The contents of the electronic sequence listing (CM05377M-2022.10.10 Sequence ST26.xml; Size: 12,288 bytes; and Date of Creation: Oct. 10, 2022) is hereby incorporated by reference in its entirety.
The present invention relates to fabric and home care products comprising cationic soil release polymer and a lipase enzyme. The fabric and home care products show good soil dispersing properties, and/or improved whiteness performance.
Detergent formulators usually include soil release polymers in their laundry detergent compositions to improve the cleaning performance. Soil release polymers are typically non-ionic soil release polymers or anionic soil release polymers, such as polyesters based on terephthalic acid.
Lipase enzymes can also be included in the laundry detergent composition. The lipases typically improve the dingy cleaning performance.
The inventors have found that detergent compositions comprising a specific cationic soil release polymer and specific lipase show surprisingly good whiteness performance benefit.
The present invention relates to fabric and home care products comprising cationic soil release polymer and lipase enzyme.
The cationic soil release polymer is obtainable by radical copolymerization of: at least one monomer of formula (I), in which n is a number in range of from 3 to 120, preferably for a number in the range of from 5 to 50, most preferred for a number in the range of from 7 to 46
with at least one monomer of formula (II), in which A− is an anion, preferably selected from fluoride, chloride, bromide, iodide, sulfate, hydrogensulfate, alkylsulfate, and mixture thereof
The lipase enzyme is a variant of SEQ ID NO:1 comprising:
wherein the positions correspond to the positions of SEQ ID NO:1 and wherein the lipase variant has at least 90% but less than 100% sequence identity to the polypeptide having the amino acid sequence of SEQ ID NO:1 and wherein the variant has lipase activity.
Cationic soil release polymer: The cationic soil release polymer is obtainable by radical copolymerization of:
At least one monomer of formula (I), in which n is a number in range of from 3 to 120, preferably for a number in the range of from 5 to 50, most preferred for a number in the range of from 7 to 46
with at least one monomer of formula (II), in which A− is an anion, preferably selected from fluoride, chloride, bromide, iodide, sulfate, hydrogensulfate, alkylsulfate, and mixture thereof
It may be preferred that the cationic soil release polymer does not contain units stemming from any other monomers other than those according to formula (I) and formula (II), with the exception that units resulting from radical starter compounds or radical quencher compounds may be present.
However, a part of units stemming from monomers according to formula (II), preferably not more than 60 mol % referring to units from monomers according to formula (II), may be replaced by units stemming from the not quaternized monomer according to formula (IIa),
It may be preferred that the cationic soil release polymer comprises a monomer according to formula (IIa),
The synthesis of the cationic soil release polymers may start with monomer (11a), and the copolymer resulting by its reaction with a monomer according to formula (I) is further reacted with a methylating agent.
Preferred molar ratio of monomer (I) to combination of monomer (II) and (IIa) in the range of 1:99 to 75:25, more preferred in the range of 5:95 to 70:30. The weight average molecular weight (Mw) of the cationic soil release polymer preferably is in the range of from 10 000 g/mol to 500 000 g/mol, more preferred in the range of from 20 000 g/mol to 200 000 g/mol. The MW can be determined by any suitable means, preferably by gel permeation chromatography (GPC). A preferred polymer is Sokalan® SR400 (copolymer of ((2-methacryloyloxy)ethyl)-trimethyl ammonium chloride) as described in WO201828933.
Lipase enzyme: The lipase enzyme is a variant of SEQ ID NO:1 comprising:
wherein the positions correspond to the positions of SEQ ID NO:1 and wherein the lipase variant has at least 90% but less than 100% sequence identity to the polypeptide having the amino acid sequence of SEQ ID NO:1 and wherein the variant has lipase activity.
One preferred lipase is a variant of SEQ ID NO:1 comprising the following substitutions: T231R, N233R, D27R, G38A, D96E, D111A, G163K, D254S and P256T.
One preferred lipase is a variant of SEQ ID NO:1 comprising the following substitutions: T231R, N233R, N33Q, G91Q, E210Q, I255A.
A preferred lipase enzyme is a variant of SEQ ID NO:1 comprising the following substitutions: T231R, N233R, D27R, G38A, D96E, D111A, G163K, D254S and P256T.
A preferred lipase enzyme is a variant of SEQ ID NO:1 comprising the following substitutions: T231R, N233R, D27R, G38A, F51V, D96E, K98L/JI, D111A, G163K, H198S, D254S and P256T.
Suitable lipases are commercially available from Novozymes, for example as Lipex Evity 100L, Lipex Evity 200L (both liquid raw materials) and Lipex Evity 105T (a granulate). These lipases have different structures to the products Lipex 100L, Lipex 100T and Lipex Evity 100T which are outside the scope of the invention.
Fabric and home care products: Any fabric and home care product is suitable. Preferred are detergents and cleaning compositions. Especially preferred are fabric treatment compositions, even more preferred are laundry detergent compositions.
Fabric and home care products are typically suitable for: (a) the care of finished textiles, cleaning of finished textiles, sanitization of finished textiles, disinfection of finished textiles, detergents, stain removers, softeners, fabric enhancers, stain removal or finished textiles treatments, pre and post wash treatments, washing machine cleaning and maintenance, with finished textiles intended to include garments and items made of cloth; (b) the care of dishes, glasses, crockery, cooking pots, pans, utensils, cutlery and the like in automatic, in-machine washing, including detergents, preparatory post treatment and machine cleaning and maintenance products for both the dishwasher, the utilized water and its contents; or (c) manual hand dish washing detergents.
The products are also referred to herein as compositions.
Laundry detergent composition: Suitable laundry detergent compositions include laundry detergent powder compositions, laundry beads, laundry detergent liquid compositions, laundry detergent gel compositions, laundry sheets, and water-soluble unit dose laundry detergent compositions.
Fabric enhancers: Suitable fabric enhancers are liquid fabric enhancers including compact liquid fabric enhancers, and solid fabric enhancers including fabric enhancer beads.
Dish-washing detergent composition: Suitable dish-washing detergent compositions include hand dish-washing detergent compositions and automatic dish-washing detergent compositions. Such as automatic dish-washing powder, tablet and pouches.
Hard surface cleansers: Suitable hard surface cleansers compositions include product that can be directly applied onto hard surface, eg. by a spray, and producted that can be diluted in water before been applied onto hard surface.
Surfactant System: The compositions comprise a surfactant system in an amount sufficient to provide desired cleaning properties. In some embodiments, the composition comprises, by weight of the composition, from about 1% to about 70% of a surfactant system. In other embodiments, the composition comprises, by weight of the composition, from about 2% to about 60% of the surfactant system. In further embodiments, the composition comprises, by weight of the composition, from about 5% to about 30% of the surfactant system. The surfactant system may comprise a detersive surfactant selected from anionic surfactants, nonionic surfactants, cationic surfactants, zwitterionic surfactants, amphoteric surfactants, ampholytic surfactants, and mixtures thereof. Those of ordinary skill in the art will understand that a detersive surfactant encompasses any surfactant or mixture of surfactants that provide cleaning, stain removing, or laundering benefit to soiled material.
Anionic Surfactants: In some examples, the surfactant system of the composition may comprise from about 1% to about 70%, by weight of the surfactant system, of one or more anionic surfactants. In other examples, the surfactant system of the composition may comprise from about 2% to about 60%, by weight of the surfactant system, of one or more anionic surfactants. In further examples, the surfactant system of the composition may comprise from about 5% to about 30%, by weight of the surfactant system, of one or more anionic surfactants. In further examples, the surfactant system may consist essentially of, or even consist of one or more anionic surfactants.
Specific, non-limiting examples of suitable anionic surfactants include any conventional anionic surfactant. This may include a sulfate detersive surfactant, for e.g., alkoxylated and/or non-alkoxylated alkyl sulfate materials, and/or sulfonic detersive surfactants, e.g., alkyl benzene sulfonates.
Other useful anionic surfactants can include the alkali metal salts of alkyl benzene sulfonates, in which the alkyl group contains from about 9 to about 15 carbon atoms, in straight chain (linear) or branched chain configuration.
Suitable alkyl benzene sulphonate (LAS) may be obtained, by sulphonating commercially available linear alkyl benzene (LAB); suitable LAB includes low 2-phenyl LAB, such as those supplied by Sasol under the tradename Isochem® or those supplied by Petresa under the tradename Petrelab®, other suitable LAB include high 2-phenyl LAB, such as those supplied by Sasol under the tradename Hyblene®. A suitable anionic detersive surfactant is alkyl benzene sulphonate that is obtained by DETAL catalyzed process, although other synthesis routes, such as HF, may also be suitable. In one aspect a magnesium salt of LAS is used.
The detersive surfactant may be a mid-chain branched detersive surfactant, in one aspect, a mid-chain branched anionic detersive surfactant, in one aspect, a mid-chain branched alkyl sulphate and/or a mid-chain branched alkyl benzene sulphonate, for example, a mid-chain branched alkyl sulphate. In one aspect, the mid-chain branches are C1-4 alkyl groups, typically methyl and/or ethyl groups.
Other anionic surfactants useful herein are the water-soluble salts of: paraffin sulfonates and secondary alkane sulfonates containing from about 8 to about 24 (and in some examples about 12 to 18) carbon atoms; alkyl glyceryl ether sulfonates, especially those ethers of C8-18 alcohols (e.g., those derived from tallow and coconut oil). Mixtures of the alkylbenzene sulfonates with the above-described paraffin sulfonates, secondary alkane sulfonates and alkyl glyceryl ether sulfonates are also useful. Further suitable anionic surfactants include methyl ester sulfonates and alkyl ether carboxylates.
The anionic surfactants may exist in an acid form, and the acid form may be neutralized to form a surfactant salt. Typical agents for neutralization include metal counterion bases, such as hydroxides, e.g., NaOH or KOH. Further suitable agents for neutralizing anionic surfactants in their acid forms include ammonia, amines, or alkanolamines. Non-limiting examples of alkanolamines include monoethanolamine, diethanolamine, triethanolamine, and other linear or branched alkanolamines known in the art; suitable alkanolamines include 2-amino-1-propanol, 1-aminopropanol, monoisopropanolamine, or 1-amino-3-propanol. Amine neutralization may be done to a full or partial extent, e.g., part of the anionic surfactant mix may be neutralized with sodium or potassium and part of the anionic surfactant mix may be neutralized with amines or alkanolamines.
Other suitable anionic surfactant also include alky ethoxyl carboxylate and salts thereof.
