Fabric care and laundry compositions comprising low molecular weight linear or cyclic polyamines

Information

  • Patent Grant
  • 6525013
  • Patent Number
    6,525,013
  • Date Filed
    Monday, March 12, 2001
    23 years ago
  • Date Issued
    Tuesday, February 25, 2003
    21 years ago
Abstract
The present invention relates to fabric care and laundry detergent compositions which comprise low molecular weight modified and unmodified amines which provide enhanced fabric appearance benefits. The low molecular weight polyamines of the present invention which mitigate fabric damage and improve fabric appearance are preferably polypropyleneimines having three or four backbone amino units.
Description




FIELD OF THE INVENTION




The present invention relates to fabric care and laundry detergent compositions which comprise low molecular weight modified and unmodified amines which provide enhanced fabric appearance benefits. The low molecular weight polyamines of the present invention which mitigate fabric damage and improve fabric appearance are preferably polypropyleneimines having three or four backbone amino units.




BACKGROUND OF THE INVENTION




Formulators of fabric care and laundry detergent compositions include various ingredients, inter alia surfactants, cationic softening actives, anti-static agents, dye transfer inhibitors, and bleach-damage mitigating agents, for the purpose of improving cleaning, fabric appearance, fabric feel, fabric color and to extend the duration of fabric life. Ingredients which are added to these compositions must not only provide a benefit, but must be compatible with a variety of product forms, i.e high density granules, liquid dispersions, isotropic liquids including clear, colorless/translucent liquids which may include principal solvents inter alia 1,2-hexanediol, 2,2,4-trimethyl-1,3-pentanediol (TMPD).




Many adjunct ingredients which provide fabric enhancement benefits are highly fabric substantive and, therefore, once deposited on the fabric surface remain with the fabric thereby providing the intended benefit until chemically altered or until displaced by a more fabric substantive material. High molecular weight modified polyalkyleneimines have been used in granular and liquid detergent compositions as well as rinse-added fabric conditioning compositions to mitigate fabric damage. These highly fabric substantive ingredients can be deposited onto fabric at various optimal times, for example, in the alkaline laundry wash liquor or the near neutral pH environment of the laundry rinse cycle. Once deposited they serve a variety of purposes depending upon the absolute structure of the polyalkyleneamine or polyalkyleneimine and whether the polymeric amine is modified (for example, ethoxylated).




Color integrity is an important aspect of fabric enhancement. When certain polyamines are deposited onto fabric they enhance color fidelity via various mechanisms. Other polyamines intercept peroxygen bleaching agents at the fabric surface.




Consumers use bleach-containing compositions when washing colored fabric as well as white fabric because the use of a bleaching material satisfies the consumers need to feel that the fabric has been “thoroughly cleaned”. Therefore, there is a long felt need to provide colored fabric with protection against the pejorative effects of laundry-added bleaching materials. In addition, there is a need for materials which will be highly water soluble or water dispersible, while exhibiting a high degree of fabric substantivity. And there is also a need for a material which will provide a high level of fabric protection on an efficient per unit weight basis.




SUMMARY OF THE INVENTION




The present invention meets the aforementioned needs in that it has been surprisingly discovered that low molecular weight polyamines, preferably propyleneimines and polypropyleneimines having a backbone molecular weight, prior to any subsequent modification, of less than approximately 250 daltons, preferably less than about 200 daltons, and which remain unmodified, or which are partially or fully modified, are suitable for use in laundry detergent compositions, rinse-added fabric conditioning compositions, or laundry pre-treatment or post-treatment compositions which mitigate the potential damage to fabric and provide other fabric enhancement benefits.




A first aspect of the present invention which relates to fabric enhancement benefits, are rinsed-added fabric care compositions comprising:




a) from about 0.01%, preferably from about 0.75%, more preferably from 2%, most preferably from about 5% to about 50%, preferably to about 35%, more preferably to about 20%, most preferably to about 15% by weight, of one or more modified polyamines, said polyamines selected from:




i) linear polyamines having the formula:











wherein R is 1,2-propylene, 1,3-propylene, and mixtures thereof; R


1


is hydrogen, C


1


—C


2


alkyl, alkyleneoxy having the formula:






—(


R




3




O


)—


R




4








wherein R


3


is ethylene, 1,2-propylene, 1,2-butylene, or mixtures thereof, R


4


is hydrogen, C


1


—C


4


alkyl, or mixtures thereof; and mixtures thereof; R


2


is hydrogen, R


1


, —RN(R


1


)


2


, and mixtures thereof; n is 1 or 2;




ii) cyclic polyamines having the formula:








R—L—R








wherein L is a linking unit, said linking unit comprising a ring having at least 2 nitrogen atoms; R is hydrogen, —(CH


2


)


k


N(R


1


)


2


, and mixtures thereof, wherein R


1


is hydrogen, C


1


—C


2


alkyl, alkyleneoxy having the formula:






—(


R




3




O


)—


R




4








wherein each R


3


is independently ethylene, 1,2-propylene, 1,2-butylene, or mixtures thereof, R


4


is hydrogen, C


1


—C


4


alkyl, or mixtures thereof; and mixtures thereof; each index k is independently has the value from 2 to 4;




iii) and mixtures thereof;




b) the balance carrier and adjunct ingredients.




The present invention also relates to fabric enhancement, fabric appearance, or fabric maintenance compositions which comprise one or more optional ingredients, said optional ingredients are added to adjust the level and/or type of benefits which are provided by the compositions. The fabric enhancement compositions comprise:




a) from about 0.01%, preferably from about 0.75%, more preferably from 2%, most preferably from about 5% to about 50%, preferably to about 35%, more preferably to about 20%, most preferably to about 15% by weight, of a modified polyamine, said polyamine selected from




i) linear polyamines having the formula:











wherein R is 1,2-propylene, 1,3-propylene, and mixtures thereof; R


1


is hydrogen, C


1


—C


2


alkyl, alkyleneoxy having the formula:






—(


R




3




O


)—R


4








wherein each R


3


is independently ethylene, 1,2-propylene, 1,2-butylene, or mixtures thereof, R


4


is hydrogen, C


1


—C


4


alkyl, or mixtures thereof; and mixtures thereof; R


2


is hydrogen, R


1


, —RN(R


1


)


2


, and mixtures thereof; n is 1 or 2;




ii) cyclic polyamines having the formula:






(


R




1


)


2




N


—(


CH




2


)


k




—L


—(


CH




2


)


k




—N


(


R




1


)


2








wherein L is a linking unit, said linking unit comprising a ring having at least 2 nitrogen atoms; R


1


is hydrogen, C


1


—C


2


alkyl, alkyleneoxy having the formula:






—(


R




3




O


)—


R




4








wherein each R


3


is independently ethylene, 1,2-propylene, 1,2-butylene, or mixtures thereof, R


4


is hydrogen, C


1


—C


4


alkyl, or mixtures thereof; and mixtures thereof; each index k is independently from 2 to 4;




iii) and mixtures thereof;




b) optionally from about 0.001% to about 90% by weight, of one or more dye fixing agents;




c) optionally from about 0.01% to about 50% by weight, of one or more cellulose reactive dye fixing agents;




d) optionally from about 0.01% to about 15% by weight, of a chlorine scavenger;




e) optionally about 0.005% to about 1% by weight, of one or more crystal growth inhibitors;




f) optionally from about 0.01% to about 20% by weight, of a fabric abrasion reducing polymer;




g) optionally from about 1% to about 12% by weight, of one or more liquid carriers;




h) optionally from about 0.001% to about 1% by weight, of an enzyme;




i) optionally from about 0.01% to about 8% by weight, of a polyolefin emulsion or suspension;




j) optionally from about 0.01% to about 0.2% by weight, of a stabilizer;




k) optionally from about 1% to about 80% by weight, of a fabric softening active;




l) optionally less than about 15% by weight, of a principal solvent;




m) optionally from about 0.5% to about 10% by weight, of a cationic nitrogen compound; and




n) the balance carrier and adjunct ingredients.




The present invention further relates to fabric softener compositions which comprise one or more optional ingredients, said optional ingredients are added to adjust the level and/or type of fabric softening benefits which are provided to the fabric. The fabric softener compositions comprise:




a) from about 0.01%, preferably from about 0.75%, more preferably from 2%, most preferably from about 5% to about 50%, preferably to about 35%, more preferably to about 20%, most preferably to about 15% by weight, of a modified polyamine, said polyamine selected from:




i) linear polyamines having the formula:











wherein R is 1,2-propylene, 1,3-propylene, and mixtures thereof; R


1


is hydrogen, C


1


—C


2


alkyl, alkyleneoxy having the formula:






—(


R




3




O


)—


R




4








wherein each R


3


is independently ethylene, 1,2-propylene, 1,2-butylene, or mixtures thereof, R


4


is hydrogen, C


1


—C


4


alkyl, or mixtures thereof; and mixtures thereof; R


2


is hydrogen, R


1


, —RN(R


1


)


2


, and mixtures thereof; n is 1 or2;




ii) cyclic polyamines having the formula:






(


R




1


)


2




N


—(


CH




2


)


k




—L


—(


CH




2


)


k




—N


(


R




1


)


2








wherein L is a linking unit, said linking unit comprising a ring having at least 2 nitrogen atoms; R


1


is hydrogen, C


1


—C


2


alkyl, alkyleneoxy having the formula:






—(


R




3




O


)—


R




4








wherein each R


3


is independently ethylene, 1,2-propylene, 1,2-butylene, or mixtures thereof, R


4


is hydrogen, C


1


—C


4


alkyl, or mixtures thereof; and mixtures thereof; each index k is independently from 2 to 4;




iii) and mixtures thereof;




b) from about 1%, preferably from about 10%, more preferably from about 20% to about 80%, more preferably to about 60%, most preferably to about 45% by weight, of one or more fabric softener actives;




c) optionally from about 0.01% to about 0.2% by weight, a stabilizing system, said stabilizing system comprising:




i) from about 0.25%, preferably from about 0.5%, more preferably from about 1%, most preferably from about 1.5% to about 13.5%, preferably to about 10%, more preferably to about 7%, most preferably to about 5% by weight of an organic solvent; and




ii) from about 0.25%, preferably from about 0.5%, more preferably from about 1%, most preferably from about 2.5% to about 20%, preferably to about 15%, more preferably to about 12%, still more preferably to about 10%, most preferably to about 8% by weight, of a bilayer modifier; and




d) the balance carriers and other adjunct ingredients.




