802582 | Clements | Oct 2020 | B1 |
10964190 | Peyrard | Mar 2021 | B2 |
11042045 | Chao et al. | Jun 2021 | B2 |
11069358 | Harper | Jul 2021 | B1 |
11086147 | Howell et al. | Aug 2021 | B2 |
11204512 | Howell et al. | Dec 2021 | B2 |
11243416 | Howell et al. | Feb 2022 | B2 |
11326941 | Howell et al. | May 2022 | B2 |
11513371 | Howell et al. | Nov 2022 | B2 |
11536988 | Howell et al. | Dec 2022 | B2 |
20010005230 | Ishikawa | Jun 2001 | A1 |
20010028309 | Torch | Oct 2001 | A1 |
20010050754 | Hay et al. | Dec 2001 | A1 |
20020017997 | Felkowitz | Feb 2002 | A1 |
20020021407 | Elliott | Feb 2002 | A1 |
20020081982 | Schwartz et al. | Jun 2002 | A1 |
20020084990 | Peterson, III | Jul 2002 | A1 |
20020089639 | Starner et al. | Jul 2002 | A1 |
20020090103 | Calisto, Jr. | Jul 2002 | A1 |
20020098877 | Glezerman | Jul 2002 | A1 |
20020101568 | Eberl et al. | Aug 2002 | A1 |
20020109600 | Mault et al. | Aug 2002 | A1 |
20020140899 | Blum et al. | Oct 2002 | A1 |
20020159023 | Swab | Oct 2002 | A1 |
20020197961 | Warren | Dec 2002 | A1 |
20030018274 | Takahashi et al. | Jan 2003 | A1 |
20030022690 | Beyda et al. | Jan 2003 | A1 |
20030032449 | Giobbi | Feb 2003 | A1 |
20030062046 | Wiesmann et al. | Apr 2003 | A1 |
20030065257 | Mault et al. | Apr 2003 | A1 |
20030067585 | Miller et al. | Apr 2003 | A1 |
20030068057 | Miller et al. | Apr 2003 | A1 |
20030083591 | Edwards et al. | May 2003 | A1 |
20030214630 | Winterbotham | Nov 2003 | A1 |
20030226978 | Ribi et al. | Dec 2003 | A1 |
20030231293 | Blum | Dec 2003 | A1 |
20040000733 | Swab et al. | Jan 2004 | A1 |
20040029582 | Swab et al. | Feb 2004 | A1 |
20040059212 | Abreu | Mar 2004 | A1 |
20040063378 | Nelson | Apr 2004 | A1 |
20040096078 | Lin | May 2004 | A1 |
20040100384 | Chen et al. | May 2004 | A1 |
20040101178 | Fedorovskaya et al. | May 2004 | A1 |
20040104864 | Nakada | Jun 2004 | A1 |
20040128737 | Gesten | Jul 2004 | A1 |
20040150986 | Chang | Aug 2004 | A1 |
20040156012 | Jannard et al. | Aug 2004 | A1 |
20040157649 | Jannard et al. | Aug 2004 | A1 |
20040160571 | Jannard | Aug 2004 | A1 |
20040160572 | Jannard | Aug 2004 | A1 |
20040160573 | Jannard et al. | Aug 2004 | A1 |
20040197002 | Atsumi et al. | Oct 2004 | A1 |
20040227219 | Su | Nov 2004 | A1 |
20050036103 | Bloch | Feb 2005 | A1 |
20050067580 | Fontaine | Mar 2005 | A1 |
20050078274 | Howell et al. | Apr 2005 | A1 |
20050088365 | Yamazaki et al. | Apr 2005 | A1 |
20050201585 | Jannard et al. | Sep 2005 | A1 |
20050213026 | Da Pra′ | Sep 2005 | A1 |
20050230596 | Howell et al. | Oct 2005 | A1 |
20050238194 | Chornenky | Oct 2005 | A1 |
20050239502 | Swab et al. | Oct 2005 | A1 |
20050248717 | Howell et al. | Nov 2005 | A1 |
20050248718 | Howell et al. | Nov 2005 | A1 |
20050248719 | Howell et al. | Nov 2005 | A1 |
20050264752 | Howell et al. | Dec 2005 | A1 |
20050278446 | Bryant | Dec 2005 | A1 |
20060001827 | Howell et al. | Jan 2006 | A1 |