Other suitable anionic surfactants also include those can be produced based on renewable raw materials. Examples of such anionic surfactant included those disclosed in US20190169543 as represented by formula (a); in US20190169531 and WO2021/083642 as represented by formula (b); in US20200199489 as represented by formula (c) or (d); in US20200199494 as represented by formula (e); in US20200199488 as represented by formula (f); in WO2020/144098 as represented by formula (g); WO2020/187795 as represented by formula (h) or (i);
in which n is a number from 5 to 21 and X+ is a charge-balancing cation.
in which n and m independently of one another represent numbers from 0 to 17 and 2<n+m<20, and X+ represents a charge-balancing cation.
in which R is a linear or branched alkyl, alkenyl, alkylaryl or alkenylaryl group having 5 to 25 C atoms and X+ is a charge-balancing cation.
in which R1 and R2 represent independently of one another represent H and SO3—X+with the proviso that at least one of R1 and R2 is not H, n and m represent independently from each other numbers from 0-21 under the proviso that 4<n+m<26, and X+ represents a charge-balancing anion.
in which R represents a linear or branched alkyl, alkenyl, alkylaryl or alkenylaryl group having 5-25 C atoms and X+ represents a charge-balancing cation.
in which R represents hydrogen or a linear or branched alkyl, alkenyl, alkylaryl or alkenylaryl group having 5 to 25 C atoms, n represents a number from 1 to 21 and m represents a number from 0 to 20, the sum of n and m being less than 22, and X+ represents a charge-balancing cation.
in which R represents hydrogen or a linear or branched alkyl, alkenyl, alkylaryl or alkenylaryl group having 5 to 25 C atoms, n represents a number from 1 to 21 and m represents a number from 0 to 20, the sum of n and m being less than 22, and X+ represents a charge-balancing cation.
Nonionic surfactants: The surfactant system of the composition may comprise a nonionic surfactant. In some examples, the surfactant system comprises up to about 25%, by weight of the surfactant system, of one or more nonionic surfactants, e.g., as a co-surfactant. In some examples, the compositions comprises from about 0.1% to about 15%, by weight of the surfactant system, of one or more nonionic surfactants. In further examples, the compositions comprises from about 0.3% to about 10%, by weight of the surfactant system, of one or more nonionic surfactants.
Suitable nonionic surfactants useful herein can comprise any conventional nonionic surfactant. These can include, for e.g., alkoxylated fatty alcohols and amine oxide surfactants.
Other non-limiting examples of nonionic surfactants useful herein include: C8-C18 alkyl ethoxylates, such as, NEODOL® nonionic surfactants from Shell; C6-C12 alkyl phenol alkoxylates wherein the alkoxylate units may be ethyleneoxy units, propyleneoxy units, or a mixture thereof; C12-C18 alcohol and C6-C12 alkyl phenol condensates with ethylene oxide/propylene oxide block polymers such as Pluronic® from BASF; C14-C22 mid-chain branched alcohols (BA); C14-C22 mid-chain branched alkyl alkoxylates (BAEx), wherein x is from 1 to 30; alkylpolysaccharides; specifically alkylpolyglycosides; Polyhydroxy fatty acid amides; and ether capped poly(oxyalkylated) alcohol surfactants.
Suitable nonionic surfactants also include those sold under the tradename Lutensol® from BASF.
Anionic/Nonionic Combinations: The surfactant system may comprise combinations of anionic and nonionic surfactant materials. In some examples, the weight ratio of anionic surfactant to nonionic surfactant is at least about 2:1. In other examples, the weight ratio of anionic surfactant to nonionic surfactant is at least about 5:1. In further examples, the weight ratio of anionic surfactant to nonionic surfactant is at least about 10:1.
Cationic Surfactants: The surfactant system may comprise a cationic surfactant. In some aspects, the surfactant system comprises from about 0% to about 7%, or from about 0.1% to about 5%, or from about 1% to about 4%, by weight of the surfactant system, of a cationic surfactant, e.g., as a co-surfactant. In some aspects, the compositions of the invention are substantially free of cationic surfactants and surfactants that become cationic below a pH of 7 or below a pH of 6.
Non-limiting examples of cationic surfactants include: the quaternary ammonium surfactants, which can have up to 26 carbon atoms include: alkoxylate quaternary ammonium (AQA) surfactants; dimethyl hydroxyethyl quaternary ammonium; dimethyl hydroxyethyl lauryl ammonium chloride; polyamine cationic surfactants; cationic ester surfactants; and amino surfactants, specifically amido propyldimethyl amine (APA).
Suitable cationic detersive surfactants also include alkyl pyridinium compounds, alkyl quaternary ammonium compounds, alkyl quaternary phosphonium compounds, alkyl ternary sulphonium compounds, and mixtures thereof.
Zwitterionic Surfactants: Examples of zwitterionic surfactants include: derivatives of secondary and tertiary amines, derivatives of heterocyclic secondary and tertiary amines, or derivatives of quaternary ammonium, quaternary phosphonium or tertiary sulfonium compounds.
Betaines, including alkyl dimethyl betaine and cocodimethyl amidopropyl betaine, C8 to C18 (for example from C12 to C18) amine oxides and sulfo and hydroxy betaines, such as N-alkyl-N,N-dimethylammino-1-propane sulfonate where the alkyl group can be C8 to C18 and in certain embodiments from C10 to C14.
Amphoteric Surfactants: Examples of amphoteric surfactants include aliphatic derivatives of secondary or tertiary amines, or aliphatic derivatives of heterocyclic secondary and tertiary amines in which the aliphatic radical may be straight- or branched-chain and where one of the aliphatic substituents contains at least about 8 carbon atoms, typically from about 8 to about 18 carbon atoms, and at least one of the aliphatic substituents contains an anionic water-solubilizing group, e.g. carboxy, sulfonate, sulfate. Examples of compounds falling within this definition are sodium 3-(dodecylamino)propionate, sodium 3-(dodecylamino) propane-1-sulfonate, sodium 2-(dodecylamino)ethyl sulfate, sodium 2-(dimethylamino) octadecanoate, disodium 3-(N-carboxymethyldodecylamino)propane 1-sulfonate, disodium octadecyl-imminodiacetate, sodium 1-carboxymethyl-2-undecylimidazole, and sodium N,N-bis (2-hydroxyethyl)-2-sulfato-3-dodecoxypropylamine. Suitable amphoteric surfactants also include sarcosinates, glycinates, taurinates, and mixtures thereof.
Branched Surfactants: Suitable branched detersive surfactants include anionic branched surfactants selected from branched sulphate or branched sulphonate surfactants, e.g., branched alkyl sulphate, branched alkyl alkoxylated sulphate, and branched alkyl benzene sulphonates, comprising one or more random alkyl branches, e.g., C1-4 alkyl groups, typically methyl and/or ethyl groups.
The branched detersive surfactant may be a mid-chain branched detersive surfactant, typically, a mid-chain branched anionic detersive surfactant, for example, a mid-chain branched alkyl sulphate and/or a mid-chain branched alkyl benzene sulphonate. In some aspects, the detersive surfactant is a mid-chain branched alkyl sulphate. In some aspects, the mid-chain branches are C10.4 alkyl groups, typically methyl and/or ethyl groups.
Further suitable branched anionic detersive surfactants include surfactants derived from alcohols branched in the 2-alkyl position, such as those sold under the trade names Isalchem®123, Isalchem®125, Isalchem®145, Isalchem®167, which are derived from the oxo process. Due to the oxo process, the branching is situated in the 2-alkyl position. These 2-alkyl branched alcohols are typically in the range of C11 to C14/C15 in length and comprise structural isomers that are all branched in the 2-alkyl position.
Other Cleaning Additives: The compositions of the invention may also contain other cleaning additives. Suitable cleaning additives include builders, structurants or thickeners, clay soil removal/anti-redeposition agents, polymeric soil release agents, polymeric dispersing agents, polymeric grease cleaning agents, enzymes, enzyme stabilizing systems, bleaching compounds, bleaching agents, bleach activators, bleach catalysts, brighteners, dyes, hueing agents, dye transfer inhibiting agents, chelating agents, suds supressors, softeners, and perfumes.
Enzymes: Proteases: The composition of the invention can comprise a protease in addition to the protease of the invention. A mixture of two or more proteases can contribute to an enhanced cleaning across a broader temperature, cycle duration, and/or substrate range, and provide superior shine benefits, especially when used in conjunction with an anti-redeposition agent and/or a sulfonated polymer.
Suitable proteases for use in combination with the variant proteases of the invention include metalloproteases and serine proteases, including neutral or alkaline microbial serine proteases, such as subtilisins (EC 3.4.21.62). Suitable proteases include those of animal, vegetable or microbial origin. In one aspect, such suitable protease may be of microbial origin. The suitable proteases include chemically or genetically modified mutants of the aforementioned suitable proteases. In one aspect, the suitable protease may be a serine protease, such as an alkaline microbial protease or/and a trypsin-type protease. Examples of suitable neutral or alkaline proteases include:
Especially preferred additional proteases for the detergent of the invention are polypeptides demonstrating at least 90%, preferably at least 95%, more preferably at least 98%, even more preferably at least 99% and especially 100% identity with the wild-type enzyme from Bacillus lentus, comprising mutations in one or more, preferably two or more and more preferably three or more of the following positions, using the BPN′ numbering system and amino acid abbreviations as illustrated in WO00/37627, which is incorporated herein by reference: S9R, A15T, V68A, N76D, N87S, S99D, S99SD, S99A, S101G, S101M, S103A, V104N/I, G118V, G118R, S128L, P129Q, S130A, Y167A, R170S, A194P, V205I, Q206L/D/E, Y209W, M222S, Q245R and/or M222S.
Most preferably the additional protease is selected from the group of proteases comprising the below mutations (BPN′ numbering system) versus either the PB92 wild-type (SEQ ID NO:2 in WO 08/010925) or the subtilisin 309 wild-type (sequence as per PB92 backbone, except comprising a natural variation of N87S).
Suitable commercially available additional protease enzymes include those sold under the trade names Alcalase®, Savinase®, Primase®, Durazym®, Polarzyme®, Kannase®, Liquanase®, Liquanase Ultra®, Savinase Ultra®, Ovozyme®, Neutrase®, Everlase®, Coronase®, Blaze®, Blaze Ultra® and Esperase® by Novozymes A/S (Denmark); those sold under the tradename Maxatase®, Maxacal®, Maxapem®, Properase®, Purafect®, Purafect Prime®, Purafect Ox®, FN3®, FN4®, Excellase®, Ultimase® and Purafect OXP® by Dupont; those sold under the tradename Opticlean® and Optimase® by Solvay Enzymes; and those available from Henkel/Kemira, namely BLAP (sequence shown in FIG. 29 of U.S. Pat. No. 5,352,604 with the following mutations S99D+S101R+S103A+V104I+G159S, hereinafter referred to as BLAP), BLAP R (BLAP with S3T+V4I+V199M+V205I+L217D), BLAP X (BLAP with S3T+V4I+V205I) and BLAP F49 (BLAP with S3T+V4I+A194P+V199M+V205I+L217D); and KAP (Bacillus alkalophilus subtilisin with mutations A230V+S256G+S259N) from Kao.