Another aspect of the present invention which relates to clear, colorless or translucent isotropic liquids which are rinse-added fabric color fidelity enhancement compositions. These isotropic liquid embodiments typically comprises less than about 95%, preferably less than about 50%, more preferably less than about 25%, most preferably less than about 15% by weight of a principal solvent as defined herein below and may also comprise cationic fabric softening agents.




The present invention further relates to laundry detergent compositions which comprise one or more optional ingredients, said optional ingredients are added to adjust the level and/or type of fabric care benefits which are provided “through-the-wash”. The laundry detergent compositions comprise:




a) from about 0.01%, preferably from about 0.75%, more preferably from 2%, most preferably from about 5% to about 50%, preferably to about 35%, more preferably to about 20%, most preferably to about 15% by weight, of a modified polyamine, said polyamine selected from:




i) linear polyamines having the formula:











wherein R is 1,2-propylene, 1,3-propylene, and mixtures thereof, R


1


is hydrogen, C


1


—C


2


alkyl, alkyleneoxy having the formula:






—(


R




3




O


)—


R




4








wherein each R


3


is independently ethylene, 1,2-propylene, 1,2-butylene, or mixtures thereof, R


4


is hydrogen, C


1


—C


4


alkyl, or mixtures thereof; and mixtures thereof; R


2


is hydrogen, R


1


, —RN(R


1


)


2


, and mixtures thereof; n is 1 or2;




ii) cyclic polyamines having the formula:






(


R




1


)


2




N


—(


CH




2


)


k




—L


—(


CH




2


)


k




—N


(


R




1


)


2








wherein L is a linking unit, said linking unit comprising a ring having at least 2 nitrogen atoms; R


1


is hydrogen, C


1


—C


2


alkyl, alkyleneoxy having the formula:






—(


R




3




O


)—


R




4








wherein each R


3


is independently ethylene, 1,2-propylene, 1,2-butylene, or mixtures thereof, R


4


is hydrogen, C


1


—C


4


alkyl, or mixtures thereof; and mixtures thereof; each index k is independently from 2 to 4;




iii) and mixtures thereof;




b) from about 0.01% by weight, preferably from about 0. 1%, more preferably from about 1%, yet more preferably from about 5%, most preferably from about 10% to about 90%, preferably to about 60%, more preferably to about 30% by weight, of a detersive surfactant system, said detersive surfactant system selected from the group consisting of anionic, cationic, nonionic, zwitterionic, ampholytic surfactants, and mixtures thereof;




c) optionally from about 0.01% to about 15% by weight, of a chlorine scavenger;




d) optionally from about 0.001% to about 1% by weight, of an enzyme;




e) optionally from about 1% by weight, of a bleaching system; wherein said bleaching system comprises:




i) from about 25% by weight, a source of hydrogen peroxide, said source of hydrogen peroxide is selected from the group consisting of hydrogen peroxide, sodium perborate, sodium carbonate peroxyhydrate, sodium pyrophosphate peroxyhydrate, urea peroxyhydrate, sodium peroxide, and mixtures thereof; and




ii) from about 0.05% by weight, of a bleach activator, said bleach activators are selected from the group consisting of tetraacetyl ethylene diamine, benzoylcaprolactam, 4-nitrobenzoylcaprolactam, 3-chlorobenzoylcaprolactam, benzoyloxybenzenesulphonate, nonanoyloxybenzenesulphonate, phenyl benzoate, decanoyloxybenzenesulphonate, dodecanoyloxybenzenesulphonate, benzoylvalerolactam, octanoyloxybenzenesulphonate, decanoyloxybenzoic acid, perhydrolyzable esters and mixtures thereof;




f) optionally from about 0.01% by weight, of a soil release agent;




g) optionally from about 1% by weight, of a builder;




h) optionally from about 0.1% by weight, of a dispersant; and




i) the balance carrier and adjunct ingredients.




The present invention also relates to fabric enhancement compositions which comprise both a linear polyamine and a cyclic polyamine according to the present invention.




A further aspect of the present invention relates to liquid dispersion forms of the rinse-added compositions which may comprise polyamines which provide, in addition to color fidelity benefits, metal chelation and chlorine scavenging properties which provide enhanced fabric softness, integrity, and appearance. These and other objects, features and advantages will become apparent to those of ordinary skill in the art from a reading of the following detailed description and the appended claims.




All percentages, ratios and proportions herein are by weight, unless otherwise specified. All temperatures are in degrees Celsius (° C.) unless otherwise specified. All documents cited are in relevant part, incorporated herein by reference.











DETAILED DESCRIPTION OF THE INVENTION




The present invention relates to fabric care compositions whether rinse-added fabric conditioning compositions, rinse-added fabric care compositions, pre-treatment or post-treatment compositions, or laundry detergent compositions. The compositions of the present invention provide increased color fidelity benefits to fabric in addition to other desirable benefits, inter alia fabric cleanliness, fabric softness, fabric integrity, fabric appearance, fabric lubricity. The fabric care and/or fabric enhancement compositions may take any form, for example, solids (i.e., powders, granules, extrudates), gels, thixotropic liquids, liquids (i.e., dispersions, isotropic solutions), preferably the rinse added fabric conditioning compositions take the form of liquid dispersions or isotropic liquids.




For the purposes of the present invention the term “fabric care” is the broadest term which refers to the present compositions and encompasses any composition which improves the appearance or wear properties of fabric, especially clothing. For the purposes of the present invention fabric care compositions are divided into several categories, inter alia, laundry detergent compositions, fabric appearance, each of which are typically characterized by the presence of an ingredient or the lack thereof. For example “laundry detergent compositions” are required to comprise one or more detersive surfactants while “fabric softener compositions” are required to comprise one or more cationic quaternary ammonium compounds. However, because a composition comprises a particular class of compound, inter alia, detersive surfactant, does not relegate nor limit the composition to a single category under the description of the present invention. Also compositions do not require all delineating ingredients which may characterize a particular embodiment.




For the purposes of the present invention the terms “fabric enhancement” and “fabric care” are used interchangeably throughout the present specification and stand equally well for one another. Fabric enhancement/fabric care is achieved when the properties inter alia color, fiber integrity of the garment are conserved (that is no further damage is done during the laundry process) or the damaging process is reversed and the fabric appears more like its original form. In addition the term “fabric care” may refer to the laundry detergent compositions of the present invention as well as the fabric conditioning compositions.




It has now been surprisingly discovered that low molecular weight propyleneimines, preferably polypropyleneimines (backbones having a MW<250 daltons) or cyclic amines, preferably comprising a N,N′-bis-1,4-substituted piperazine ring, are highly fabric substantive and, in addition, are capable of intercepting bleaching agents which may approach the fabric surface. It has also been surprisingly discovered that a 3-carbon propylene spacing between nitrogen atoms of linear portions of the polyamine molecules provides for improved discrimination in the chelation of unwanted copper ions in solution over desirable copper which is included in the dye systems of fabric.




In the broadest sense, the compositions of the present invention comprise from about 0.01%, preferably from about 0.75%, more preferably from 2%, most preferably from about 5% to about 50%, preferably to about 35%, more preferably to about 20%, most preferably to about 15% by weight, of the herein described polyamines. However, depending upon the particular embodiment, inter alia, liquid or solid, the type of co-ingredients, inter alia, optional solvents, the level of polyamine will vary from formulation to formulation. For example, the most preferred level above, which is from about 5%, is typically too high for laundry detergent compositions.




The following describe in detail the essential elements of the present invention.




Linear Polyamines




The enhanced fabric appearance compositions of the present invention may comprise one or more propyleneimines, propyleneamines, polypropyleneimines (branched), or polypropyleneamines (linear) which contain modified or unmodified backbone nitrogen units. For the purpose of the present invention the terms “polyamines having propylene spacing”, “polypropyleneimine”, and “polypropyleneamine” are used alone, together, or interchangeably throughout the present specification to refer to the hereinbelow described modified or unmodified amines and each term is meant to stand equally well for the others unless a distinction is specifically pointed out. The term “polypropyleneimine” is used throughout the present specification to refer to any polyamine, linear or branched, which comprises at least one propylene unit.




The polyamines of the present invention have the formula:











wherein R is 1,2-propylene, 1,3-propylene, and mixtures thereof; preferably 1,3-propylene. Each R


1


is independently hydrogen, methyl, ethyl, or an alkyleneoxy unit having the formula:






—(


R




3




O


)—


R




4








wherein R


3


is ethylene, 1,2-propylene, 1,2-butylene, or mixtures thereof, preferably R


3


is ethylene or 1,2-propylene, more preferably 1,2-propylene. R


4


is hydrogen, C


1


—C


4


alkyl, and mixtures thereof, preferably hydrogen. R


1


may comprise any mixture of alkyleneoxy units. R


2


is hydrogen, R


1


, —RN(R


1


)


2


, and mixtures thereof; preferably at least one R


2


is hydrogen when n is equal to 2. The integer n is 1 or 2. For “peralkylated” amines each R


1


and R


2


will be independently selected from methyl or ethyl.