20060003803 | Thomas et al. | Jan 2006 | A1 |
20060023158 | Howell et al. | Feb 2006 | A1 |
20060034478 | Davenport | Feb 2006 | A1 |
20060107822 | Bowen | May 2006 | A1 |
20060132382 | Jannard | Jun 2006 | A1 |
20070030442 | Howell et al. | Feb 2007 | A1 |
20070035830 | Matveev et al. | Feb 2007 | A1 |
20070046887 | Howell et al. | Mar 2007 | A1 |
20070055888 | Miller et al. | Mar 2007 | A1 |
20070098192 | Sipkema | May 2007 | A1 |
20070109491 | Howell et al. | May 2007 | A1 |
20070186330 | Howell et al. | Aug 2007 | A1 |
20070200927 | Krenik | Aug 2007 | A1 |
20070208531 | Darley et al. | Sep 2007 | A1 |
20070248238 | Abreu et al. | Oct 2007 | A1 |
20070270663 | Ng et al. | Nov 2007 | A1 |
20070271065 | Gupta et al. | Nov 2007 | A1 |
20070271116 | Wysocki et al. | Nov 2007 | A1 |
20070271387 | Lydon et al. | Nov 2007 | A1 |
20070279584 | Howell et al. | Dec 2007 | A1 |
20080062338 | Herzog et al. | Mar 2008 | A1 |
20080068559 | Howell et al. | Mar 2008 | A1 |
20080089545 | Jannard et al. | Apr 2008 | A1 |
20080100792 | Blum et al. | May 2008 | A1 |
20080144854 | Abreu | Jun 2008 | A1 |
20080151175 | Gross | Jun 2008 | A1 |
20080151179 | Howell et al. | Jun 2008 | A1 |
20080158506 | Fuziak | Jul 2008 | A1 |
20080211921 | Sako et al. | Sep 2008 | A1 |
20080218684 | Howell et al. | Sep 2008 | A1 |
20080262392 | Ananny et al. | Oct 2008 | A1 |
20080278678 | Howell et al. | Nov 2008 | A1 |
20090059159 | Howell et al. | Mar 2009 | A1 |
20090059381 | Jannard | Mar 2009 | A1 |
20090073375 | Nakada | Mar 2009 | A1 |
20090141233 | Howell et al. | Jun 2009 | A1 |
20090147215 | Howell et al. | Jun 2009 | A1 |
20090156128 | Franson et al. | Jun 2009 | A1 |
20090251660 | Figler et al. | Oct 2009 | A1 |
20090251661 | Fuziak, Jr. | Oct 2009 | A1 |
20090296044 | Howell et al. | Dec 2009 | A1 |
20100045928 | Levy | Feb 2010 | A1 |
20100061579 | Rickards et al. | Mar 2010 | A1 |
20100079356 | Hoellwarth | Apr 2010 | A1 |
20100105445 | Brunton et al. | Apr 2010 | A1 |
20100110368 | Chaum | May 2010 | A1 |
20100245754 | Matsumoto et al. | Sep 2010 | A1 |
20100296045 | Agnoli et al. | Nov 2010 | A1 |
20100309426 | Howell et al. | Dec 2010 | A1 |
20110102734 | Howell et al. | May 2011 | A1 |
20110164122 | Hardacker | Jul 2011 | A1 |
20110187990 | Howell et al. | Aug 2011 | A1 |
20110241976 | Boger et al. | Oct 2011 | A1 |
20110273365 | West et al. | Nov 2011 | A1 |
20120033061 | Ko et al. | Feb 2012 | A1 |
20120050668 | Howell et al. | Mar 2012 | A1 |
20120062357 | Slamka | Mar 2012 | A1 |
20120101411 | Hausdorff et al. | Apr 2012 | A1 |
20120133885 | Howell et al. | May 2012 | A1 |
20120176580 | Sonsino | Jul 2012 | A1 |
20130072828 | Sweis et al. | Mar 2013 | A1 |
20130077175 | Hotta et al. | Mar 2013 | A1 |
20130143519 | Doezema | Jun 2013 | A1 |
20130172691 | Tran | Jul 2013 | A1 |
20130201440 | Howell et al. | Aug 2013 | A1 |
20130308089 | Howell et al. | Nov 2013 | A1 |