Especially preferred for use herein in combination with the variant protease of the invention are commercial proteases selected from the group consisting of Properase®, Blaze®, Ultimase®, Everlase®, Savinase®, Excellase®, Blaze Ultra®, BLAP and BLAP variants.
Preferred levels of protease in the product of the invention include from about 0.05 to about 10, more preferably from about 0.5 to about 7 and especially from about 1 to about 6 mg of active protease/g of composition.
Lipases: The enzyme system preferably further comprises a lipase. The presence of oils and/or grease can further increase the resiliency of stains comprising mannans and other polysaccharides. As such, the presence of lipase in the enzyme package can further improve the removal of such stains. Suitable lipases include those of bacterial, fungal or synthetic origin, and variants thereof. Chemically modified or protein engineered mutants are also suitable. Examples of suitable lipases include lipases from Humicola (synonym Thermomyces), e.g., from H. lanuginosa (T. lanuginosus).
The lipase may be a “first cycle lipase”, e.g. such as those described in WO06/090335 and WO 13/116261. In one aspect, the lipase is a first-wash lipase, preferably a variant of the wild-type lipase from Thermomyces lanuginosus comprising T231R and/or N233R mutations.
Preferred lipases include those sold under the tradenames Lipex®, Lipolex® and Lipoclean® by Novozymes, Bagsvaerd, Denmark.
Other suitable lipases include: Liprl 139, e.g. as described in WO2013/171241; TfuLip2, e.g. as described in WO2011/084412 and WO2013/033318; Pseudomonas stutzeri lipase, e.g. as described in WO2018228880; Microbulbifer thermotolerans lipase, e.g. as described in WO2018228881; Sulfobacillus acidocaldarius lipase, e.g. as described in EP3299457; LIP062 lipase e.g. as described in WO2018209026; PinLip lipase e.g. as described in WO2017036901 and Absidia sp. lipase e.g. as described in WO2017005798.
A suitable lipase is a variant of SEQ ID NO:1 comprising:
One preferred lipase is a variant of SEQ ID NO:1 comprising the following substitutions: T231R, N233R, D27R, G38A, D96E, D111A, G163K, D254S and P256T One preferred lipase is a variant of SEQ ID NO:1 comprising the following substitutions: T231R, N233R, N33Q, G91Q, E210Q, I255A.
Suitable lipases are commercially available from Novozymes, for example as Lipex Evity 100L, Lipex Evity 200L (both liquid raw materials) and Lipex Evity 105T (a granulate). These lipases have different structures to the products Lipex 100L, Lipex 100T and Lipex Evity 100T which are outside the scope of the invention.
Cellulases: Suitable cellulases include those of bacterial or fungal origin. Chemically modified or protein engineered mutants are included. Suitable cellulases include cellulases from the genera Bacillus, Pseudomonas, Humicola, Fusarium, Thielavia, Acremonium, e.g., the fungal cellulases produced from Humicola insolens, Myceliophthora thermophila and Fusarium 30 oxysporum. disclosed in U.S. Pat. Nos. 4,435,307; 5,648,263; 5,691,178; 5,776,757; 5,691,178.
In one aspect, preferred enzymes include microbial-derived endoglucanases exhibiting endo-beta-1,4-glucanase activity (E.C. 3.2.1.4), preferably selected from the group comprising: (a) a bacterial polypeptide endogenous to a member of the genus Bacillus which has a sequence of at least 90%, 94%, 97% and even 99% identity to the amino acid sequence SEQ ID NO:2 in U.S. Pat. No. 7,141,403B2, preferred substitutions comprise one or more positions corresponding to positions 292, 274, 266, 265, 255, 246, 23 7, 224 and 221 of the mature polypeptide of SEQ ID NO: 2, and the variant has cellulase activity;
Preferred substitutions comprise one or more positions corresponding to positions 4, 20, 23, 29, 32, 36, 44, 51, 77, 80, 87, 90, 97, 98, 99, 102, 112, 116, 135, 136, 142, 153, 154, 157, 161, 163, 192, 194, 204, 208, 210, 212, 216, 217, 221, 222, 225, 227, and 232; (e) and mixtures thereof.
Suitable endoglucanases are sold under the tradenames Celluclean® and Whitezyme® (Novozymes A/S, Bagsvaerd, Denmark). Examples include Celluclean® 5000L, Celluclean® Classic 400L, Celluclean® Classic 700T, Celluclean® 4500T, Whitezyme® 1.5T, Whitezyme® 2.OL.
Other commercially available cellulases include Celluzyme®, Carezyme®, Carezyme® Premium (Novozymes A/S), Clazinase®, Puradax HA®, Revitalenz® 1000, Revitalenz® 2000 (Genencor International Inc.), KAC-500(B)® (Kao Corporation), Biotouch® FCL, Biotouch® DCL, Biotouch® DCC, Biotouch® NCD, Biotouch® FCC, Biotouch® FLX1 (AB Enzymes) Suitable glucanases include endo-β-1,3-glucanases, preferably from E.C. class 3.2.1.39, preferably obtained from Paenibacillus sp, Zobellia galactanivorans, Thermotoga petrophila or Trichoderma sp micro-organism, preferably Paenibacillus sp or Zobellia galactanivorans, most preferably Paenibacillus sp.
Amylases: Preferably the composition of the invention comprises an amylase. Suitable alpha-amylases include those of bacterial or fungal origin. Chemically or genetically modified mutants (variants) are included. A preferred alkaline alpha-amylase is derived from a strain of Bacillus, such as Bacillus licheniformis, Bacillus amyloliquefaciens, Bacillus stearothermophilus, Bacillus subtilis, or other Bacillus sp., such as Bacillus sp. NCBI 12289, NCBI 12512, NCBI 12513, DSM 9375 (U.S. Pat. No. 7,153,818) DSM 12368, DSMZ no. 12649, KSM AP1378 (WO 97/00324), KSM K36 or KSM K38 (EP 1,022,334). Preferred amylases include:
KSM-K38 with accession number AB051102.
Preferred amylases are engineered enzymes, wherein one or more of the amino acids prone to bleach oxidation have been substituted by an amino acid less prone to oxidation. In particular it is preferred that methionine residues are substituted with any other amino acid. In particular it is preferred that the methionine most prone to oxidation is substituted. Preferably the methionine in a position equivalent to 202 in SEQ ID NO:11 is substituted. Preferably, the methionine at this position is substituted with threonine or leucine, preferably leucine.
Suitable commercially available alpha-amylases include DURAMYL®, LIQUEZYME®, TERMAMYL®, TERMAMYL ULTRA®, NATALASE®, SUPRAMYL®, STAINZYME®, STAINZYME PLUS®, FUNGAMYL®, ATLANTIC®, ACHIEVE ALPHA®, AMPLIFY® PRIME, INTENSA® and BAN® (Novozymes A/S, Bagsvaerd, Denmark), KEMZYM® AT 9000 Biozym Biotech Trading GmbH Wehlistrasse 27b A-1200 Wien Austria, RAPIDASE®, PURASTAR®, ENZYSIZE®, OPTISIZE HT PLUS®, POWERASE®, PREFERENZ S® series (including PREFERENZ S1000® and PREFERENZ S2000® and PURASTAR OXAM® (DuPont., Palo Alto, California) and KAM® (Kao, 14-10 Nihonbashi Kayabacho, 1-chome, Chuo-ku Tokyo 103-8210, Japan).
Preferably, the composition comprises at least 0.01 mg, preferably from about 0.05 to about 10, more preferably from about 0.1 to about 6, especially from about 0.2 to about 5 mg of active amylase/g of composition.
Peroxidases/Oxidases: Suitable peroxidases/oxidases include those of plant, bacterial or fungal origin. Chemically modified or protein engineered mutants are included. Examples of useful peroxidases include peroxidases from Coprinus, e.g., from C. cinereus, and variants thereof as those described in WO 93/24618, WO 95/10602, and WO 98/15257.
Commercially available peroxidases include GUARDZYME® (Novozymes A/S).
Pectate lyases: Suitable pectate lyases include those sold under the tradenames Pectawash®, Pectaway®, X-Pect®, (all Novozymes A/S, Bagsvaerd, Denmark) Preferenz® F1000 (DuPont Industrial Biosciences).
Mannanases: The composition preferably comprises one of more mannanase enzymes. As used herein, the term “mannanase” or “galactomannanase” denotes a mannanase enzyme defined according to that known in the art as mannan endo-1,4-beta-mannosidase and having the alternative names beta-mannanase and endo-1,4-mannanase and catalysing hydrolysis of 1,4-beta-D-mannosidic linkages in mannans, galactomannans, glucomannans, and galactoglucomannans. Mannanases are classified according to the Enzyme Nomenclature as EC 3.2.1.78 and belong in Glycosyl Hydrolase families 5, 26 and 113. Many suitable mannanases belong to Glycosyl Hydrolase family 5. Commercially available mannanases include all those sold under the tradenames Mannaway® (Novozymes A/S) such as Mannaway® 200L and Mannaway Evity 4.0T Other commercially available mannanases include Effectenz® M1000, Mannastar® 375, Preferenz M100 and Purabrite® (all DuPont Industrial Biosciences) and Biotouch M7 (AB Enzymes). Other suitable mannanases belong to Glycosyl Hydrolase family 26 including those described in WO2018191135, WO2015040159, WO2017021515, WO2017021516, WO2017021517 and WO2019081515. Suitable mixtures of mannanases include the combinations of Glycosyl Hydrolase family 5 and Glycosyl Hydrolase family 26 mannanases described in WO2019081515.
Xanthan gum-degrading enzymes: The composition may comprise one of more xanthan gum-degrading enzymes. Suitable enzymes for degradation of xanthan gum-based soils include xanthan endoglucanase, optionally in conjunction with a xanthan lyase. As used herein, the term “xanthan endoglucanase” denotes an enzyme exhibiting endo-β-1,4-glucanase activity that is capable of catalysing hydrolysis of the 1,4-linked β-D-glucose polymeric backbone of xanthan gum, optionally in conjunction with a suitable xanthan lyase enzyme. Suitable xanthan endoglucanases are described in WO2013167581, WO2015181299, WO2015181292, WO2017046232, WO2017046260, WO201837062, WO201837065, WO2019038059 and WO2019162000. As used herein, the term “xanthan lyase” denotes an enzyme that cleaves the 0-D-mannosyl-β-D-1,4-glucuronosyl bond of xanthan gum. Such enzymes belong to E.C. 4.2.2.12. Suitable xanthan lyases are described in WO2015001017, WO2018037061, WO201837064, WO2019038060, WO2019162000 and WO2019038057.