Most prefered linear polyamine has a backbone wherein R is 1,3-propylene, R


2


is hydrogen, methyl, or alkoxy, and n is equal to 2, N,N′-bis(3-aminopropyl)-1,3-propylenediamine (TPTA). This preferred backbone can then be substituted or left unsubstituted in a manner which affords the formulator the maximal fabric benefit and compatibility of the low molecular weight amine with the particular embodiment. As a non-limiting example, when R


1


and R


2


are each equal to hydrogen, dye fixative properties, in certain liquid fabric conditioning embodiments comprising bleach, are maximal.




Examples of preferred polyamines of the present invention having propylene unit backbones have the following backbone formulae prior to modification:











wherein those of ordinary skill in the art will recognize that depending upon the synthetic procedure used to prepare the polypropyleneamine backbones, varying amounts of both the linear and branched materials will be present in the final product admixture. The backbones of the linear polyamines of the present invention comprise at least one 1,3-propylene unit, preferably at least two 1,3-propylene units.




For certain formulations, polyamines which comprise alkylated polyamines are preferred, for example, tetramethyl dipropylenetriamine having the formula:











the permethylated dipropylenetriamine having the formula:











and the mono-methylated dipropylenetriamine having the formula:











For the purposes of the present invention, when a backbone nitrogen is referred to as “unmodified” the nitrogen contains only hydrogen atoms. “Modified” polyamines have one or more alkyleneoxy units as described herein above. Preferred substituents are ethyleneoxy, 1,2-propyleneoxyl,1,2-butyleneoxy and mixtures thereof, more preferably 1,2-propyleneoxy.




Cyclic Amines




The enhanced fabric appearance compositions of the present invention may comprise one or more cyclic polyalkyleneimines which contain modified or unmodified backbone nitrogen units. For the purpose of the present invention the terms “polyamines having propylene spacing”, “polypropyleneimine”, and “polypropyleneamine” are used alone, together, or interchangeably throughout the present specification to refer to the hereinbelow described modified or unmodified amines which comprise at least one 3-carbon propylene spacer between adjacent backbone nitrogen atoms. The term “N,N′-bis(aminoalkylene)cyclic amines” is also used throughout the present specification to refer to any of the low molecular weight polyamines which provide fabric appearance benefits.




The low molecular weight cyclic polyamines of the present invention comprise polyamine backbones having the formula:








R—L—R








wherein L is a linking unit, said linking unit comprising a ring having at least 2 nitrogen atoms; R is hydrogen, —(CH


2


)


k


N(R


1


)


2,


and mixtures thereof; wherein each index k independently has the value from 2 to 4, preferably 3. Preferably the backbone of the cyclic amines including R units is 200 daltons or less.




Each R


1


is independently hydrogen, C


1


—C


2


alkyl, or an alkyleneoxy unit having the formula:






—(


R




3




O


)—


R




4








wherein R


3


is ethylene, 1,2-propylene, 1,2-butylene, or mixtures thereof, preferably R


3


is ethylene or 1,2-propylene, more preferably 1,2-propylene. R


4


is hydrogen, C


1


—C


4


alkyl, and mixtures thereof; preferably hydrogen. R


1


may comprise any mixture of alkyleneoxy units.




Preferred polyamines of the present invention have the formula:






(


R




1


)


2




N


—(


CH




2


)


k




—L


—(


CH




2


)


k




—N


(


R




1


)


2








wherein the indices k each have the same value and each R


1


is the same unit.




Preferably the backbone of the cyclic amines of the present invention comprise a N,N′-bis-substituted 1,4-piperazine ring having the formula:











wherein each R


5


is independently hydrogen, C


1


—C


4


alkyl, C


1


—C


4


hydroxyalkyl, C


1


—C


4


aminoalkyl, or two R


5


units of the same carbon atom are bonded to oxygen thus forming a carbonyl group (C=O) wherein the carbon atom is a ring atom, and mixture thereof. Examples of carbonyl containing rings which comprise L units are 1,4-diketopiperizines.




Preferably the backbones of the polyamines of the present invention, prior to modification, have the formula:











wherein each R unit is —(CH


2


)


3


NH


2


and each R


5


unit is hydrogen.




However, the cyclic units may be substituted on only one ring nitrogen as in the case wherein one R unit is hydrogen, and the other R unit is —(CH


2


)


k


NH


2


, for example, the piperazine having the formula:











The backbones of the cyclic polyamines of the present invention preferably comprise at least one 1,3-propylene unit, more preferably at least two 1,3-propylene units.




For the purposes of the present invention, when a backbone nitrogen is referred to as “unmodified” the nitrogen contains only hydrogen atoms. “Modified” polyamines have one or more substituent units as described herein above. Preferably when the backbone units are modified all of the nitrogens are modified. Preferred alkyleneoxy substituents are ethyleneoxy, 1,2-propyleneoxy, and mixtures thereof, more preferably 1,2-propyleneoxy.




Effects of Backbone Modifications




The polyamines of the present invention provide a multiplicity of fabric care and fabric enhancement benefits. Chlorine scavenging benefits are achieved with all of the polyamines independent of the degree of branching (i.e. the number of primary, secondary, and tertiary nitrogens).




It has been surprisingly found that bleach protection is enhanced when the backbone nitrogens are substituted with one or more modifications which comprise an alkyleneoxy unit having the general formula:











wherein said unit is R


3


as defined herein above. However, if the formulator wishes to enhance the dye fixation properties of the presently disclosed polyamines, the backbone nitrogens will not be substituted with an alkyleneoxy unit.




The negative chelation effects, inter alia, extraction of heavy metal ions associated with fabric dyes, are overcome and optimal dye integrity is achieved when the polyamine backbone comprises C


2


—C


3


, preferably C


3


(1,3-propylene) units, and the backbone nitrogens are per-substituted, preferably by sterically hindered substituents. The choice of nitrogen substituents is left to the formulator, the choice being affected by the other properties which are desired and to the compatibility of the polyamine within the final formulation.




FORMULATIONS




Rinse-added, Pre-treatment, and Post-treatment Fabric Enhancement Compositions




The ingredients, including the low molecular weight polyamines, which comprise the compositions of the present invention vary depending upon the type of fabric enhancement benefit the formulator wishes to provide. The following are non-limiting examples of compositions and their corresponding fabric appearance benefits.




Bleach Damage Mediation




The compositions of the present invention afford protection of fabric dyes to the effects of both peroxygen and chlorine bleaches. Typically, as a pre-treatment, post-treatment, or rinse-added composition, the bleach protecting agents are applied to fabric. These ingredients then protect the fabric from dye loss and/or dye damage due to the presence of bleaching agents in subsequent wash cycles. Due to the high substantivity of may of the presently disclosed ingredients, even when only treated once by the compositions of the present invention, protection is afforded for several wash cycles.




It has been surprisingly discovered that the combination of one or more low molecular weight polyamines of the present invention in combination with a hydrophobic dispersant, preferably a hydrophobic dispersant as disclosed in U.S. Pat. No. 5,565,145 Watson et al., issued Oct. 15, 1996, provide fabric color care protection. A preferred embodiment comprises:




a) from about 0.01%, preferably from about 0.75%, more preferably from 2%, most preferably from about 5% to about 50%, preferably to about 35%, more preferably to about 20%, most preferably to about 15% by weight, of a low molecular weight linear polyamine, cyclic polyamine, or mixtures thereof, as described herein above;




b) from about 0.1%, preferably from about 5%, more preferably form about 10% to about 80%, preferably to about 50%, more preferably to about 25% by weight, of a hydrophobic polyamine dispersant having the formula:











wherein B is a continuation of the polyamine backbone by branching; R is preferably ethylene; R


1


is preferably an ethyleneoxy unit having the formula:






—(


CH




2




CH




2




O


)


x




H








wherein x has the average value from 0.5 to about 10, preferably x is from 3 to about 7; the values of the indices w, x, and y are such that the molecular weight of the backbones prior to ethoxylation are preferably at least about 1200 daltons, more preferred backbone has a molecular weight of about 1800 daltons; and




c) the balance carriers and adjunct ingredients.




The typical bleaching agent mediating polyamines of the present invention comprise at least about 50%, preferably at least about 80% linear backbones.




Fabric Anti-Encrustation and Stiffness




The compositions of the present invention affords increased softness to fabric, especially cotton fabric which can suffer mechanical breakdown (loss of fabric structure integrity) due to the deposition of scale (calcium deposits) upon the fabric. The deposition of scale modifies the fabric surface and prevents cationic softeners from having their fullest affect at providing a porous “breathable” substrate surface. Typically, as a rinse-added composition, the scale mediating agents are applied to fabric. These ingredients then protect the fabric from unwanted deposition of calcium, magnesium, etc. ions which preclude the efficient deposition onto the fabric surface of other fabric enhancement ingredients.




It has been surprisingly discovered that the combination of one or more low molecular weight polyamines of the present invention in combination with a chelant, preferably hydroxyethane-1,1-diphosphonate (HEDP), BAYHIBIT ex Baeyer, provides mediation of calcium and other scale comprising deposits. Preferably these ingredients are combined with one or more hydrophobic dispersants, preferably a hydrophobic dispersant as disclosed in U.S. Pat. No. 5,565,145 Watson et al., issued Oct. 15, 1996. A preferred embodiment comprises:




a) from about 0.01%, preferably from about 0.75%, more preferably from 2%, most preferably from about 5% to about 50%, preferably to about 35%, more preferably to about 20%, most preferably to about 15% by weight, of a low molecular weight linear polyamine, cyclic polyamine, or mixtures thereof, as described herein above;




b) from about 0.1%, preferably from about 5%, more preferably form about 10% to about 80%, preferably to about 50%, more preferably to about 25% by weight, of a chelant, hydrotrope, or other alkaline earth cation mediating agent; and




c) the balance carriers and adjunct ingredients.