20140132913 | Sweis et al. | May 2014 | A1 |
20140176902 | Sweis et al. | Jun 2014 | A1 |
20140198293 | Sweis et al. | Jul 2014 | A1 |
20140226838 | Wingate et al. | Aug 2014 | A1 |
20140268008 | Howell et al. | Sep 2014 | A1 |
20140268013 | Howell et al. | Sep 2014 | A1 |
20140268017 | Sweis et al. | Sep 2014 | A1 |
20140361185 | Howell et al. | Dec 2014 | A1 |
20150085245 | Howell et al. | Mar 2015 | A1 |
20150230988 | Chao et al. | Aug 2015 | A1 |
20150253590 | Howell et al. | Sep 2015 | A1 |
20150277123 | Chaum et al. | Oct 2015 | A1 |
20150338677 | Block | Nov 2015 | A1 |
20160098874 | Handville et al. | Apr 2016 | A1 |
20160246075 | Howell et al. | Aug 2016 | A9 |
20160302992 | Sweis et al. | Oct 2016 | A1 |
20170068117 | Howell et al. | Mar 2017 | A9 |
20170074721 | Howell et al. | Mar 2017 | A1 |
20170090219 | Howell et al. | Mar 2017 | A1 |
20170131575 | Howell et al. | May 2017 | A1 |
20170146829 | Howell et al. | May 2017 | A1 |
20170303187 | Crouthamel et al. | Oct 2017 | A1 |
20180122208 | Peyrard | May 2018 | A1 |
20180314079 | Chao et al. | Nov 2018 | A1 |
20180335650 | Howell et al. | Nov 2018 | A1 |
20180348050 | Howell et al. | Dec 2018 | A1 |
20190004325 | Connor | Jan 2019 | A1 |
20190033622 | Olgun et al. | Jan 2019 | A1 |
20190033623 | Howell et al. | Jan 2019 | A1 |
20190187492 | Howell et al. | Jun 2019 | A1 |
20190272800 | Tao et al. | Sep 2019 | A1 |
20190278110 | Howell et al. | Sep 2019 | A1 |
20190285913 | Howell et al. | Sep 2019 | A1 |
20190310132 | Howell et al. | Oct 2019 | A1 |
20190318589 | Howell et al. | Oct 2019 | A1 |
20190369402 | Woodman et al. | Dec 2019 | A1 |
20190378493 | Kim et al. | Dec 2019 | A1 |
20190387351 | Lyren et al. | Dec 2019 | A1 |
20200012127 | Howell et al. | Jan 2020 | A1 |
20200218094 | Howell et al. | Jul 2020 | A1 |
20200364992 | Howell et al. | Nov 2020 | A1 |
20210000347 | Stump | Jan 2021 | A1 |
20210026146 | Harder et al. | Jan 2021 | A1 |
20210271116 | Chao et al. | Sep 2021 | A1 |
20210364827 | Howell et al. | Nov 2021 | A9 |
20210364828 | Howell et al. | Nov 2021 | A1 |
20210379425 | Tran | Dec 2021 | A1 |
20220008763 | Saleh et al. | Jan 2022 | A1 |
20220011603 | Howell et al. | Jan 2022 | A1 |
20220034542 | Peters et al. | Feb 2022 | A1 |
20220054092 | Howell et al. | Feb 2022 | A1 |
20220335792 | Howell et al. | Oct 2022 | A1 |
20230017634 | Howell et al. | Jan 2023 | A1 |
20230033660 | Howell et al. | Feb 2023 | A1 |
20230057654 | Howell et al. | Feb 2023 | A1 |
Number | Date | Country |
---|---|---|
2 487 391 | Dec 2003 | CA |
88203065 | Nov 1988 | CN |
89214222.7 | Mar 1990 | CN |
90208199.3 | Nov 1990 | CN |
10123226 | Nov 2002 | DE |
1134491 | Sep 2001 | EP |
1027626 | Mar 2022 | EP |
2290433 | Apr 2022 | EP |
2530039 | Jan 1984 | FR |
1467982 | Mar 1977 | GB |
58-113912 | Jul 1983 | JP |
58-113914 | Jul 1983 | JP |
02-181722 | Jul 1990 | JP |
09-017204 | Jan 1997 | JP |
10-161072 | Jun 1998 | JP |