Nucleases: Preferably the composition comprises a nuclease such as a RNase or DNase or mixtures thereof. The nuclease enzyme is an enzyme capable of cleaving the phosphodiester bonds between the nucleotide sub-units of nucleic acids. The nuclease enzyme herein is preferably a deoxyribonuclease or ribonuclease enzyme or a functional fragment thereof. By functional fragment or part is meant the portion of the nuclease enzyme that catalyzes the cleavage of phosphodiester linkages in the DNA backbone and so is a region of said nuclease protein that retains catalytic activity. Thus it includes truncated, but functional versions, of the enzyme and/or variants and/or derivatives and/or homologues whose functionality is maintained.
Preferably the nuclease enzyme is a deoxyribonuclease, preferably selected from any of the classes E.C. 3.1.21.x, where x=1, 2, 3, 4, 5, 6, 7, 8 or 9, E.C. 3.1.22.y where y=1, 2, 4 or 5, E.C. 3.1.30.z where z=1 or 2, E.C. 3.1.31.1 and mixtures thereof.
DNase: Suitable DNases include wild-types and variants of DNases defined by SEQ ID NOS: 1, 2, 3, 4, 5, 6, 7, 8 and 9 in WO2017162836 (Novozymes), and variants of the Bacillus cibi DNase including those described in WO2018011277 (Novozymes), incorporated herein by reference. Preferred DNases are as claimed in co-pending European Patent Application No. EP18202967.
RNase: suitable RNases include wild-types and variants of DNases defined by SEQ ID NOS: 3, 6, 9, 12,15, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 72 and 73 in WO2018178061 (Novozymes), incorporated herein by reference.
Hexosaminidases: The composition may comprise one or more hexosaminidases. The term hexosaminidase includes “dispersin” and the abbreviation “Dsp”, which means a polypeptide having hexosaminidase activity, EC 3.2.1.—that catalyzes the hydrolysis of β-1,6-glycosidic linkages of N-acetyl-glucosamine polymers found in soils of microbial origin. The term hexosaminidase includes polypeptides having N-acetylglucosaminidase activity and 3-N-acetylglucosaminidase activity. Hexosaminidase activity may be determined according to Assay II described in WO2018184873. Suitable hexosaminidases include those disclosed in WO2017186936, WO2017186937, WO2017186943, WO2017207770, WO2018184873, WO2019086520, WO2019086528, WO2019086530, WO2019086532, WO2019086521, WO2019086526, WO2020002604, WO2020002608, WO2020007863, WO2020007875, WO2020008024, WO2020070063, WO2020070249, WO2020088957, WO2020088958 and WO2020207944. Variants of the Terribacillus saccharophilus hexosaminidase defined by SEQ ID NO: 1 of WO2020207944 may be preferred, especially the variants with improved thermostability disclosed in that publication.
Galactanases: Preferably the composition comprises a galactanase, ie. an extracellular polymer-degrading enzyme that includes an endo-beta-1,6-galactanase enzyme. The term “endo-beta-1,6-galactanase” or “a polypeptide having endo-beta-1,6-galactanase activity” means a endo-beta-1,6-galactanase activity (EC 3.2.1.164) from the glycoside hydrolase family 30 that catalyzes the hydrolytic cleavage of 1,6-3-D-galactooligosaccharides with a degree of polymerization (DP) higher than 3, and their acidic derivatives with 4-O-methylglucosyluronate or glucosyluronate groups at the non-reducing terminals. For purposes of the present disclosure, endo-beta-1,6-galactanase activity is determined according to the procedure described in WO 2015185689 in Assay I. Suitable examples from class EC 3.2.1.164 are described in WO 2015185689, such as the mature polypeptide SEQ ID NO: 2.
The additional enzyme(s) may be included in the detergent composition by adding separate enzyme additives containing an additional enzyme, or a combined enzyme additive comprising two or several or all of the additional enzymes. Such an enzyme additive can be in the form of a granulate, a liquid or slurry, preferably additionally comprising an enzyme stabiliser.
Preferably each additional enzyme will be present in the composition in an amount of at least 0.0001 to about 0.1% weight percent of pure active enzyme protein, such as from about 0.0001% to about 0.01%, from about 0.001% to about 0.01% or from about 0.001% to about 0.01% based on the weight of the composition.
The enzyme system can comprise other enzymes. Suitable enzymes provide cleaning performance and/or fabric care benefits. Examples of other suitable enzymes include, but are not limited to, hemicellulases, peroxidases, proteases, cellulases, xylanases, lipases, phospholipases, esterases, cutinases, pectinases, keratanases, reductases, oxidases, phenoloxidases, licheninase, lipoxygenases, ligninases, pullulanases, tannases, pentosanases, malanases, β-glucanases, arabinosidases, hyaluronidase, chondroitinase, laccase, and known amylases, or combinations thereof. A preferred enzyme system further comprises a cocktail of conventional detersive enzymes such as protease, lipase, cutinase and/or cellulase in conjunction with amylase. Detersive enzymes are described in greater detail in U.S. Pat. No. 6,579,839.
Enzyme Stabilizing System: The enzyme-containing compositions described herein may optionally comprise from about 0.001% to about 10%, in some examples from about 0.005% to about 8%, and in other examples, from about 0.01% to about 6%, by weight of the composition, of an enzyme stabilizing system. The enzyme stabilizing system can be any stabilizing system which is compatible with the detersive enzyme. In the case of aqueous detergent compositions comprising protease, a reversible protease inhibitor, such as a boron compound, including borate, 4-formyl phenylboronic acid, phenylboronic acid and derivatives thereof, or compounds such as calcium formate, sodium formate and 1,2-propane diol may be added to further improve stability.
Builders: The compositions of the present invention may optionally comprise a builder. Built compositions typically comprise at least about 1% builder, based on the total weight of the composition. Liquid compositions may comprise up to about 10% builder, and in some examples up to about 8% builder, of the total weight of the composition. Granular compositions may comprise up to about 30% builder, and in some examples up to about 5% builder, by weight of the composition.
Builders selected from aluminosilicates (e.g., zeolite builders, such as zeolite A, zeolite P, and zeolite MAP) and silicates assist in controlling mineral hardness in wash water, especially calcium and/or magnesium, or to assist in the removal of particulate soils from surfaces. Suitable builders may be selected from the group consisting of phosphates, such as polyphosphates (e.g., sodium tri-polyphosphate), especially sodium salts thereof; carbonates, bicarbonates, sesquicarbonates, and carbonate minerals other than sodium carbonate or sesquicarbonate; organic mono-, di-, tri-, and tetracarboxylates, especially water-soluble nonsurfactant carboxylates in acid, sodium, potassium or alkanolammonium salt form, as well as oligomeric or water-soluble low molecular weight polymer carboxylates including aliphatic and aromatic types; and phytic acid.
These may be complemented by borates, e.g., for pH-buffering purposes, or by sulfates, especially sodium sulfate and any other fillers or carriers which may be important to the engineering of stable surfactant and/or builder-containing compositions. Additional suitable builders may be selected from citric acid, lactic acid, fatty acid, polycarboxylate and salt thereof, for example, copolymers of acrylic acid, copolymers of acrylic acid and maleic acid, and copolymers of acrylic acid and/or maleic acid, and other suitable ethylenic monomers with various types of additional functionalities. Also suitable for use as builders herein are synthesized crystalline ion exchange materials or hydrates thereof having chain structure and a composition represented by the following general anhydride form: x(M20)·ySiO2·zM′O wherein M is Na and/or K, M′ is Ca and/or Mg; y/x is 0.5 to 2.0; and z/x is 0.005 to 1.0.
Alternatively, the composition may be substantially free of builder.
Polymeric Dispersing Agents: The compositions described herein may include from about 0.01% to about 10.0%, typically from about 0.1% to about 5%, in some aspects from about 0.2% to about 3.0%, by weight of the composition, of a polymeric dispersing agents.
The composition may comprise one or more polymeric dispersing agents. Examples are carboxymethylcellulose, poly(vinyl-pyrrolidone), poly (ethylene glycol), poly(vinyl alcohol), poly(vinylpyridine-N-oxide), poly(vinylimidazole), polycarboxylates such as polyacrylates, maleic/acrylic acid copolymers and lauryl methacrylate/acrylic acid co-polymers; polycarboxylates containing sulphonated monomers.
The composition may comprise one or more amphiphilic cleaning polymers such as the compound having the following general structure: bis((C2H5O)(C2H4O)n)(CH3)—N+—CxH2x—N+—(CH3)-bis((C2H5O)(C2H4O)n), wherein n=from 20 to 30, and x=from 3 to 8, or sulphated or sulphonated variants thereof.
The composition may comprise amphiphilic alkoxylated grease cleaning polymers which have balanced hydrophilic and hydrophobic properties such that they remove grease particles from fabrics and surfaces. Specific embodiments of the amphiphilic alkoxylated grease cleaning polymers of the present invention comprise a core structure and a plurality of alkoxylate groups attached to that core structure. These may comprise alkoxylated polyalkylenimines, for example, having an inner polyethylene oxide block and an outer polypropylene oxide block.
Alkoxylated polyamines may be used for grease and particulate removal. Such compounds may include, but are not limited to, ethoxylated polyethyleneimine, and sulfated versions thereof. Polypropoxylated derivatives may also be included. A wide variety of amines and polyalkyeneimines can be alkoxylated to various degrees. A useful example is 600 g/mol polyethyleneimine core ethoxylated to 20 EO groups per NH and is available from BASF.
The composition may comprise random graft polymers comprising a hydrophilic backbone comprising monomers, for example, unsaturated C1-C6 carboxylic acids, ethers, alcohols, aldehydes, ketones, esters, sugar units including polyglucans and other polysaccharides, alkoxy units, maleic anhydride, saturated polyalcohols such as glycerol, and mixtures thereof; and hydrophobic side chain(s), for example, one or more C4-C25 alkyl groups, polypropylene, polybutylene, vinyl esters of saturated C1-C6 mono-carboxylic acids, C1-C6 alkyl esters of acrylic or methacrylic acid, and mixtures thereof. A specific example of such graft polymers based on polyalkylene oxides and vinyl esters, in particular vinyl acetate. These polymers are typically prepared by polymerizing the vinyl ester in the presence of the polyalkylene oxide, the initiator used being dibenzoyl peroxide, dilauroyl peroxide or diacetyl peroxide.