Fabric Enhancement Compositions




The Pre-treatment, Post-treatment fabric enhancement compositions of the present invention comprise:




a) from about 0.01%, preferably from about 0.75%, more preferably from 2%, most preferably from about 5% to about 50%, preferably to about 35%, more preferably to about 20%, most preferably to about 15% by weight, of a low molecular weight linear polyamine, cyclic polyamine, or mixtures thereof, as described herein above;




b) the balance carriers and other adjunct ingredients.




A prefered embodiment of the present invention comprises:




a) from about 0.01%, preferably from about 0.75%, more preferably from 2%, most preferably from about 5% to about 50%, preferably to about 35%, more preferably to about 20%, most preferably to about 15% by weight, of a combination of both:




i) a low molecular weight linear polyamine; and




ii) a low molecular weight cyclic polyamine;




as described herein above; and




b) the balance carriers and adjunct ingredients.




Fabric Softening Compositions




The fabric softener compositions of the present invention comprise in addition to the polyamines described herein above, a cationic fabric softener system. The fabric softener system is modified depending upon the type of fabric softener composition, inter alia, isotropic liquid, substrate-delivered. The combination of a fabric softening system and a modified polyamine of the present invention is sufficient to provide fabric anti-static and enhanced fabric protection.




Laundry Detergent Compositions




The laundry detergent compositions of the present invention comprise in addition to the polyamines described herein above, a surfactant system. The surfactant system is modified depending upon the type of laundry detergent composition inter alia granular, liquid. The combination of a surfactant and a modified polyamine of the present invention is sufficient to provide cleaning and enhanced fabric protection.




FABRIC SOFTENING SYSTEM




Fabric Softening Actives




The fabric care compositions of the present invention may optionally comprise from about 1%, preferably from about 10%, more preferably from about 20% to about 80%, more preferably to about 60%, most preferably to about 45% by weight, of the composition of one or more fabric softener actives. Fabric softening actives are an essential element of fabric softening compositions.




The preferred fabric softening actives according to the present invention are amines having the formula:











quaternary ammonium compounds having the formula:











and mixtures thereof, wherein each R is independently C


1


—C


6


alkyl, C


1


—C


6


hydroxyalkyl, benzyl, and mixtures thereof; R


1


is preferably C


11


—C


22


linear alkyl, C


11


—C


22


branched alkyl, C


11


—C


22


linear alkenyl, C


11


—C


22


branched alkenyl, and mixtures thereof; Q is a carbonyl moiety independently selected from the group consisting of esters, secondary amides, tertiary amides, carbonate, mono carbonyl substituted alkylene, poly carbonyl substituted alkylene, and mixtures thereof, preferably ester or secondary amide; X is a softener compatible anion; the index m has a value of from 1 to 3; the index n has a value of from 1 to 4, preferably 2 or 3, more preferably 2.




The following are non-limiting examples of preferred softener actives according to the present invention.




N,N-di(tallowyl-oxy-ethyl)-N,N-dimethyl ammonium chloride;




N,N-di(canolyl-oxy-ethyl)-N,N-dimethyl ammonium chloride;




N,N-di(tallowyl-oxy-ethyl)-N-methyl, N-(2-hydroxyethyl) ammonium methyl sulfate;




N,N-di(canolyl-oxy-ethyl)-N-methyl, N-(2-hydroxyethyl) ammonium methyl sulfate;




N,N-di(tallowylamidoethyl)-N-methyl, N-(2-hydroxyethyl) ammonium methyl sulfate;




N,N-di(2-tallowyloxy-2-oxo-ethyl)-N,N-dimethyl ammonium chloride;




N,N-di(2-canolyloxy-2-oxo-ethyl)-N,N-dimethyl ammonium chloride;




N,N-di(2-tallowyloxyethylcarbonyloxyethyl)-N,N-dimethyl ammonium chloride;




N,N-di(2-canolyloxyethylcarbonyloxyethyl)-N,N-dimethyl ammonium chloride;




N-(2-tallowoyloxy-2-ethyl)-N-(2-tallowyloxy-2-oxo-ethyl)-N,N-dimethyl ammonium chloride;




N-(2-canolyloxy-2-ethyl)-N-(2-canolyloxy-2-oxo-ethyl)-N,N-dimethyl ammonium chloride;




N,N,N-tri(tallowyl-oxy-ethyl)-N-methyl ammonium chloride;




N,N,N-tri(canolyl-oxy-ethyl)-N-methyl ammonium chloride;




N-(2-tallowyloxy-2-oxoethyl)-N-(tallowyl)-N,N-dimethyl ammonium chloride;




N-(2-canolyloxy-2-oxoethyl)-N-(canolyl)-N,N-dimethyl ammonium chloride;




1,2-ditallowyloxy-3-N,N,N-trimethylammoniopropane chloride; and




1,2-dicanolyloxy-3-N,N,N-trimethylammoniopropane chloride;




and mixtures of the above actives.




A further description of fabric softening agents useful herein are described in U.S. Pat No. 5,643,865 Mermelstein et al., issued Jul. 1, 1997; U.S. Pat. No. 5,622,925 de Buzzaccarini et al., issued Apr. 22, 1997; U.S. Pat. No. 5,545,350 Baker et al., issued Aug. 13, 1996; U.S. Pat. No. 5,474,690 Wahl et al., issued Dec. 12, 1995; U.S. Pat. No. 5,417,868 Turner et al., issued Jan. 27, 1994; U.S. Pat. No. 4,661,269 Trinh et al., issued Apr. 28, 1987; U.S. Pat. No. 4,439,335 Burns, issued Mar. 27, 1984; U.S. Pat. No. 4,401,578 Verbruggen, issued Aug. 30, 1983; U.S. Pat. No. 4,308,151 Cambre, issued Dec. 29, 1981; U.S. Pat. No. 4,237,016 Rudkin et al., issued Oct. 27, 1978; U.S. Pat. No. 4,233,164 Davis, issued Nov. 11, 1980; U.S. Pat. No. 4,045,361 Watt et al., issued Aug. 30, 1977; U.S. Pat. No. 3,974,076 Wiersema et al., issued Aug. 10, 1976; U.S. Pat. No. 3,886,075 Bernadino, issued May 6, 1975; U.S. Pat. No. 3,861,870 Edwards et al., issued Jan. 21 1975; and European Patent Application publication No. 472,178, by Yamamura et al., all of said documents being incorporated herein by reference.




ISOTROPIC LIQUIDS




One type of preferred embodiment of the present invention is the clear, translucent, isotropic liquid fabric softening composition. In order to form said compositions a stabilizing system is necessary, said stabilizing system comprising:




i) from about 0.25%, preferably from about 0.5%, more preferably from about 1%, most preferably from about 1.5% to about 13.5%, preferably to about 10%, more preferably to about 7%, most preferably to about 5% by weight of an organic solvent; and




ii) from about 0.25%, preferably from about 0.5%, more preferably from about 1%, most preferably from about 2.5% to about 20%, preferably to about 15%, more preferably to about 12%, still more preferably to about 10%, most preferably to about 8% by weight, of a bilayer modifier.




The following are non-limiting examples of the components which comprise a stabilizing system for clear, translucent, isotropic liquid fabric softening compositions.




Organic/Principal Solvent




A wide range of organic solvents are effective including those heretofore characterized as “principal solvents” which fall within the broadest Clog P limits used to define principal solvents. Modifications of the ClogP ranges can be achieved by adding electrolyte and/or phase stabilizers as taught in copending U. S. pat. application Ser. No. 09/309,128, filed May 10, 1999 by Frankenbach, et al.




Principal solvents are selected to minimize solvent odor impact in the composition and to provide a low viscosity to the final composition. For example, isopropyl alcohol is flammable and has a strong odor. n-Propyl alcohol is more effective, but also has a distinct odor. Several butyl alcohols also have odors but can be used for effective clarity/stability, especially when used as part of a principal solvent system to minimize their odor. The alcohols are also selected for optimum low temperature stability, that is they are able to form compositions that are liquid with acceptable low viscosities and translucent, preferably clear, down to about 50° F. (about 10° C.), more preferably down to about 40° F. (about 4.4° C.) and are able to recover after storage down to about 20° F. (about 6.7° C.).




Other suitable solvents can be selected based upon their octanol/water partition coefficient (P). Octanol/water partition coefficient of a solvent is the ratio between its equilibrium concentration in octanol and in water. The partition coefficients of the solvent ingredients of this invention are conveniently given in the form of their logarithm to the base 10, logP.




The logP of many ingredients has been reported; for example, the Pomona92 database, available from Daylight Chemical Information Systems, Inc. (Daylight CIS), Irvine, Calif., contains many, along with citations to the original literature. However, the logP values are most conveniently calculated by the “CLOGP” program, also available from Daylight CIS. This program also lists experimental logP values when they are available in the Pomona92 database. The “calculated logP” (ClogP) is determined by the fragment approach of Hansch and Leo (cf., A. Leo, in Comprehensive Medicinal Chemistry, Vol. 4, C. Hansch, P. G. Sammens, J. B. Taylor and C. A. Ramsden, Eds., p. 295, Pergamon Press, 1990, incorporated herein by reference). The fragment approach is based on the chemical structure of each ingredient, and takes into account the numbers and types of atoms, the atom connectivity, and chemical bonding. The ClogP values, which are the most reliable and widely used estimates for this physicochemical property, are preferably used instead of the experimental logP values in the selection of the principal solvent ingredients which are useful in the present invention. Other methods that can be used to compute ClogP include, e.g., Crippen's fragmentation method as disclosed in J. Chem. Inf. Comput. Sci., 27, 21 (1987); Viswanadhan's fragmentation method as disclose in J. Chem. Inf. Comput. Sci., 29, 163 (1989); and Broto's method as disclosed in Eur. J. Med. Chem. —Chim. Theor., 19, 71 (1984).