2000-039595 | Feb 2000 | JP |
2002 341059 | Nov 2002 | JP |
2005-151292 | Jun 2005 | JP |
2005-167902 | Jun 2022 | JP |
484711 | Jun 2001 | TW |
WO 9712205 | Apr 1997 | WO |
WO 9950706 | Oct 1999 | WO |
WO 0106298 | Jan 2001 | WO |
WO 0206881 | Jan 2002 | WO |
WO 03069394 | Aug 2003 | WO |
WO 03100368 | Dec 2003 | WO |
WO 03100503 | Dec 2003 | WO |
WO 04012477 | Feb 2004 | WO |
WO 04025554 | Mar 2004 | WO |
Entry |
---|
Office Action for U.S. Appl. No. 11/078,855, dated Jan. 16, 2007. |
Office Action for U.S. Appl. No. 11/078,855, dated Aug. 8, 2007. |
Office Action for U.S. Appl. No. 11/078,855, dated Dec. 26, 2007. |
Office Action for U.S. Appl. No. 11/078,855, dated Jul. 3, 2008. |
Notice of Allowance for U.S. Appl. No. 11/078,855, dated Dec. 3, 2008. |
Office Action for U.S. Appl. No. 12/322,377, dated Mar. 31, 2010. |
Office Action for U.S. Appl. No. 12/322,377, dated Oct. 14, 2010. |
Office Action for U.S. Appl. No. 12/322,377, dated Sep. 17, 2013. |
Office Action for U.S. Appl. No. 12/322,377, dated Feb. 25, 2014. |
Notice of Allowance for U.S. Appl. No. 12/322,377, dated May 2, 2014. |
Office Action for U.S. Appl. No. 14/313,989, dated Sep. 24, 2014. |
Office Action for U.S. Appl. No. 14/313,989, dated Feb. 9, 2015. |
Notice of Allowance for U.S. Appl. No. 14/313,989, dated Jul. 21, 2015. |
Notice of Allowance for U.S. Appl. No. 14/313,989, dated Nov. 5, 2015. |
Notice of Allowance for U.S. Appl. No. 14/313,989, dated Feb. 17, 2016. |
Notice of Allowance for U.S. Appl. No. 14/313,989, dated Jun. 17, 2016. |
Office Action for U.S. Appl. No. 15/343,472, dated Jun. 28, 2017. |
Notice of Allowance for U.S. Appl. No. 15/343,472, dated Oct. 5, 2017. |
Notice of Allowance for U.S. Appl. No. 15/343,472, dated Jan. 26, 2018. |
Notice of Allowance for U.S. Appl. No. 15/343,472, dated Jun. 1, 2018. |
Office Action for U.S. Appl. No. 16/102,859, dated Sep. 5, 2018. |
Notice of Allowance for U.S. Appl. No. 16/102,859, dated Jan. 4, 2019. |
Notice of Allowance for U.S. Appl. No. 16/102,859, dated Apr. 15, 2019. |
Office Action for U.S. Appl. No. 16/426,351, dated Sep. 18, 2019. |
Advisory Action for U.S. Appl. No. 16/426,351, dated Nov. 15, 2019. |
Office Action for U.S. Appl. No. 16/703,805, dated Sep. 1, 2020. |
Office Action for U.S. Appl. No. 16/703,805, dated Feb. 25, 2021. |
Office Action for U.S. Appl. No. 16/703,805, dated Jul. 28, 2021. |
Notice of Allowance for U.S. Appl. No. 16/703,805, dated Nov. 9, 2021. |
Restriction Requirement for U.S. Appl. No. 11/078,857, dated Jun. 5, 2007. |
Office Action for U.S. Appl. No. 11/078,857, dated Sep. 5, 2007. |
Office Action for U.S. Appl. No. 11/078,857, dated Apr. 7, 2008. |
Advisory Action for U.S. Appl. No. 11/078,857, dated Jun. 27, 2008. |
Office Action for U.S. Appl. No. 11/078,857, dated Sep. 22, 2008. |
U.S. Appl. No. 13/831,419, filed Mar. 14, 2013. |
Office Action for U.S. Appl. No. 13/831,419, dated Apr. 27, 2015. |