The composition may comprise blocks of ethylene oxide, propylene oxide. Examples of such block polymers include ethylene oxide-propylene oxide-ethylene oxide (EO/PO/EO) triblock copolymer, wherein the copolymer comprises a first EO block, a second EO block and PO block wherein the first EO block and the second EO block are linked to the PO block. Blocks of ethylene oxide, propylene oxide, butylene oxide can also be arranged in other ways, such as (EO/PO) deblock copolymer, (PO/EO/PO) triblock copolymer. The block polymers may also contain additional butylene oxide (BO) block.
Carboxylate polymer—The composition of the present invention may also include one or more carboxylate polymers such as a maleate/acrylate random copolymer or polyacrylate homopolymer. A suitable carboxylate polymer is a polyacrylate homopolymer having a molecular weight of from 4,000 Da to 9,000 Da, or from 6,000 Da to 9,000 Da. Another suitable carboxylate polymer is a copolymer of acrylic acid and maleic acid having a molecular weight of from 50,000 Da to 120,000 Da, or from 60,000 Da to 80,000 Da.
Suitable carboxylate polymers can also comprises ether moieties and sulfonate moieties.
Suibable carboxylate polymer can be alkoxylated polycarboxylates. Chemically, these materials comprise polyacrylates having one ethoxy side-chain per every 7-8 acrylate units. The side-chains are of the formula —(CH2CH2O)m (CH2)·CH3 wherein m is 2-3 and n is 6-12. The side-chains are ester-linked to the polyacrylate “backbone” to provide a “comb” polymer type structure. The molecular weight can vary, but may be in the range of about 2000 to about 50,000.
Suitable polymers can also comprise monomers obtainable from renewable raw materials. Such monomers include monomer below, as described in US20200277548, in which R1, R2 and R3 are independently H or an alkyl group having 1 to 3 carbon atoms, and their derivatives in which the hydroxyl groups are protected by protecting groups selected from acetals, ketals, and carboxylic acid esters.
Such monomers include monomer below, as described in US20200277549, in which R1, R2 and R3 independently of one another are H or an alkyl group having 1 to 3 C atoms.
Such monomers include monomer below, as described in WO2019/096590, in which R1 represents —CR2═CR3R4 or —CH2—O—CH2—CR2═CR3R4, and R2, R3 and R4 independently represent H or an alkyl group having 1 to 3 C atoms, α,β-monoethylenically unsaturated carboxylic acids, carboxylic esters, carboxylic anhydrides, carboxamides, carboxylic acid imides, nitriles and mixtures thereof.
Additional oil Release Polymer: The compositions described herein may additionally include from about 0.01% to about 10.0%, typically from about 0.1% to about 5%, in some aspects from about 0.2% to about 3.0%, by weight of the composition, of a soil release polymer (also known as a polymeric soil release agents or “SRA”).
Soil release polymers typically have hydrophilic segments to hydrophilize the surface of hydrophobic fibers (such as polyester and nylon), and hydrophobic segments to deposit on hydrophobic fibers and remain adhered thereto through completion of washing and rinsing cycles, thereby serving as an anchor for the hydrophilic segments. This may enable stains occurring subsequent to treatment with a soil release agent to be more easily cleaned in later washing procedures. It is also believed that facilitating the release of soils helps to improve or maintain the wicking properties of a fabric.
The structure and charge distribution of the soil release polymer may be tailored for application to different fibers or textile types and for formulation in different detergent or detergent additive products. Soil release polymers may be linear, branched, or star-shaped.
Soil release polymers may also include a variety of charged units. Typically, a nonionic SRP or anionic SRP may be particularly preferred when the SRP is used in combination with a detergent which containing anionic surfactants, in order to avoid potentially negative interactions between the SRP and anionic surfactants.
Soil release polymer may include an end capping moiety, which is especially effective in controlling the molecular weight of the polymer or altering the physical or surface-adsorption properties of the polymer.
One preferred class of suitable soil release polymers include terephthalate-derived polyester polymers, which comprise structure unit (I) and/or (II):
wherein:
Optionally, the polymer further comprises one or more terminal group (III) derived from polyalkylene glycolmonoalkylethers, preferably selected from structure (IV-a)
wherein:
Optionally, the polymer further comprises one or more anionic terminal unit (IV) and/or (V) as described in EP3222647. Where M is a counterion selected from Na, Li, K, Mg/2, Ca/2, Al/3, ammonium, mono-, di-, tri-, or tetraalkylammonium wherein the alkyl groups are C1-C18 alkyl or C2-C10 hydroxyalkyl, or mixtures thereof.
Optionally, the polymer may comprise crosslinking multifunctional structural unit which having at least three functional groups capable of the esterification reaction. The functional which may be for example acid-, alcohol-, ester-, anhydride—or epoxy groups, etc.
Optionally, the polymer may comprise other di- or polycarboxylic acids or their salts or their (di)alkylesters can be used in the polyesters of the invention, such as, naphthalene-1,4-dicarboxylic acid, naphthalene-2,6,-dicarboxylic acid, tetrahydrophthalic acid, trimellitic acid, diphenoxyethane-4,4′-dicarboxylic acid, diphenyl-4,4′-dicarboxylic acid, 2,5-furandicarboxylic acid, adipic acid, sebacic acid, decan-1,10-dicarboxylic acid, fumaric acid, succinic acid, 1,4-cyclohexanedicarboxylic acid, cyclohexanediacetic acid, glutaric acid, azelaic acid, or their salts or their (di)alkyl esters, preferably their (C1-C4)-(di)alkyl esters and more preferably their (di)methyl esters, or mixtures thereof.
Preferably, suitable terephthalate-derived soil release polymers are nonionic, which does not comprise above structure (II). A further particular preferred nonionic terephthalate-derived soil release polymer has a structure according to formula below:
One example of most preferred above suitable terephthalate-derived soil release polymers has one of the R5 and R6 is H, and another is CH3; d is 0; c is from 5-100 and R7 is methyl.
Suitable terephthalate-derived soil release polymers may be also described as sulphonated and unsulphonated PET/POET (polyethylene terephthalate/polyoxyethylene terephthalate) polymers, both end-capped and non-end-capped. Example of suitable soil release polymers include TexCare® polymers, including TexCare® SRA-100, SRA-300, SRN-100, SRN-170, SRN-240, SRN-260, SRN-260 life, SRN UL50, SRN-300, and SRN-325, supplied by Clariant.
Other suitable terephthalate-derived soil release polymers are described in patent WO2014019903, WO2014019658 and WO2014019659.
Another class of soil release polymer also include modified cellulose. Suitable modified cellulose may include nonionic modified cellulose derivatives such as cellulose alkyl ether and cellulose hydroxyalkyl ethers. Example of such cellulose alkyl ether and cellulose hydroxyalkyl ethers include methyl cellulose, ethyl cellulose, hydroxyethyl cellulose, hydroxypropyl cellulose, hydroxypropyl methylcellulose, hydroxybutyl methyl cellulose. In some embodiment, the modified cellulose may comprise hydrocarbon of C4 or above, preferred length of the alkyl group may be C4, C6, C8, C10, C12, C14, C16, C18; example of suitable modified cellulose are described in WO2019111948 and WO2019111949. In some embodiment, the modified cellulose may comprise additional cationic modification, example of suitable modified cellulose with additional cationic modification are described in WO2019111946 and WO2019111947.
Other suitable soil release polymers include sulfoethyl cellulose which are mentioned in WO2014124872; cellulose carbamates which are mentioned in WO2015044061; modified 6-desoxy-6-amino-celluloses which are mentioned in WO2017137295; Xylose carbamates which are mentioned in WO2019243071; carboxy or sulfo-alkylated pullulan which are mentioned in WO2019243072; carboxy or sulfo-alkylated chitosan which are mentioned in WO2019243108.
Other examples of commercial soil release polymers are the REPEL-O-TEX® line of polymers supplied by Rhodia, including REPEL-O-TEX® SF, SF-2, and SRP6. Other suitable soil release polymers are Marloquest® polymers, such as Marloquest® SL, HSCB, L235M, B, and G82, supplied by Sasol. Further suitable soil release polymers of a different type include the commercially available material ZELCON 5126 (from DuPont) and MILEASE T (from ICI), Sorez 100 (from ISP).
Cellulosic Polymer and polymers based on other polysaccharide: The compositions described herein may include from about 0.1% to about 10%, typically from about 0.5% to about 7%, in some aspects from about 3% to about 5%, by weight of the composition, of a cellulosic polymer.
Suitable cellulosic polymers include alkyl cellulose, alkylalkoxyalkyl cellulose, carboxyalkyl cellulose, and alkyl carboxyalkyl cellulose. In some aspects, the cellulosic polymer is selected from carboxymethyl cellulose, methyl cellulose, methyl hydroxyethyl cellulose, methyl carboxymethyl cellulose, or mixtures thereof. In certain aspects, the cellulosic polymer is a carboxymethyl cellulose having a degree of carboxymethyl substitution of from about 0.5 to about 0.9 and a molecular weight from about 100,000 Da to about 300,000 Da.
Carboxymethylcellulose polymers include Finnfix® GDA (sold by CP Kelko), a hydrophobically modified carboxymethylcellulose, e.g., the alkyl ketene dimer derivative of carboxymethylcellulose sold under the tradename Finnfix® SH1 (CP Kelko), or the blocky carboxymethylcellulose sold under the tradename Finnfix® V (sold by CP Kelko).
Other cellulosic polymers included sulfoethyl cellulose as described in US20150368591; cellulose carbamates as described in WO2015/044061; 6-desoxy-6-amino-celluloses derivative as described in US20180346846.
Suitable polymers also include polymers based on other polysaccharide, such as Xylose carbamates as described in US20210115358; carboxy or sulfo-alkylated pullulan as described in WO2019243072; carboxy- or sulfo-alkylated chitosan as described in WO2019/243108 and WO2021156093.
Additional Amines: Additional amines may be used in the compositions described herein for added removal of grease and particulates from soiled materials. The compositions described herein may comprise from about 0.1% to about 10%, in some examples, from about 0.1% to about 4%, and in other examples, from about 0.1% to about 2%, by weight of the composition, of additional amines. Non-limiting examples of additional amines may include, but are not limited to, polyamines, oligoamines, triamines, diamines, pentamines, tetraamines, or combinations thereof. Specific examples of suitable additional amines include tetraethylenepentamine, triethylenetetraamine, diethylenetriamine, or a mixture thereof.