The principal solvents herein are selected from those having a ClogP of from −2.0 to 2.6, preferably from −1.7 to 1.6, and more preferably from −1.0 to 1.0.,




The most preferred solvents can be identified by the appearance of the diluted fabric treatment compositions. These diluted compositions comprise vesicular dispersions of fabric softener which contain on average more uni-lamellar vesicles than conventional fabric softener compositions, which contain predominantly multilamellar vesicles. The larger the proportion of uni-lamellar vs. multilamellar vesicles, the better the compositions seem to perform. These compositions provide surprisingly good fabric softening as compared to similar compositions prepared in the conventional way with the same fabric softener active.




Operable solvents have been disclosed, listed under various listings, e.g., aliphatic and/or alicyclic diols with a given number of carbon atoms; monols; derivatives of glycerine; alkoxylates of diols; and mixtures of all of the above can be found in U.S. Pat. No. 5,759,990 Wahl et al., issued Jun. 2, 1998; U.S. Pat. No. 5,747,443 Wahl et al., issued May 5, 1998 and PCT application WO 97/03169 published on Jan. 30, 1997, said patents and application being incorporated herein by reference.




Principal solvents preferred for improved clarity at 50° F. are 2-ethyl-1,3-hexanediol, 1,2-hexanediol; 1,2-pentanediol; hexylene glycol; 1,2-butanediol; 1,4-cyclohexanediol; pinacol; 1,5-hexanediol; 1,6-hexanediol; and/or 2,4-dimethyl-2,4-pentanediol.




Bilayer Modifiers




Bilayer modifiers are compounds which allow the formation of stable formulations at lower and substantially reduced solvent levels even to the point of, surprisingly, eliminating solvent in some compositions.




An advantage of the bilayer modifiers disclosed herein is the lower levels of principal solvents and/or a wider range of principal solvents can be used to provide clarity. For example, without a bilayer modifier, the ClogP of the principal solvent system as disclosed herein would typically be limited to a range of from about 0.15 to about 0.64 as disclosed in U.S. Pat. No. 5,747,443 Wahl et al., issued May 5, 1998. It is known that higher ClogP compounds, up to about 1 can be used when combined with other solvents as disclosed in copending provisional application Serial No. 60/047,058, filed May 19, 1997 and refiled PCT/US98/10167 on May 18, 1998, in the names of H. B. Tordil, E. H. Wahl, T. Trinh, M. Okamoto, and D. L. Duval, or with nonionic surfactants, and especially with the phase stabilizers disclosed herein as previously disclosed in Docket No. 7039P, filed Mar. 2, 1998, Provisional Application Ser. No. 60/076,564, and refiled as, the inventors being D. L. DuVal, G. M. Frankenbach, E. H. Wahl, T. Trinh, H. J. M. Demeyere, J. H. Shaw and M. Nogami. Title: Concentrated, Stable, Translucent or Clear Fabric Softening Compositions, both of said applications being incorporated herein by reference. With the bilayer modifier present, the level of principal solvent can be less and/or the ClogP range that is usable is broadened to include from about −2.0 to about 2.6, more preferably from about −1.7 to about 1.6, and even more preferably from about −1.0 to about 1.0.




Fabric softening actives, especially those actives or compositions comprising multiple hydrophobes tend to form bilayers. When these bilayers and the water between the bilayers are sufficiently flexible, the composition can become a single-phase isotropic system comprising a bicontinuous bilayer or sponge phase.




There are many ways to improve flexibility such that single-phase isotropic bicontinuous systems with improved stability are achieved. Using fabric softening actives with low phase transition temperatures enhances flexibility of the bilayer since the actives are fluid. The phase transition temperature can be lowered by several means, for instance by incorporating branching and/or unsaturation in the hydrophobe of fabric softener actives and employing mixtures of fabric softener actives. Using principal solvents, particularly those within the most preferred Clog P ranges enhances the flexibility of both the water and the bilayer because these principal solvents, especially in the more preferred ranges, have the ability to migrate between the water where they can break up the water hydrogen bond structure and the bilayer interface where they can promote net zero curvature at the bilayer interface. Net zero curvature is more readily achieved when the head group of an amphiphile (or group of amphiphiles) and the tail moiety of a amphiphile (or group of amphiphiles ) occupy equal or nearly equal volume areas. When the head group and tail moiety area volumes are nearly equal, there is no driving force to cause the surfactant interface to curve in either direction and then the surfactant interface becomes bicontinuous (Surfactants and Interfacial Phenomena, Second Edition, M. J. Rosen). Often cosurfactants are used to make oil in water bicontinuous micro-emulsions (Surfactants and Interfacial Phenomena, Second Edition, M. J. Rosen). A similar principle operates with fabric softener bilayers. Diquats, by their very nature have large head groups because the two charged amine moieties are both very water miscible and therefore, it is helpful to have a principal solvent that can migrate to the interface acting to ‘fill in’ for the tail volume, to achieve zero curvature necessary to drive the system into the isotropic bicontinuous phase. Bilayer modifiers can also act as ‘fillers’ that together with the fabric softener active push the system into a state of zero curvature necessary to drive the system into the isotropic bicontinuous phase. With the appropriate bilayer modifier, the principal solvent or organic solvent can be substantially reduced even to the point, in some cases, of surprisingly eliminating the need to add solvent that is not a part of the polyquaternary, preferably diquaternary, ammonium fabric softening active raw material because the solvent is only necessary to break the water structure and no longer necessary to act as a filler at the fabric softener bilayer surface. Unsaturation and/or branching in the components improves flexibility, thus facilitating the bending of the surface of the bilayer, when necessary.




Bilayer modifiers are highly desired optional components of clear compositions with low solvent or zero added solvent. Preferably these compounds are amphiphilic with a water miscible head group attached to a hydrophobic moiety.




Non-limiting examples of suitalbe bilayer modifiers include:




i) mono-alkyl cationic amines having the formula:






[


RN




+


(


R




1


)


3




]X













wherein R is C


8


—C


22


alkyl, preferably C


10


—C


18


alkyl; C


8


—C


22


alkenyl, preferably C


10


—C


18


alkenyl; and mixtures thereof. Each R


1


is hydrogen, C


1


—C


6


alkyl C


1


—C


6


substituted alkyl wherein said substitution is, inter alia, —OH, —SO


3


M, —CO


2


M, wherein M is a water soluble cation; benzyl, a polyalkyleneoxy unit having the formula:






—(


R




2




O


)


x




R




3








wherein R


2


is ethylene, 1,2-propylene, and mixtures thereof, R


3


is hydrogen of C


1


—C


4


alkyl, x has the average value of form 2.5 to about 20, preferably 3 to about 10; X is a fabric softener compatible anion.




Examples of preferred mono-alkyl cationic amines are Adogen 461® Varisoft 417®, and Varisoft 471 ® ex Witco, and Armeen® Z ex Akzo Nobel.




Included in this class of compounds are the C


8


—C


2


alkyl choline esters having the formula:






[


RC


(


O


)


OCH




2




CH




2




N




+


(


R




1


)


3




]X













wherein R is C


8


—C


22


alkyl, preferably C


10


—C


18


alkyl; C


8


—C


22


alkenyl, preferably C


10


—C


18


alkenyl; and mixtures thereof. Each R


1


is hydrogen, C


1


—C


6


alkyl, C


1


—C


6


substituted alkyl wherein said substitution is, inter alia, —OH, —SO


3


M, —CO


2


M, wherein M is a water soluble cation; benzyl, a polyalkyleneoxy unit having the formula:






—(


R




2




O


)


x




R




3








wherein R


2


is ethylene, 1,2-propylene, and mixtures thereof, R


3


is hydrogen of C


1


—C


4


alkyl, x has the average value of form 2.5 to about 20, preferably 3 to about 10; X is a fabric softener compatible anion. Suitable examples of choline esters can be found in U.S. Pat. No. 4,840,738 Hardy et al., issued Jun. 20, 1989 and incorporated herein by reference.




ii) polar and non-polar hydrophobic oils, non-limiting examples of which include, dioctyl adipate: Wickenol® 158 ex Alzo Inc, oleyl oleate: Dermol® OLO ex Alzo Inc. emollients such as fatty esters, e.g. methyl oleates, Wickenols®, derivatives of myristic acid such as isopropyl myristate, and triglycerides such as canola oil; free fatty acids such as those derived from canola oils, fatty alcohols such as oleyl alcohol, bulky esters such as benzyl benzoate and benzyl salicylate, diethyl or dibutyl phthalate; bulky alcohols or diols; and perfume oils particularly low-odor perfume oils such as linalool; mono or poly sorbitan esters; and/or mixtures thereof.