Office Action for U.S. Appl. No. 13/831,419, dated Aug. 12, 2015. |
Notice of Allowance for U.S. Appl. No. 13/831,419, dated Jan. 28, 2016. |
Office Action for U.S. Appl. No. 13/831,419, dated Apr. 28, 2016. |
Office Action for U.S. Appl. No. 13/831,419, dated Nov. 17, 2016. |
Office Action for U.S. Appl. No. 13/831,419, dated Feb. 1, 2017. |
Notice of Allowance for U.S. Appl. No. 13/831,419, dated Jun. 6, 2017. |
Office Action for U.S. Appl. No. 13/831,419, dated Oct. 20, 2017. |
Office Action for U.S. Appl. No. 13/831,419, dated Jun. 8, 2018. |
U.S. Appl. No. 13/831,445, filed Mar. 14, 2013. |
Office Action for U.S. Appl. No. 13/831,445, dated Feb. 20, 2015. |
Notice of Allowance for U.S. Appl. No. 13/831,445, dated Oct. 21, 2016. |
Notice of Allowance for U.S. Appl. No. 13/831,445, dated Jan. 9, 2017. |
Corrected Notice of Allowance for U.S. Appl. No. 13/831,445, dated Jan. 23, 2017. |
Notice of Allowance for U.S. Appl. No. 13/831,445, dated Apr. 25, 2017. |
Office Action for U.S. Appl. No. 13/831,445, dated Feb. 6, 2018. |
Notice of Allowance for U.S. Appl. No. 13/831,445, dated Aug. 8, 2018. |
Office Action for U.S. Appl. No. 16/429,181, dated Sep. 30, 2020. |
Notice of Allowance for U.S. Appl. No. 16/429,181, dated Feb. 1, 2021. |
Notice of Allowance for U.S. Appl. No. 16/429,181, dated Jun. 17, 2021. |
Notice of Allowance for U.S. Appl. No. 16/429,181, dated Aug. 19, 2021. |
Notice of Allowance for U.S. Appl. No. 16/429,181, dated Oct. 4, 2021. |
Office Action for U.S. Appl. No. 16/424,018, dated Jun. 10, 2020. |
Notice of Allowance for U.S. Appl. No. 16/424,018, dated Oct. 20, 2020. |
Notice of Allowance for U.S. Appl. No. 16/424,018, dated Mar. 8, 2021. |
Office Action for U.S. Appl. No. 16/424,018, dated May 13, 2021. |
Office Action for U.S. Appl. No. 16/424,018, dated Sep. 3, 2021. |
Notice of Allowance for U.S. Appl. No. 16/424,018, dated Nov. 2, 2021. |
Office Action for U.S. Appl. No. 16/424,018, dated Jan. 24, 2022. |
“±1.5g Dual Axis Micromachined Accelerometer”, Freescale Semiconductor, Inc., Motorola Semiconductor Technical Data, MMA6260Q, Jun. 2004, pp. 1-7. |
“APA Announces Shipment of the SunUV™ Personal UV Monitor”, Press Release, Nov. 7, 2003, pp. 1-3. |
“Camera Specs Take Candid Snaps”, BBC News, Sep. 18, 2003, pp. 1-3. |
“Cardo Wireless Attaching Clips and Wearing Headset”, Cardo Systems, Inc., http://www.cardowireless.com/clips.php, downloaded Nov. 27, 2004, pp. 1-3. |
“Environmental Health Criteria 14: Ultraviolet Radiation”, International Programme on Chemical Safety, World Health Organization Geneva, 1979 http://www.ichem.org., pp. 1-102. |
“Exclusive Media Event Marks Debut of OAKLEY THUMP: World's First Digital Audio Eyewear”, Oakley Investor Relations, Press Release, Nov. 15, 2004, pp. 1-2. |
“Eyetop”, Product-Features, eyetop eyewear, eyetop belt worn, http://www.eyetop.net/products/eyetop/features.asp., downloaded Nov. 6, 2003, pp. 1-2. |