Bleaching Compounds, Bleaching Agents, Bleach Activators, and Bleach Catalysts: The compositions described herein may contain bleaching agents or bleaching compositions containing a bleaching agent and one or more bleach activators. Bleaching agents may be present at levels of from about 1% to about 30%, and in some examples from about 5% to about 20%, based on the total weight of the composition. If present, the amount of bleach activator may be from about 0.1% to about 60%, and in some examples from about 0.5% to about 40%, of the bleaching composition comprising the bleaching agent plus bleach activator.
Examples of bleaching agents include oxygen bleach, perborate bleach, percarboxylic acid bleach and salts thereof, peroxygen bleach, persulfate bleach, percarbonate bleach, and mixtures thereof.
In some examples, compositions may also include a transition metal bleach catalyst.
Bleaching agents other than oxygen bleaching agents are also known in the art and can be utilized in compositions. They include, for example, photoactivated bleaching agents, or pre-formed organic peracids, such as peroxycarboxylic acid or salt thereof, or a peroxysulphonic acid or salt thereof. A suitable organic peracid is phthaloylimidoperoxycaproic acid. If used, the compositions described herein will typically contain from about 0.025% to about 1.25%, by weight of the composition, of such bleaches, and in some examples, of sulfonate zinc phthalocyanine.
The composition may comprise bleach boost agent, such as acyl hydrozone and imidazolines.
Brighteners: Optical brighteners or other brightening or whitening agents may be incorporated at levels of from about 0.01% to about 1.2%, by weight of the composition, into the compositions described herein. Commercial brighteners, which may be used herein, can be classified into subgroups, which include, but are not necessarily limited to, derivatives of stilbene, pyrazoline, coumarin, benzoxazoles, carboxylic acid, methinecyanines, dibenzothiophene-5,5-dioxide, azoles, 5—and 6-membered-ring heterocycles, and other miscellaneous agents.
In some examples, the fluorescent brightener is selected from the group consisting of disodium 4,4′-bis{[4-anilino-6-morpholino-s-triazin-2-yl]-amino}-2,2′-stilbenedisulfonate (brightener 15, commercially available under the tradename Tinopal AMS-GX by Ciba Geigy Corporation), disodium4,4′-bis{[4-anilino-6-(N-2-bis-hydroxyethyl)-s-triazine-2-yl]-amino}-2,2′-stilbenedisulonate (commercially available under the tradename Tinopal UNPA-GX by Ciba-Geigy Corporation), disodium 4,4′-bis{[4-anilino-6-(N-2-hydroxyethyl-N-methylamino)-s-triazine-2-yl]-amino}-2,2′-stilbenedisulfonate (commercially available under the tradename Tinopal 5BM-GX by Ciba-Geigy Corporation). More preferably, the fluorescent brightener is disodium 4,4′-bis{[4-anilino-6-morpholino-s-triazin-2-yl]-amino}-2,2′-stilbenedisulfonate.
The brighteners may be added in particulate form or as a premix with a suitable solvent, for example nonionic surfactant, monoethanolamine, propane diol.
Fabric Hueing Agents: The compositions may comprise a fabric hueing agent (sometimes referred to as shading, bluing or whitening agents). Typically, the hueing agent provides a blue or violet shade to fabric. Hueing agents can be used either alone or in combination to create a specific shade of hueing and/or to shade different fabric types. This may be provided for example by mixing a red and green-blue dye to yield a blue or violet shade. Hueing agents may be selected from any known chemical class of dye, including but not limited to acridine, anthraquinone (including polycyclic quinones), azine, azo (e.g., monoazo, disazo, trisazo, tetrakisazo, polyazo), including premetallized azo, benzodifurane and benzodifuranone, carotenoid, coumarin, cyanine, diazahemicyanine, diphenylmethane, formazan, hemicyanine, indigoids, methane, naphthalimides, naphthoquinone, nitro and nitroso, oxazine, phthalocyanine, pyrazoles, stilbene, styryl, triarylmethane, triphenylmethane, xanthenes and mixtures thereof.
Dye Transfer Inhibiting Agents: The compositions may also include one or more materials effective for inhibiting the transfer of dyes from one fabric to another during the cleaning process. Generally, such dye transfer inhibiting agents may include polyvinyl pyrrolidone polymers, polyamine N-oxide polymers, copolymers of N-vinylpyrrolidone and N-vinylimidazole, manganese phthalocyanine, peroxidases, and mixtures thereof. If used, these agents may be used at a concentration of about 0.0001% to about 10%, by weight of the composition, in some examples, from about 0.01% to about 5%, by weight of the composition, and in other examples, from about 0.05% to about 2% by weight of the composition.
Chelating Agents: The compositions described herein may also contain one or more metal ion chelating agents. Suitable molecules include copper, iron and/or manganese chelating agents and mixtures thereof. Such chelating agents can be selected from the group consisting of phosphonates, amino carboxylates, amino phosphonates, succinates, polyfunctionally-substituted aromatic chelating agents, 2-pyridinol-N-oxide compounds, hydroxamic acids, carboxymethyl inulins, and mixtures therein. Chelating agents can be present in the acid or salt form including alkali metal, ammonium, and substituted ammonium salts thereof, and mixtures thereof.
The chelant may be present in the compositions disclosed herein at from about 0.005% to about 15% by weight, about 0.01% to about 5% by weight, about 0.1% to about 3.0% by weight, or from about 0.2% to about 0.7% by weight, or from about 0.3% to about 0.6% by weight of the composition.
Aminocarboxylates useful as chelating agents include, but are not limited to ethylenediaminetetracetates (EDTA); ethylenediamine-N, N′-disuccinic acid (EDDS), 1-hydroxyethylidene-1,1-diphosphonic acid (HEDP), N-(hydroxyethyl)ethylenediaminetriacetates (HEDTA); nitrilotriacetates (NTA); ethylenediamine tetraproprionates; triethylenetetraaminehexacetates, diethylenetriamine-pentaacetates (DTPA); methylglycinediacetic acid (MGDA); Glutamic acid diacetic acid (GLDA); ethanoldiglycines; triethylenetetraaminehexaacetic acid (TTHA); N-hydroxyethyliminodiacetic acid (HEIDA); dihydroxyethylglycine (DHEG); ethylenediaminetetrapropionic acid (EDTP) and derivatives thereof.
Encapsulates: The compositions may comprise an encapsulate. In some aspects, the encapsulate comprises a core, a shell having an inner and outer surface, where the shell encapsulates the core.
In certain aspects, the encapsulate comprises a core and a shell, where the core comprises a material selected from perfumes; brighteners; dyes; insect repellants; silicones; waxes; flavors; vitamins; fabric softening agents; skin care agents, e.g., paraffins; enzymes; anti-bacterial agents; bleaches; sensates; or mixtures thereof; and where the shell comprises a material selected from polyethylenes; polyamides; polyvinylalcohols, optionally containing other co-monomers; polystyrenes; polyisoprenes; polycarbonates; polyesters; polyacrylates; polyolefins; polysaccharides, e.g., alginate and/or chitosan; gelatin; shellac; epoxy resins; vinyl polymers; water insoluble inorganics; silicone; aminoplasts, or mixtures thereof. In some aspects, where the shell comprises an aminoplast, the aminoplast comprises polyurea, polyurethane, and/or polyureaurethane. The polyurea may comprise polyoxymethyleneurea and/or melamine formaldehyde.
Liquid laundry detergent composition. The fabric and home care product can be a laundry detergent composition, such as a liquid laundry detergent composition. Suitable liquid laundry detergent compositions can comprise a non-soap surfactant, wherein the non-soap surfactant comprises an anionic non-soap surfactant and a non-ionic surfactant. The laundry detergent composition can comprise from 10% to 60%, or from 20% to 55% by weight of the laundry detergent composition of the non-soap surfactant. The non-soap anionic surfactant to nonionic surfactant are from 1:1 to 20:1, from 1.5:1 to 17.5:1, from 2:1 to 15:1, or from 2.5:1 to 13:1.
Suitable non-soap anionic surfactants include linear alkylbenzene sulphonate, alkyl sulphate or a mixture thereof. The weight ratio of linear alkylbenzene sulphonate to alkyl sulphate can be from 1:2 to 9:1, from 1:1 to 7:1, from 1:1 to 5:1, or from 1:1 to 4:1. Suitable linear alkylbenzene sulphonates are C10-C16 alkyl benzene sulfonic acids, or C11-C14 alkyl benzene sulfonic acids.
Suitable alkyl sulphate anionic surfactants include alkoxylated alkyl sulphates, non-alkoxylated alkyl sulphates, and mixture thereof. Preferably, the HLAS surfactant comprises greater than 50% C12, preferably greater than 60%, preferably greater than 70% C12, more preferably greater than 75% C12. Suitable alkoxylated alkyl sulphate anionic surfactants include ethoxylated alkyl sulphate anionic surfactants. Suitable alkyl sulphate anionic surfactants include ethoxylated alkyl sulphate anionic surfactant with a mol average degree of ethoxylation of from 1 to 5, from 1 to 3, or from 2 to 3. The alkyl alkoxylated sulfate may have a broad alkoxy distribution or a peaked alkoxy distribution. The alkyl portion of the AES may include, on average, from 13.7 to about 16 or from 13.9 to 14.6 carbons atoms. At least about 50% or at least about 60% of the AES molecule may include having an alkyl portion having 14 or more carbon atoms, preferable from 14 to 18, or from 14 to 17, or from 14 to 16, or from 14 to 15 carbon atoms. The alkyl sulphate anionic surfactant may comprise a non-ethoxylated alkyl sulphate and an ethoxylated alkyl sulphate wherein the mol average degree of ethoxylation of the alkyl sulphate anionic surfactant is from 1 to 5, from 1 to 3, or from 2 to 3. The alkyl fraction of the alkyl sulphate anionic surfactant can be derived from fatty alcohols, oxo-synthesized alcohols, Guerbet alcohols, or mixtures thereof. Preferred alkyl sulfates include optionally ethoxylated alcohol sulfates including 2-alkyl branched primary alcohol sulfates especially 2-branched C12-15 primary alcohol sulfates, linear primary alcohol sulfates especially linear C12-14 primary alcohol sulfates, and mixtures thereof. The laundry detergent composition can comprise from 10% to 50%, or from 15% to 45%, or from 20% to 40%, or from 30% to 40% by weight of the laundry detergent composition of the non-soap anionic surfactant.