Non-polar hydrophobic oils can be selected from petroleum derived oils such as hexane, decane, pentadecane, dodecane, isopropyl citrate and perfume bulky oils such as limonene, and/or mixtures thereof. In particular, the free fatty acids such as partially hardened canola oil can provide increased softness benefits.




iii) nonionic surfactants selected from the group consisting of alkyl amide alkoxylated nonionic surfactants, alkylaryl nonionic surfactants, alkyl nonionic alkoxylated surfactants, alkoxylated nonionic surfactants comprising bulky head groups, non-alkoxylated nonionic surfactants comprising bulky head groups, block co-polymers obtained by co-polymerization of ethylene oxide and propylene oxide, and mixtures thereof.




a) alkylamide alkoxylated nonionic surfactants. A non-limiting example of an alkyl amide alkoxylated nonionic surfactant suitable for use in the present invention has the formula:











wherein R is C


7


—C


21


linear alkyl, C


7


—C


21


branched alkyl, C


7


—C


21


, linear alkenyl, C


7


—C


21


branched alkenyl, and mixtures thereof.




R


1


is ethylene; R


2


is C


3


—C


4


linear alkyl, C


3


—C


4


branched alkyl, and mixtures thereof; preferably R


2


is 1,2-propylene. Nonionic surfactants which comprise a mixture of R


1


and R


2


units preferably comprise from about 4 to about 12 ethylene units in combination with from about 1 to about 4 1,2-propylene units. The units may be alternating, or grouped together in any combination suitable to the formulator. Preferably the ratio of R


1


units to R


2


units is from about 4 :1 to about 8:1. Preferably an R


2


units (i.e. 1,2-propylene) is attached to the nitrogen atom followed by the balance of the chain comprising from 4 to 8 ethylene units.




R


3


is hydrogen, C


1


—C


4


linear alkyl, C


3


—C


4


branched alkyl, and mixtures thereof; preferably hydrogen or methyl, more preferably hydrogen.




R


4


is hydrogen, C


1


—C


4


linear alkyl, C


3


—C


4


branched alkyl, and mixtures thereof; preferably hydrogen. When the index m is equal to 2 the index n must be equal to 0 and the R


4


unit is absent and is instead replaced by a —[(R


1


O)


x


(R


2


O)


y


R


3


] unit.




The index m is 1 or 2, the index n is 0 or 1, provided that when m is equal to 1, n is equal to 1; and when m is 2 n is 0; preferably m is equal to 1 and n is equal to one, resulting in one - [(R


1


O)


x


(R


2


O)


y


R


3


] unit and R


4


being present on the nitrogen. The index x is from 0 to about 50, preferably from about 3 to about 25, more preferably from about 3 to about 10. The index y is from 0 to about 10, preferably 0, however when the index y is not equal to 0, y is from 1 to about 4. Preferably all of the alkyleneoxy units are ethyleneoxy units. Those skilled in the art of ethoxylated polyoxyalkylene alkyl amide surface active agents will recognized that the values for the indices x and y are average values and the true values may range over several values depending upon the process used to alkoxylate the amides.




Suitable means for preparing the polyoxyalkylene alkylamide surface active agents of the present invention can be found in “Surfactant Science Series”, Editor Martin Schick, Volume I, Chapter 8 (1967) and Volume XIX, Chapter 1 (1987) included herein by reference. Examples of suitable ethoxylated alkyl amide surfactants are Rewopal® C


6


from Witco, Amidox® C5 ex Stepan, and Ethomid® O/17 and Ethomid® HT/60 ex Akzo.




b) alkyl nonionic surfactants:




Suitable alkyl alkoxylated nonionic surfactants with amine functionality are generally derived from saturated or unsaturated, primary, secondary, and branched fatty alcohols, fatty acids, fatty methyl esters, alkyl phenol, alkyl benzoates, and alkyl benzoic acids that are converted to amines, amine-oxides, and optionally substituted with a second alkyl or alkyl-aryl hydrocarbon with one or two alkylene oxide chains attached at the amine functionality each having ≲ about 50 moles alkylene oxide moieties (e.g. ethylene oxide and/or propylene oxide) per mole of amine. The amine or amine-oxide surfactants for use herein have at least one hydrophobe with from about 6 to about 22 carbon atoms, and are in either straight chain and/or branched chain configuration, preferably there is one hydrocarbon in a straight chain configuration having about 8 to about 18 carbon atoms with one or two alkylene oxide chains attached to the amine moiety, in average amounts of ≲50 about moles of alkylene oxide per amine moiety, more preferably from about 5 to about 15 moles of alkylene oxide, and most preferably a single alkylene oxide chain on the amine moiety containing from about 8 to about 12 moles of alkylene oxide per amine moiety. Preferred materials of this class also have pour points about 70° F. and/or do not solidify in these clear formulations. Examples of ethoxylated amine surfactants include Berol® 397 and 303 from Rhone Poulenc and Ethomeens® C/20, C25, T/25, S/20, S/25 and Ethodumeens® T/20 and T25 from Akzo.




Suitable alkyl alkoxylated nonionic surfactants are generally derived from saturated or unsaturated primary, secondary, and branched fatty alcohols, fatty acids, alkyl phenols, or alkyl aryl (e.g., benzoic) carboxylic acid, where the active hydrogen(s) is alkoxylated with ≲ about 30 alkylene, preferably ethylene, oxide moieties (e.g. ethylene oxide and/or propylene oxide). These nonionic surfactants for use herein preferably have from about 6 to about 22 carbon atoms on the alkyl or alkenyl chain, and are in either straight chain or branched chain configuration, preferably straight chain configurations having from about 8 to about 18 carbon atoms, with the alkylene oxide being present, preferably at the primary position, in average amounts of ≲ about 30 moles of alkylene oxide per alkyl chain, more preferably from about 5 to about 15 moles of alkylene oxide, and most preferably from about 8 to about 12 moles of alkylene oxide. Preferred materials of this class also have pour points of about 70° F. and/or do not solidify in these clear formulations. Examples of alkyl alkoxylated surfactants with straight chains include Neodol® 91- 8, 25-9, 1-9, 25-12, 1-9, and 45-13 from Shell, Plurafac® B-26 and C-17 from BASF, and Brij® 76 and 35 from ICI Surfactants. Examples of branched alkyl alkoxylated surfactants include Tergitol® 15-S-12, 15-S-15, and 15-S-20 from Union Carbide and Emulphogene® BC-720 and BC-840 from GAF. Examples of alkyl-aryl alkoxylated surfactants include Igepal® CO-620 and CO-710, from Rhone Poulenc, Triton® N-111 and N-150 from Union Carbide, Dowfax® 9N5 from Dow and Lutensol® AP9 and AP14, from BASF. A preferred ethoxylated nonionic surfactant is NEODOL 91-8 ex Shell.




c) nonionic surfactants comprising bulky head groups.




Suitable alkoxylated and non-alkoxylated phase stabilizers with bulky head groups are generally derived from saturated or unsaturated, primary, secondary, and branched fatty alcohols, fatty acids, alkyl phenol, and alkyl benzoic acids that are derivatized with a carbohydrate group or heterocyclic head group. This structure can then be optionally substituted with more alkyl or alkyl-aryl alkoxylated or non-alkoxylated hydrocarbons. The heterocyclic or carbohydrate is alkoxylated with one or more alkylene oxide chains (e.g. ethylene oxide and/or propylene oxide) each having ≲ about 50, preferably ≲ about 30, moles per heterocyclic or carbohydrate head group. The hydrocarbon groups on the carbohydrate or heterocyclic surfactant for use herein have from about 6 to about 22 carbon atoms, and are in either straight chain and/or branched chain configuration. Preferably there is one hydrocarbon having from about 8 to about 18 carbon atoms with one or two alkylene oxide chains carbohydrate or heterocyclic moiety with each alkylene oxide chain present in average amounts of ≲ about 50, preferably ≲ about 30, per carbohydrate or heterocyclic moiety, more preferably from about 5 to about 15 moles of alkylene oxide per alkylene oxide chain, and most preferably between about 8 and about 12 moles of alkylene oxide total per surfactant molecule including alkylene oxide on both the hydrocarbon chain and on the heterocyclic or carbohydrate moiety. Examples of phase stabilizers in this class are Tween® 40, 60, and 80 available from ICI Surfactants.




d) block co-polymers




Suitable polymers include a copolymer having blocks of terephthalate and polyethylene oxide. More specifically, these polymers are comprised of repeating units of ethylene and/or propylene terephthalate and polyethylene oxide terephthalate at a preferred molar ratio of ethylene terephthalate units to polyethylene oxide terephthalate units of from about 25:75 to about 35:65, said polyethylene oxide terephthalate containing polyethylene oxide blocks having molecular weights of from about 300 to about 2000. The molecular weight of this polymer is in the range of from about 5,000 to about 55,000.




Another preferred polymer is a crystallizable polyester with repeat units of ethylene terephthalate units containing from about 10% to about 15% by weight of ethylene terephthalate units together with from about 10% to about 50% by weight of polyoxyethylene terephthalate units, derived from a polyoxyethylene glycol of average molecular weight of from about 300 to about 6,000, and the molar ratio of ethylene terephthalate units to polyoxyethylene terephthalate units in the crystallizable polymeric compound is between 2:1 and 6:1. Examples of this polymer include the commercially available materials Zelcon® 4780 (from DuPont) and Milease® T (from ICI).




SURFACTANT SYSTEM




The fabric care compositions of the present invention may optionally comprise one or more detersive surfactants. The laundry detergent compositions of the present invention require at least about 0.01% by weight, preferably from about 0.1% to about 60%, preferably to about 30% by weight, of a detersive surfactant system, said system is comprised of one or more category of surfactants depending upon the embodiment, said categories of surfactants are selected from the group consisting of anionic, cationic, nonionic, zwitterionic, ampholytic surfactants, and mixtures thereof. Within each category of surfactant, more than one type of surfactant of surfactant can be selected. For example, preferably the solid (i.e. granular) and viscous semi-solid (i.e. gelatinous, pastes, etc.) systems of the present invention, surfactant is preferably present to the extent of from about 0.1% to 60%, preferably to about 30% by weight of the composition.