“Heart Rate Monitors”, http://www.healthgoods.com, downloaded Dec. 4, 2004. |
“How is the UV Index Calculated”, SunWise Program, U.S. Environmental Protection Agency, http://www.epa.gov/sunwise/uvcalc.html, downloaded Oct. 14, 2004, pp. 1-2. |
“Industrial UV Measurements”, APA Optics, Inc., http://www.apaoptics.com/uv/, downloaded Jul. 12, 2004, p. 1. |
“Motorola and Oakley Introduce First Bluetooth Sunglasses-Cutting Edge RAZRWire Line Offers Consumers On-The-Go Connections”, Motorola Mediacenter-Press Release, Feb. 14, 2005, pp. 1-2. |
“Oakley Thump: Sunglasses Meet MP3 Player”, with image, http://news.designtechnica.com/article4665.html, Jul. 13, 2004. |
“Personal UV monitor,” Optics.org, http://optics.org/articles/news/6/6/7/1 (downloaded Dec. 20, 2003), Jun. 9, 2000, pp. 1-2. |
“SafeSun Personal Ultraviolet Light Meter”, http://healthchecksystems.com/safesun.htm, downloaded Jul. 12, 2004, pp. 1-4. |
“SafeSun Personal UV Meter”, Introduction, Optix Tech Inc., http://www.safesun.com, downloaded Feb. 5, 2004, pp. 1-2. |
SafeSun Personal UV Meter, features, Optix Tech Inc., http://www.safesun.com/features.html, downloaded May 1, 2004, pp. 1-2. |
“Sharper Image—The FM Pedometer”, e-Corporate Gifts.com, http://www.e-corporategifts.com/sr353.html, downloaded Jan. 22, 2005, pp. 1-2. |
“Sun UV™ Personal UV Monitor”, APA Optics, Inc., http://www.apaoptics.com/sunuv/uvfacts.html, downloaded Dec. 20, 2003, pp. 1-3. |
“Ultraviolet Light and Sunglasses”, Oberon's Frequently Asked Questions, http://www.oberoncompany.com/OBEnglish/FAQUV.html, downloaded Feb. 5, 2004, pp. 1-2. |
“Ultraviolet Light Sensor”, Barrett & Associates Engineering, http://www.barrettengineering.com/project_uvs.htm, downloaded Feb. 5, 2004, pp. 1-3. |
“Ultraviolet Radiation (UVR)”, Forum North, Ontario Ministry of Labour, http://www3.mb.sympatico.ca/˜ericc/ULTRAVIOLET%20RADIATION.htm, downloaded Feb. 5, 2004, pp. 1-6. |
“What Are Grippies?”, Gripping Eyewear, Inc., http://www.grippingeyewear.com/whatare.html, downloaded Nov. 2, 2005. |
“With Racing Heart”, Skaloud et al., GPS World, Oct. 1, 2001, http://www.gpsworld.com/gpsworld/content/printContentPopup.jsp?id=1805, pp. 1-5. |
Abrisa Product Information: Cold Mirrors, Abrisa, Jun. 2001, p. 1. |
Abrisa Product Information: Commercial Hot Mirror, Abrisa, Jun. 2001, p. 1. |
Alps Spectacle, Air Conduction Glass, Bone Conduction Glass, http://www.alps-inter.com/spec.htm, downloaded Dec. 10, 2003, pp. 1-2. |
Altimeter and Compass Watches, http://store.yahoo.com/snowshack/altimeter-watches.html, downloaded May 3, 2004, pp. 1-2. |
Bone Conduction Headgear HG16 Series, “Voiceducer,” http://www.temco-j.co.jp/html/English/HG16.html, downloaded Dec. 10, 2003, pp. 1-3. |
Carney, David, “The Ultimate MP3 Player for Athletes? Could be.”, CNET Reviews, May 14, 2004, pp. 1-4. |
Clifford, Michelle A., “Accelerometers Jump into the Consumer Goods Market”, Sensors Online, http://www.sensorsmag.com, Aug. 2004. |