Suitable non-ionic surfactants can be selected from alcohol broad or narrow range alkoxylates, an oxo-synthesised alcohol alkoxylate, Guerbet alcohol alkoxylates, alkyl phenol alcohol alkoxylates, or a mixture thereof. The laundry detergent composition can comprise from 0.01% to 10%, from 0.01% to 8%, from 0.1% to 6%, or from 0.15% to 5% by weight of the liquid laundry detergent composition of a non-ionic surfactant.
The laundry detergent composition comprises from 1.5% to 20%, or from 2% to 15%, or from 3% to 10%, or from 4% to 8% by weight of the laundry detergent composition of soap, such as a fatty acid salt. Such soaps can be amine neutralized, for instance using an alkanolamine such as monoethanolamine.
The laundry detergent composition can comprises an adjunct ingredient selected from the group comprising builders including citrate, enzymes, bleach, bleach catalyst, dye, hueing dye, Leuco dyes, brightener, cleaning polymers including alkoxylated polyamines and polyethyleneimines, amphiphilic copolymers, soil release polymer, surfactant, solvent, dye transfer inhibitors, chelant, diamines, perfume, encapsulated perfume, polycarboxylates, structurant, pH trimming agents, antioxidants, antibacterial, antimicrobial agents, preservatives and mixtures thereof.
The laundry detergent composition can have a pH of from 2 to 11, or from 6.5 to 8.9, or from 7 to 8, wherein the pH of the laundry detergent composition is measured at a 10% product concentration in demineralized water at 20° C.
The liquid laundry detergent composition can be Newtonian or non-Newtonian, preferably non-Newtonian.
For liquid laundry detergent compositions, the composition can comprise from 5% to 99%, or from 15% to 90%, or from 25% to 80% by weight of the liquid detergent composition of water.
The detergent composition according to the invention can be liquid laundry detergent composition. The following are exemplary liquid laundry detergent formulations. Preferably the liquid laundry detergent composition comprises from between 0.1% and 4.0%, preferably between 0.5% and 3%, more preferably between 1% to 2.5% by weight of the detergent composition of the sulfatized esteramine according to the invention.
1C12-15EO2.5S AlkylethoxySulfate where the alkyl portion of AES includes from about 13.9 to 14.6 carbon atoms
2PE-20 commercially available from BASF
3Nuclease enzyme is as claimed in co-pending European application 19219568.3
7Dow Corning supplied antifoam blend 80-92% ethylmethyl, methyl(2-phenyl propyl)siloxane; 5-14% MQ Resin in octyl stearate a 3-7% modified silica.
8Fluorescent Brightener is disodium 4,4′-bis{[4-anilino-6-morpholino-s-triazin-2-yl]-amino}-2,2′-stilbenedisulfonate or 2,2′-([1,1′-Biphenyl]-4,4′-diyldi-2,1-ethenediyl)bis-benzenesulfonic acid disodium salt.
Water soluble unit dose article: The fabric and home care product can be a water-soluble unit dose article. The water-soluble unit dose article comprises at least one water-soluble film orientated to create at least one unit dose internal compartment, wherein the at least one unit dose internal compartment comprises a detergent composition. The water-soluble film preferably comprises polyvinyl alcohol homopolymer or polyvinyl alcohol copolymer, for example a blend of polyvinylalcohol homopolymers and/or polyvinylalcohol copolymers, for example copolymers selected from sulphonated and carboxylated anionic polyvinylalcohol copolymers especially carboxylated anionic polyvinylalcohol copolymers, for example a blend of a polyvinylalcohol homopolymer and a carboxylated anionic polyvinylalcohol copolymer. In some examples water soluble films are those supplied by Monosol under the trade references M8630, M8900, M8779, M8310. The detergent product comprises a detergent composition, more preferably a laundry detergent composition. Preferably the laundry detergent composition enclosed in the water-soluble unit dose article comprises from between 0.1% and 8%, preferably between 0.5% and 7%, more preferably 1.0% to 6.0% by weight of the detergent composition of the sulfatized esteramine of the present invention. Preferably the soluble unit dose laundry detergent composition comprises a non-soap surfactant, wherein the non-soap surfactant comprises an anionic non-soap surfactant and a non-ionic surfactant. More preferably, the laundry detergent composition comprises between 10% and 60%, or between 20% and 55% by weight of the laundry detergent composition of the non-soap surfactant. The weight ratio of non-soap anionic surfactant to nonionic surfactant preferably is from 1:1 to 20:1, from 1.5:1 to 17.5:1, from 2:1 to 15:1, or from 2.5:1 to 13:1. The non-soap anionic surfactants preferably comprise linear alkylbenzene sulphonate, alkyl sulphate or a mixture thereof. The weight ratio of linear alkylbenzene sulphonate to alkyl sulphate preferably is from 1:2 to 9:1, from 1:1 to 7:1, from 1:1 to 5:1, or from 1:1 to 4:1. Example linear alkylbenzene sulphonates are C10-C16 alkyl benzene sulfonic acids, or C11-C14 alkyl benzene sulfonic acids. By ‘linear’, we herein mean the alkyl group is linear. Example alkyl sulphate anionic surfactant may comprise alkoxylated alkyl sulphate or non-alkoxylated alkyl sulphate or a mixture thereof.
Example alkoxylated alkyl sulphate anionic surfactants comprise an ethoxylated alkyl sulphate anionic surfactant. Example alkyl sulphate anionic surfactant may comprise an ethoxylated alkyl sulphate anionic surfactant with a mol average degree of ethoxylation from 1 to 5, from 1 to 3, or from 2 to 3. Example alkyl sulphate anionic surfactant may comprise a non-ethoxylated alkyl sulphate and an ethoxylated alkyl sulphate wherein the mol average degree of ethoxylation of the alkyl sulphate anionic surfactant is from 1 to 5, from 1 to 3, or from 2 to 3. Example alkyl fraction of the alkyl sulphate anionic surfactant are derived from fatty alcohols, oxo-synthesized alcohols, Guerbet alcohols, or mixtures thereof. Preferably the laundry detergent composition comprises between 10% and 50%, between 15% and 45%, between 20% and 40%, or between 30% and 40% by weight of the laundry detergent composition of the non-soap anionic surfactant. In some examples, the non-ionic surfactant is selected from alcohol alkoxylate, an oxo-synthesised alcohol alkoxylate, Guerbet alcohol alkoxylates, alkyl phenol alcohol alkoxylates, or a mixture thereof.
Preferably, the laundry detergent composition comprises between 0.01% and 10%, or between 0.01% and 8%, or between 0.1% and 6%, or between 0.15% and 5% by weight of the liquid laundry detergent composition of a non-ionic surfactant. Preferably, the laundry detergent composition comprises between 1.5% and 20%, between 2% and 15%, between 3% and 10%, or between 4% and 8% by weight of the laundry detergent composition of soap, in some examples a fatty acid salt, in some examples an amine neutralized fatty acid salt, wherein in some examples the amine is an alkanolamine preferably monoethanolamine. Preferably the liquid laundry detergent composition comprises less than 15%, or less than 12% by weight of the liquid laundry detergent composition of water. Preferably, the laundry detergent composition comprises between 10% and 40%, or between 15% and 30% by weight of the liquid laundry detergent composition of a non-aqueous solvent selected from 1,2-propanediol, dipropylene glycol, tripropyleneglycol, glycerol, sorbitol, polyethylene glycol or a mixture thereof. Preferably the liquid laundry detergent composition comprises from 0.1% to 10%, preferably from 0.5% to 8% by weight of the detergent composition of further soil release polymers, preferably selected from the group of nonionic and/or anionically modified polyester terephthalate soil release polymers such as commercially available under the Texcare brand name from Clariant, amphiphilic graft polymers such as those based on polyalkylene oxides and vinyl esters, polyalkoxylated polyethyleneimines, and mixtures thereof. Preferably the liquid detergent composition further comprises from 0.1% to 10% preferably from 1% to 5% of a chelant. In some examples, the laundry detergent composition comprises an adjunct ingredient selected from the group comprising builders including citrate, enzymes, bleach, bleach catalyst, dye, hueing dye, brightener, cleaning polymers including (zwitterionic) alkoxylated polyamines, surfactant, solvent, dye transfer inhibitors, perfume, encapsulated perfume, polycarboxylates, structurant, pH trimming agents, and mixtures thereof. Preferably, the laundry detergent composition has a pH between 6 and 10, between 6.5 and 8.9, or between 7 and 8, wherein the pH of the laundry detergent composition is measured as a 10% product concentration in demineralized water at 20° C. When liquid, the laundry detergent composition may be Newtonian or non-Newtonian, preferably non-Newtonian.
The following is an exemplary water soluble unit dose formulations. The composition can be part of a single chamber water soluble unit dose article or can be split over multiple compartments resulting in below “averaged across compartments” full article composition. The composition is enclosed within a polyvinyl alcohol based water soluble, the polyvinyl alcohol comprising a blend of a polyvinyl alcohol homopolymer and an anionic e.g. carboxylated polyvinyl alcohol copolymer.
Hand dishwashing liquid composition: The fabric and home care product can be a dishwashing detergent composition, such as a hand dishwashing detergent composition, more preferably a liquid hand dishwashing detergent composition. Preferably the liquid hand dishwashing detergent composition comprises from between 0.1% and 5.0%, preferably between 0.5% and 4%, more preferably 1.0% to 3.0% by weight of the detergent composition of the sulfatized esteramine of the present invention. The liquid hand-dishwashing detergent composition preferably is an aqueous composition, comprising from 50% to 90%, preferably from 60% to 75%, by weight of the total composition of water. Preferably the pH of the detergent composition of the invention, measured as a 10% product concentration in demineralized water at 20° C., is adjusted to between 3 and 14, more preferably between 4 and 13, more preferably between 6 and 12 and most preferably between 8 and 10. The composition of the present invention can be Newtonian or non-Newtonian, preferably Newtonian. Preferably, the composition has a viscosity of from 10 mPa·s to 10,000 mPa·s, preferably from 100 mPa·s to 5,000 mPa·s, more preferably from 300 mPa·s to 2,000 mPa·s, or most preferably from 500 mPa·s to 1,500 mPa·s, alternatively combinations thereof. The viscosity is measured at 20° C. with a Brookfield RT Viscometer using spindle 31 with the RPM of the viscometer adjusted to achieve a torque of between 40% and 60%.