Nonlimiting examples of surfactants useful herein include:




a) C


11


—C


18


alkyl benzene sulfonates (LAS);




b) C


10


—C


20


primary, branched-chain and random alkyl sulfates (AS);




c) C


10


—C


18


secondary (2,3) alkyl sulfates having the formula:











wherein x and (y+1) are integers of at least about 7, preferably at least about 9; said surfactants disclosed in U.S. Pat. No. 3,234,258 Morris, issued Feb. 8, 1966; U.S. Pat. No. 5,075,041 Lutz, issued Dec. 24, 1991; U.S. Pat. No. 5,349,101 Lutz et al., issued Sep. 20, 1994; and U.S. Pat. No. 5,389,277 Prieto, issued Feb. 14, 1995 each incorporated herein by reference;




d) C


10


—C


18


alkyl alkoxy sulfates (AE


X


S) wherein preferably x is from 1-7;




e) C


10


—C


18


alkyl alkoxy carboxylates preferably comprising 1-5 ethoxy units;




f) C


12


—C


18


alkyl ethoxylates, C


6


—C


12


alkyl alkoxylates wherein the alkoxylate units are a mixture of ethyleneoxy and propyleneoxy units, C


12


—C


18


alcohol and C


6


—C


12


alkyl phenol condensates with ethylene oxide/propylene oxide block polymers inter alia Pluronic® ex BASF which are disclosed in U.S. Pat. No. 3,929,678 Laughlin et al., issued Dec. 30, 1975, incorporated herein by reference;




g) Alkylpolysaccharides as disclosed in U.S. Pat. No. 4,565,647 Llenado, issued Jan. 26, 1986, incorporated herein by reference;




h) Polyhydroxy fatty acid amides having the formula:











 wherein R


7


is C


5


—C


31


alkyl; R


8


is selected from the group consisting of hydrogen, C


1


—C


4


alkyl, C


1


—C


4


hydroxyalkyl, Q is a polyhydroxyalkyl moiety having a linear alkyl chain with at least 3 hydroxyls directly connected to the chain, or an alkoxylated derivative thereof; preferred alkoxy is ethoxy or propoxy, and mixtures thereof; preferred Q is derived from a reducing sugar in a reductive amination reaction, more preferably Q is a glycityl moiety; Q is more preferably selected from the group consisting of —CH


2


(CHOH)


n


CH


2


OH, —CH(CH


2


OH)(CHOH)


n-1


CH


2


OH, —CH


2


(CHOH)


2


—(CHOR


1


)(CHOH)CH


2


OH, and alkoxylated derivatives thereof, wherein n is an integer from 3 to 5, inclusive, and R′ is hydrogen or a cyclic or aliphatic monosaccharide, which are described in U.S. Pat. No. 5,489,393 Connor et al., issued Feb. 6, 1996; and U.S. Pat. No. 5,45,982 Murch et al., issued Oct. 3, 1995, both incorporated herein by reference.




The laundry detergent compositions of the present invention can also comprise from about 0.001% to about 100% of one or more (preferably a mixture of two or more) mid-chain branched surfactants, preferably mid-chain branched alkyl alkoxy alcohols having the formula:











mid-chain branched alkyl sulfates having the formula:











and mid-chain branched alkyl alkoxy sulfates having the formula:











wherein the total number of carbon atoms in the branched primary alkyl moiety of these formulae (including the R, R


1


, and R


2


branching, but not including the carbon atoms which comprise any EO/PO alkoxy moiety) is from 14 to 20, and wherein further for this surfactant mixture the average total number of carbon atoms in the branched primary alkyl moieties having the above formula is within the range of greater than 14.5 to about 17.5 (preferably from about 15 to about 17); R, R


1


, and R


2


are each independently selected from hydrogen, C


1


—C


3


alkyl, and mixtures thereof, preferably methyl; provided R, R


1


, and R


2


are not all hydrogen and, when z is 1, at least R or R


1


is not hydrogen. M is a water soluble cation and may comprises more than one type of cation, for example, a mixture of sodium and potassium. The index w is an integer from 0 to 13; x is an integer from 0 to 13; y is an integer from 0 to 13; z is an integer of at least 1; provided w+x+y+z is from 8 to 14. EO and PO represent ethyleneoxy units and propyleneoxy units having the formula:











respectively, however, other alkoxy units inter alia 1,3-propyleneoxy, butoxy, and mixtures thereof are suitable as alkoxy units appended to the mid-chain branched alkyl moieties.




The mid-chain branched surfactants are preferably mixtures which comprise a surfactant system. Therefore, when the surfactant system comprises an alkoxylated surfactant, the index m indicates the average degree of alkoxylation within the mixture of surfactants. As such, the index m is at least about 0.01, preferably within the range of from about 0.1, more preferably from about 0.5, most preferably from about 1 to about 30, preferably to about 10, more preferably to about 5. When considering a mid-chain branched surfactant system which comprises only alkoxylated surfactants, the value of the index m represents a distribution of the average degree of alkoxylation corresponding to m, or it may be a single specific chain with alkoxylation (e.g., ethoxylation and/or propoxylation) of exactly the number of units corresponding to m.




The preferred mid-chain branched surfactants of the present invention which are suitable for use in the surfactant systems of the present invention have the formula:











or the formula:











wherein a, b, d, and e are integers such that a +b is from 10 to 16 and d+e is from 8 to 14; M is selected from sodium, potassium, magnesium, ammonium and substituted ammonium, and mixtures thereof.




The surfactant systems of the present invention which comprise mid-chain branched surfactants are preferably formulated in two embodiments. A first preferred embodiment comprises mid-chain branched surfactants which are formed from a feedstock which comprises 25% or less of mid-chain branched alkyl units. Therefore, prior to admixture with any other conventional surfactants, the mid-chain branched surfactant component will comprise 25% or less of surfactant molecules which are non-linear surfactants.




A second preferred embodiment comprises mid-chain branched surfactants which are formed from a feedstock which comprises from about 25% to about 70% of mid-chain branched alkyl units. Therefore, prior to admixture with any other conventional surfactants, the mid-chain branched surfactant component will comprise from about 25% to about 70% surfactant molecules which are non-linear surfactants.




The surfactant systems of the laundry detergent compositions of the present invention can also comprise from about 0.001%, preferably from about 1%, more preferably from about 5%, most preferably from about 10% to about 100%, preferably to about 60%, more preferably to about 30% by weight, of the surfactant system, of one or more (preferably a mixture of two or more) mid-chain branched alkyl arylsulfonate surfactants, preferably surfactants wherein the aryl unit is a benzene ring having the formula:











wherein L is an acyclic hydrocarbyl moiety comprising from 6 to 18 carbon atoms; R


1


, R


2


, and R


3


are each independently hydrogen or C


1


—C


3


alkyl, provided R


1


and R


2


are not attached at the terminus of the L unit; M is a water soluble cation having charge q wherein a and b are taken together to satisfy charge neutrality.




OPTIONAL INGREDIENTS




The fabric conditioning and fabric appearance compositions of the present invention, in addition to one or more linear of cyclic low molecular weight polyamines described herein above, may optionally comprise the following optional ingredients.




Dye Fixing Agents




The compositions of the present invention optionally comprise from about 0.001%, preferably from about 0.5% to about 90%, preferably to about 50%, more preferably to about 10%, most preferably to about 5% by weight, of one or more dye fixing agents.




Dye fixing agents, or “fixatives”, are well-known, commercially available materials which are designed to improve the appearance of dyed fabrics by minimizing the loss of dye from fabrics due to washing. Not included within this definition are components which can in some embodiments serve as fabric softener actives.




Many dye fixing agents are cationic, and are based on quatemized nitrogen compound or on nitrogen compounds having a strong cationic charge which is formed in situ under the conditions of usage. Cationic fixatives are available under various trade names from several suppliers. Representative examples include: CROSCOLOR PMF (July 1981, Code No. 7894) and CROSCOLOR NOFF (January 1988, Code No. 8544) ex Crosfield; INDOSOL E-50 (Feb. 27, 1984, Ref. No. 6008.35.84; polyethyleneamine-based) ex Sandoz; SANDOFIX TPS, ex Sandoz, is a preferred dye fixative for use herein. Additional non-limiting examples include SANDOFIX SWE (a cationic resinous compound) ex Sandoz, REWIN SRF, REWIN SRF-O and REWIN DWR ex CHT-Beitlich GMBH; Tinofix® ECO, Tinofix® FRD and Solfin® ex Ciba-Geigy. A preferred dye fixing agent for use in the compositions of the present invention is CARTAFIX CB® ex Clariant.




Other cationic dye fixing agents are described in “Aftertreatments for Improving the Fastness of Dyes on Textile Fibres”, Christopher C. Cook,


Rev. Prog Coloration


, Vol. XII, (1982). Dye fixing agents suitable for use in the present invention are ammonium compounds such as fatty acid-diamine condensates inter alia the hydrochloride, acetate, metosulphate and benzyl hydrochloride salts of diamine esters. Non-limiting examples include oleyldiethyl aminoethylamide, oleylmethyl diethylenediamine methosulphate, monostearylethylene diaminotrimethylammonium methosulphate. In addition, the N-oxides of tertiary amines; derivatives of polymeric alkyldiamines, polyamine-cyanuric chloride condensates, and aminated glycerol dichlorohydrins are suitable for use as dye fixatives in the compositions of the present invention.