Comfees.com, Adjustable Sports Band Style No. 1243, http://shop.store.yahoo.com/comfees/adsportbansty.html, downloaded Apr. 18, 2003, pp. 1-2. |
Cool Last Minute Gift Ideas!, UltimateFatBurner Reviews and Articles, http://www.ultimatefatburner.com/gift-ideas.html, downloaded May 10, 2005, pp. 1-3. |
Dickie et al. “Eye Contact Sensing Glasses for Attention-Sensitive Wearable Video Blogging,” Human Media Lab, Queen's University, Kingston, ON K7L3N6, Canada, est. Apr. 2004, pp. 1-2. |
Dixen, Brian, “ear-catching”, Supertesten, Mobil, Apr. 2003 (estimated), pp. 37-41. |
Global Solar UV Index, a Practical Guide, World Health Organization, 2002, pp. 1-28. |
Grobart, Sam, “Digit-Sizing Your Computer Data”, News Article, Sep. 2004, p. 1. |
Life Monitor V1.1, Rhusoft Technologies Inc., http://www.rhusoft.com/lifemonitor/, Mar. 1, 2003, pp. 1-6. |
Manes, Stephen, “Xtreme Cam”, Forbes Magazine, Sep. 5, 2005, p. 96. |
Mio, Physical, http://www.gophysical.com/, downloaded Jan. 27, 2004, 5 pages. |
Monitoring Athletes Performance—2002 Winter Olympic News from KSL, Jan. 23, 2002, http://2002.ksl.com/news-3885i, pp. 1-3. |
NIWA, “UV Index Information”, http://www.niwa.cri.nz/services/uvozone/uvi-info, downloaded Jul. 15, 2004, pp. 1-2. |
NuVision 60GX Steroscopic Wireless Glasses, Product Information, NuVision by MacNaughton, c. 1997, MacNaughton, Inc., pp. 1-2. |
Pärkkä, Juha, et al., “A Wireless Wellness Monitor for Personal Weight Management”, VTT Information Technology, Tampere, Finland, Nov. 2000, p. 1. |
Pedometer, Model HJ-112, Omron Instruction Manual, Omron Healthcare, Inc., 2003, pp. 1-27. |
PNY Announces Executive Attaché USB 2.0 Flash Drive and Pen Series, Press Release, PNY Technologies, Las Vegas, Jan. 8, 2004, pp. 1-2. |
PNY Technologies, “Executive Attaché” http://www.pny.com/products/flash/execattache.asp downloaded Nov. 16, 2005. |
Polar WM41 and 42 weight management monitor, http://www.simplysports/polar/weight_management/wm41-42.htm, downloaded Jan. 28, 2004, pp. 1-3. |
Questions Answers, Pedometer.com, http://www.pedometer.com, downloaded May 5, 2005. |
RazrWire, copyright Motorola, Inc., Jul. 2005, 1 page. |
SafeSun Personal UV Meter, Scientific Data, Optix Tech Inc., http://www.safesun.com/scientific.html, downloaded May 1, 2004, pp. 1-3. |
SafeSun Sensor, User's Manual, Optix Tech Inc., Jun. 1998, 2 pages. |
Safesun, Personal UV Meter, “Technical Specifications”, Optix Tech Inc., http://www.safesun.com/technical.html, downloaded Jul. 12, 2004, pp. 1-2. |
SafeSun, Personal UV Meter, Experiments, Optix Tech Inc., http://www.safesun.com/experiments.html, downloaded Feb. 5, 2004, pp. 1-2. |
Shades of Fun, Blinking Light Glasses, http://www.shadesoffun.com/Nov/Novpgs-14.html, downloaded Jul. 9, 2005, pp. 1-4. |
SportLine Fitness Pedometer-Model 360, UltimateFatBurner Superstore, http://www.ultimatefatburner-store.com/ac_004.html, downloaded May 10, 2005, pp. 1-2. |