The composition comprises from 5% to 50%, preferably from 8% to 45%, more preferably from 15% to 40%, by weight of the total composition of a surfactant system. The surfactant system preferably comprises from 60% to 90%, more preferably from 70% to 80% by weight of the surfactant system of an anionic surfactant. Alkyl sulphated anionic surfactants are preferred, particularly those selected from the group consisting of: alkyl sulphate, alkyl alkoxy sulphate preferably alkyl ethoxy sulphate, and mixtures thereof. The alkyl sulphated anionic surfactant preferably has an average alkyl chain length of from 8 to 18, preferably from 10 to 14, more preferably from 12 to 14, most preferably from 12 to 13 carbon atoms. The alkyl sulphated anionic surfactant preferably has an average degree of alkoxylation preferably ethoxylation, of less than 5, preferably less than 3, more preferably from 0.5 to 2.0, most preferably from 0.5 to 0.9. The alkyl sulphate anionic surfactant preferably has a weight average degree of branching of more than 10%, preferably more than 20%, more preferably more than 30%, even more preferably between 30% and 60%, most preferably between 30% and 50%. Suitable counterions include alkali metal cation earth alkali metal cation, alkanolammonium or ammonium or substituted ammonium, but preferably sodium. Suitable examples of commercially available alkyl sulphate anionic surfactants include, those derived from alcohols sold under the Neodol® brand-name by Shell, or the Lial®, Isalchem®, and Safol® brand-names by Sasol, or some of the natural alcohols produced by The Procter & Gamble Chemicals company.
The surfactant system preferably comprises from 0.1% to 20%, more preferably from 0.5% to 15% and especially from 2% to 10% by weight of the liquid hand dishwashing detergent composition of a co-surfactant. Preferred co-surfactants are selected from the group consisting of an amphoteric surfactant, a zwitterionic surfactant, and mixtures thereof. The anionic surfactant to the co-surfactant weight ratio can be from 1:1 to 8:1, preferably from 2:1 to 5:1, more preferably from 2.5:1 to 4:1. The co-surfactant is preferably an amphoteric surfactant, more preferably an amine oxide surfactant. Preferably, the amine oxide surfactant is selected from the group consisting of: alkyl dimethyl amine oxide, alkyl amido propyl dimethyl amine oxide, and mixtures thereof, most preferably C12-C14 alkyl dimethyl amine oxide. Suitable zwitterionic surfactants include betaine surfactants, preferably cocamidopropyl betaine.
Preferably, the surfactant system of the composition of the present invention further comprises from 1% to 25%, preferably from 1.25% to 20%, more preferably from 1.5% to 15%, most preferably from 1.5% to 5%, by weight of the surfactant system, of a non-ionic surfactant. Suitable nonionic surfactants can be selected from the group consisting of: alkoxylated non-ionic surfactant, alkyl polyglucoside (“APG”) surfactant, and mixtures thereof. Suitable alkoxylated non-ionic surfactants can be linear or branched, primary or secondary alkyl alkoxylated preferably alkyl ethoxylated non-ionic surfactants comprising on average from 9 to 15, preferably from 10 to 14 carbon atoms in its alkyl chain and on average from 5 to 12, preferably from 6 to 10, most preferably from 7 to 8, units of ethylene oxide per mole of alcohol. Most preferably, the alkyl polyglucoside surfactant has an average alkyl carbon chain length between 10 and 16, preferably between 10 and 14, most preferably between 12 and 14, with an average degree of polymerization of between 0.5 and 2.5 preferably between 1 and 2, most preferably between 1.2 and 1.6. C8-C16 alkyl polyglucosides are commercially available from several suppliers (e.g., Simusol® surfactants from Seppic Corporation; and Glucopon® 600 CSUP, Glucopon® 650 EC, Glucopon® 600 CSUP/MB, and Glucopon® 650 EC/MB, from BASF Corporation).
The liquid hand dishwashing detergent composition herein may optionally comprise a number of other adjunct ingredients such as builders (e.g., preferably citrate), chelants (e.g., preferably GLDA), conditioning polymers, cleaning polymers including polyalkoxylated polyalkylene imines, surface modifying polymers, soil flocculating polymers, sudsing polymers including EO-PO-EO triblock copolymers, grease cleaning amines including cyclic polyamines, structurants, emollients, humectants, skin rejuvenating actives, enzymes, carboxylic acids, scrubbing particles, bleach and bleach activators, perfumes, malodor control agents, pigments, dyes, opacifiers, beads, pearlescent particles, microcapsules, organic solvents, inorganic cations such as alkaline earth metals such as Ca/Mg-ions, antibacterial agents, preservatives, viscosity adjusters (e.g., salt such as NaCl, and other mono-, di- and trivalent salts) and pH adjusters and buffering means (e.g. carboxylic acids such as citric acid, HCl, NaOH, KOH, alkanolamines, phosphoric and sulfonic acids, carbonates such as sodium carbonates, bicarbonates, sesquicarbonates, borates, silicates, phosphates, imidazole and alike).
The following is an exemplary liquid hand dishwashing detergent formulation. The formulation can be made through standard mixing of the individual components.
Solid free-flowing particulate laundry detergent composition: The fabric and home care product can be solid free-flowing particulate laundry detergent composition. The following is an exemplary solid free-flowing particulate laundry detergent composition.
Method of Use: The present invention includes a method for cleaning a targeted surface. As used herein “targeted surface” may include such surfaces such as fabric, dishes, glasses, and other cooking surfaces, hard surfaces, hair or skin. As used herein “hard surface” includes hard surfaces being found in a typical home such as hard wood, tile, ceramic, plastic, leather, metal, glass. Such method includes the steps of contacting the composition comprising the modified polyol compound, in neat form or diluted in wash liquor, with at least a portion of a targeted surface then optionally rinsing the targeted surface. Preferably the targeted surface is subjected to a washing step prior to the aforementioned optional rinsing step. For purposes of the present invention, washing includes, but is not limited to, scrubbing, wiping and mechanical agitation.
As will be appreciated by one skilled in the art, the cleaning compositions of the present invention are ideally suited for use in home care (hard surface cleaning compositions) and/or laundry applications.
The composition solution pH is chosen to be the most complimentary to a target surface to be cleaned spanning broad range of pH, from about 3 to about 11. For personal care such as skin and hair cleaning pH of such composition preferably has a pH from about 5 to about 8 for laundry cleaning compositions pH of from about 5 to about 11. The compositions are preferably employed at concentrations of from about 200 ppm to about 10,000 ppm in solution. The water temperatures preferably range from about 5° C. to about 100° C.
For use in laundry cleaning compositions, the compositions are preferably employed at concentrations from about 200 ppm to about 10000 ppm in solution (or wash liquor). The water temperatures preferably range from about 5° C. to about 60° C. The water to fabric ratio is preferably from about 1:1 to about 20:1.
The method may include the step of contacting a nonwoven substrate impregnated with an embodiment of the composition of the present invention. As used herein “nonwoven substrate” can comprise any conventionally fashioned nonwoven sheet or web having suitable basis weight, caliper (thickness), absorbency and strength characteristics. Examples of suitable commercially available nonwoven substrates include those marketed under the tradename SONTARA® by DuPont and POLYWEB® by James River Corp.
As will be appreciated by one skilled in the art, the cleaning compositions of the present invention are ideally suited for use in liquid dish cleaning compositions. The method for using a liquid dish composition of the present invention comprises the steps of contacting soiled dishes with an effective amount, typically from about 0.5 ml. to about 20 ml. (per 25 dishes being treated) of the liquid dish cleaning composition of the present invention diluted in water.
The present invention also includes methods for use such graft polymer for improved soil suspension performance, soil release performance, stain removal performance, anti-redeposition performance, and/or malodor control performance.
The following are embodiments of the present invention.
wherein n is a number from 5 to 21 and X+ is a charge-balancing cation.
wherein n and m independently of one another represent numbers from 0 to 17 and 2<n+m<20, and X+ represents a charge-balancing cation.
The following examples shall further illustrate the present invention without restricting the scope of the invention.
Synthesis Example A: co-polymer of PEG-4-MEMA and METAC (molar ratio: 40:60): Monomers: PEG-4-MEMA: poly(ethylene glycol) methyl ether methacrylate, average Mn=300, ex Aldrich METAC: [2-methacryloxy]ethyl] trimethyl ammonium chloride, ex Aldrich.
A monomer blend was prepared by mixing 48.99 g METAC, 36.67 g of PEG-4-MEMA with 59.82g water. This blend was combined with 0.4568g 2,2′-Azobis[2-(2-imidazolin-2-yl)propane] Dihydrochloride (VA-044) and 37.89g water, and added over 3 hours a reactor kept at 90° C. The reaction content were stirred for another 3 hours at 90° C. then slowly cool down overnight. 174.68g of orange viscous aqueous polymer solution were obtained. Solid content (measured after evaporating water at 100° C. oven): 40.6%; GPC Mn=61.4 kDa and MW=132.4 kDa.
A monomer blend was prepared by mixing 26.16 g METAC, 54.56 g of PEG-4-MEMA with 55.18g water. This blend was combined with 0.4560g 2,2′-Azobis[2-(2-imidazolin-2-yl)propane] Dihydrochloride (VA-044) and 47.47g water, and added over 3 hours a reactor kept at 90° C. The reaction contents were stirred for another 3 hours at 90° C. then slowly cool down overnight. 170.01g of orange viscous aqueous polymer solution were obtained. Solid content (measured after evaporating water at 100° C. oven): 41.1%; GPC Mn=72.3 kDa and MW=147.1 kDa.
Synergy Between Lipex Evity 100L® and Cationic Soil Release Polymer: The whiteness performance of formulation containing Lipex Evity 100L® and inventive polymer (synthesis example A) has been evaluated according to the whiteness method shown above. As shown from the results in Table 6 a clear synergy is shown when Lipex Evity 100L® is combined with the inventive polymer. A WCIE increase of +7.1 is shown versus the reference formulation (comparative example 1), this benefit is much bigger that the benefit from the formulations with the individual technologies (comparative example 2 and 5). There is no synergistic whiteness performance shown from Lipolase® and the inventive polymer (comparative example 4), the WCIE value of +3.9 versus reference shows less than additive performance of the two technologies tested individually. A WCIE of +5.6 would have been expected based on the individual whiteness contributions of comparative example 2 (WCIE+1.9) and comparative example 3 (WCIE+3.7).
The dimensions and values disclosed herein are not to be understood as being strictly limited to the exact numerical values recited. Instead, unless otherwise specified, each such dimension is intended to mean both the recited value and a functionally equivalent range surrounding that value. For example, a dimension disclosed as “40 mm” is intended to mean “about 40 mm”.
Number | Date | Country | Kind |
---|---|---|---|
21202640.5 | Oct 2021 | EP | regional |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/US2022/077881 | Oct 2022 | WO |
Child | 18591161 | US |