Steele, Bonnie G. et al., “Bodies in motion: Monitoring daily activity and exercise with motion sensors in people with chronic pulmonary disease”, VA Research & Development, Journal of Rehabilitation Research & Development, vol. 40, No. 5, Sep./Oct. 2003, Supplement 2, pp. 45-58. |
Stevens, Kathy, “Should I Use a Pedometer When I Walk?”, Healtheon/WebMD, Apr. 14, 2000. |
Sundgot, Jørgen “2nd-gen Motorola Bluetooth headset”, InfoSync World, Mar. 1, 2003, http://www.infosync.no/news/2002/n/2841.html, pp. 1-2. |
SunSensors, Segan Industries, Inc., http://www.segan-ind.com/sunsensor.htm, downloaded Feb. 5, 2004, pp. 1-3. |
SunUV™, Personal UV Monitor User's Guide, APA Optics, Inc., 2003 pp. 1-52. |
SunUV™, Personal UV Monitor, APA Optics, Inc., http://www.apaoptics.com/sunuv/models.html, downloaded Dec. 20, 2003. |
Talking Pedometer, Sportline, Inc., Jun. 2001 (Possibly earlier), 1 page. |
The unofficial ELSA 3D Revelator page, Dec. 30, 1999, pp. 1-15. |
Top Silicon PIN Photodiode, PD93-21C, Technical Data Sheet, Everlight Electronics Co., Ltd., 2004, pp. 1-9. |
UV Light Meter, UVA and UVB measurement, UV-340, Instruction Manual, Lutron, Jun. 2003 (estimated), pp. 1-5. |
UV-Smart, UVA/B Monitor, Model EC-960-PW, Instruction Manual, Tanita Corporation of America, Inc., downloaded Nov. 16, 2001. |
Vitaminder Personal Carb Counter, http://www.auravita.com/products/AURA/ORBU11420.asp. Downloaded Nov. 15, 2005, pp. 1-4. |
Yamada et al. “Development of an eye-movement analyser possessing functions for wireless transmission and autocalibration,” Med. Biol. Eng. Comput., No. 28, v.4, Jul. 28, 1990, http://link.springer.com/article/10.1007%2FBFQ2446149?LI=true, pp. 1-2. |
Office Action for U.S. Appl. No. 16/429,181, dated Feb. 9, 2022. |
Notice of Allowance for U.S. Appl. No. 16/429,181, dated Aug. 10, 2022. |
Office Action for U.S. Appl. No. 16/424,018, dated Sep. 6, 2022. |
Office Action for U.S. Appl. No. 16/424,018, dated Nov. 25, 2022. |
Notice of Allowance for U.S. Appl. No. 16/424,018, dated Feb. 21, 2023. |
Number | Date | Country | |
---|---|---|---|
20220178743 A1 | Jun 2022 | US |
Number | Date | Country | |
---|---|---|---|
60647826 | Jan 2005 | US | |
60647836 | Jan 2005 | US | |
60620238 | Oct 2004 | US | |
60618107 | Oct 2004 | US | |
60605191 | Aug 2004 | US | |
60592045 | Jul 2004 | US | |
60583169 | Jun 2004 | US | |
60562798 | Apr 2004 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16703805 | Dec 2019 | US |
Child | 17681593 | US | |
Parent | 16426351 | May 2019 | US |
Child | 16703805 | US | |
Parent | 16102859 | Aug 2018 | US |
Child | 16426351 | US | |
Parent | 15343472 | Nov 2016 | US |
Child | 16102859 | US | |
Parent | 14313989 | Jun 2014 | US |
Child | 15343472 | US | |
Parent | 12322377 | Feb 2009 | US |
Child | 14313989 | US | |
Parent | 11078855 | Mar 2005 | US |
Child | 12322377 | US |