Cellulose Reactive Dye Fixing Agents




Another dye fixing agent suitable for use in the present invention are cellulose reactive dye fixing agents. The compositions of the present invention optionally comprise from about 0.01%, preferably from about 0.05%, more preferably from about 0.5% to about 50%, preferably to about 25%, more preferably to about 10% by weight, most preferably to about 5% by weight, of one or more cellulose reactive dye fixing agents. The cellulose reactive dye fixatives may be suitably combined with one or more dye fixatives described herein above in order to comprise a “dye fixative system”.




The term “cellulose reactive dye fixing agent” is defined herein as “a dye fixative agent which reacts with the cellulose fibers upon application of heat or upon a heat treatment either in situ or by the formulator”. The cellulose reactive dye fixing agents suitable for use in the present invention can be defined by the following test procedure.




Cellulose Reactivity Test (CRT)




Four pieces of fabric which are capable of bleeding their dye (e.g. 10×10 cm of knitted cotton dyed with Direct Red 80) are selected. Two swatches are used as a first control and a second control, respectively. The two remaining swatches are soaked for 20 minutes in an aqueous solution containing 1% (w/w) of the cellulose reactive dye fixing agent to be tested. The swatches are removed and thoroughly dried. One of the treated swatches which has been thoroughly dried, is passed ten times through an ironing calender which is adjusted to a “linen fabric” temperature setting. The first control swatch is also passed ten times through an ironing calender on the same temperature setting.




All four swatches (the two control swatches and the two treated swatches, one of each which has been treated by the ironing calender) are washed separately in Launder-O-Meter pots under typical conditions with a commercial detergent used at the recommended dosage for ½ hour at 60° C., followed by a thorough rinsing of 4 times 200 ml of cold water and subsequently line dried.




Color fastness is then measured by comparing the DE values of a new untreated swatch with the four swatches which have undergone the testing. DE values, the computed color difference, is defined in ASTM D2244. In general, DE values relate to the magnitude and direction of the difference between two psychophysical color stimuli defined by tristimulus values, or by chromaticity coordinates and luminance factor, as computed by means of a specified set of color-difference equations defined in the CIE 1976 CIELAB opponent-color space, the Hunter opponent-color space, the Friele-Mac Adam-Chickering color space or any equivalent color space. For the purposes of the present invention, the lower the DE value for a sample, the closer the sample is to the un-tested sample and the greater the color fastness benefit.




As the test relates to selection or a cellulose reactive dye fixing agent, if the DE value for the swatch treated in the ironing step has a value which is better than the two control swatches, the candidate is a cellulose reactive dye fixing agent for the purposes of the invention.




Typically cellulose reactive dye fixing agents are compounds which contain a cellulose reactive moiety, non limiting examples of these compounds include halogeno-triazines, vinyl sulphones, epichlorhydrine derivatives, hydroxyethylene urea derivatives, formaldehyde condensation products, polycarboxylates, glyoxal and glutaraldehyde derivatives, and mixtures thereof. Further examples can be found in “Textile Processing and Properties”, Tyrone L. Vigo, at page 120 to 121, Elsevier (1997), which discloses specific electrophilic groups and their corresponding cellulose affinity.




Preferred hydroxyethylene urea derivatives include dimethyloldihydroxyethylene, urea, and dimethyl urea glyoxal. Preferred formaldehyde condensation products include the condensation products derived from formaldehyde and a group selected from an amino-group, an imino-group, a phenol group, an urea group, a cyanamide group and an aromatic group. Commercially available compounds among this class are Sandofix WE 56 ex Clariant, Zetex E ex Zeneca and Levogen BF ex Bayer. Preferred polycarboxylates derivatives include butane tetracarboxilic acid derivatives, citric acid derivatives, polyacrylates and derivatives thereof. A most preferred cellulosic reactive dye fixing agents is one of the hydroxyethylene urea derivatives class commercialized under the tradename of Indosol CR ex Clariant. Still other most preferred cellulosic reactive dye fixing agents are commercialized under the tradename Rewin DWR and Rewin WBS ex CHT R. Beitlich.




Chlorine Scavengers




The compositions of the present invention optionally comprise from about 0.01%, preferably from about 0.02%, more preferably from about 0.25% to about 15%, preferably to about 10%, more preferably to about 5% by weight, of a chlorine scavenger. In cases wherein the cation portion and the anion portion of the non-polymeric scavenger each react with chlorine, the amount of scavenger can be adjusted to fit the needs of the formulator.




Suitable chlorine scavengers include ammonium salts having the formula:






[(


R


)


3




R




1




N]




+




X













wherein each R is independently hydrogen, C


1


—C


4


alkyl, C


1


—C


4


substituted alkyl, and mixtures thereof, preferably R is hydrogen or methyl, more preferably hydrogen. R


1


is hydrogen C


1


—C


9


alkyl, C


1


—C


9


substituted alkyl, and mixtures thereof, preferably R is hydrogen. X is a compatible anion, non-limiting examples include chloride, bromide, citrate, sulfate; preferably X is chloride.




Non-limiting examples of preferred chlorine scavengers include ammonium chloride, ammonium sulfate, and mixtures thereof; preferably ammonium chloride.




Crystal Growth Inhibitor




The compositions of the present invention optionally comprise from about 0.005%, preferably from about 0.5%, more preferably from about 0.1% to about 1%, preferably to about 0.5%, more preferably to about 0.25%, most preferably to about 0.2% by weight, of one or more crystal growth inhibitors. The following “Crystal Growth Inhibition Test” is used to determine the suitability of a material for use as a crystal growth inhibitor.




Crystal Growth Inhibition Test (CGIT)




The suitability of a material to serve as a crystal growth inhibitor according to the present invention can be determined by evaluating in vitro the growth rate of certain inorganic micro-crystals. The procedure of Nancollas et al., described in “Calcium Phosphate Nucleation and Growth in Solution”,


Prog. Crystal Growth Charact.


, Vol 3, 77-102, (1980), incorporated herein by reference, is a method which is suitable for evaluating compounds for their crystal growth inhibition. The graph below serves as an example of a plot indicating the time delay (t-lag) in crystal formation afforded by a hypothetical crystal growth inhibitor.











The observed t-lag provides a measure of the compound's efficiency with respect to delaying the growth of calcium phosphate crystal. The greater the t-lag, the more efficient the crystal growth inhibitor.




Exemplary Procedure




Combine in a suitable vessel, 2.1M KC1 (35 mL), 0.0175M CaCl


2


(50 mL), 0.01M KH


2


PO


4


(50 mL), and de-ionized water (350 mL). A standard pH electrode equipped with a Standard Calomel Reference electrode is inserted and the temperature adjusted to 37° C. while purging of the solution of oxygen. Once the temperature and pH are stabilized, a solution of the crystal growth inhibitor to be test is then added. A typical inhibitor test concentration is 1×10


−6


M. The solution is titrated to pH 7.4 with 0.05M KOH. The mixture is then treated with 5 mL's of a hydroxyapatite slurry. The hydroxyapatite slurry can be prepared by digesting Bio-Gel® HTP hydroxyapatite powder (100 g) in 1 L of distilled water the pH of which is adjusted to 2.5 by the addition of sufficient 6N HCl and subsequently heating the solution until all of the hydroxyapatite is dissolved (heating for several days may be necessary). The temperature of the solution is then maintained at about 22° C. while the pH is adjusted to 12 by the addition of a solution of 50% aqueous KOH. Once again the solution is heated and the resulting slurry is allowed to settle for two days before the supernatant is removed. 1.5 L of distilled water is added, the solution stirred, then after settling again for 2 days the supernatant is removed. This rinsing procedure is repeated six more time after which the pH of the solution is adjusted to neutrality using 2N HCl. The resulting slurry can be stored at 37° C. for eleven months.




Crystal growth inhibitors which are suitable for use in the present invention have a t-lag of at least 10 minutes., preferably at least 20 minutes, more preferably at least 50 minutes, at a concentration of 1×10


−6


M. Crystal growth inhibitors are differentiated form chelating agents by the fact that crystal growth inhibitors have a low binding affinity of heavy metal ions, i.e., copper. For example, crystal growth inhibitors have an affinity for copper ions in a solution of 0.1 ionic strength when measured at 25° C., of less than 15, preferably less than 12.




The preferred crystal growth inhibitors of the present invention are selected from the group consisting of carboxylic compounds, organic diphosphonic acids, and mixtures thereof. The following are non-limiting examples of preferred crystal growth inhibitors.




Carboxylic Compounds




Non-limiting examples of carboxylic compounds which serve as crystal growth inhibitors include glycolic acid, phytic acid, polycarboxylic acids, polymers and co-polymers of carboxylic acids and polycarboxylic acids, and mixtures thereof The inhibitors may be in the acid or salt form. Preferably the polycarboxylic acids comprise materials having at least two carboxylic acid radicals which are separated by not more than two carbon atoms (e.g., methylene units). The preferred salt forms include alkali metals; lithium, sodium, and potassium; and alkanolammonium. The polycarboxylates suitable for use in the present invention are further disclosed in U.S. Pat. No. 3,128,287, U.S. Pat. NO. 3,635,830, U.S. Pat. No. 4,663,071, U.S. Pat. No. 3,923,679; U.S. Pat. NO. 3,835,163; U.S. Pat. NO. 4,158,635; U.S. Pat. NO. 4,120,874 and U.S. Pat. NO. 4,102,903, each of which is included herein by reference.




Further suitable polycarboxylates include ether hydroxypolycarboxylates, polyacrylate polymers, copolymers of maleic anhydride and the ethylene ether or vinyl methyl ethers of acrylic acid. Copolymers of 1,3,5-trihydroxybenzene, 2,4,6-trisulphonic acid, and carboxymethyloxysuccinic acid are also useful. Alkali metal salts of polyacetic acids, for example, ethylenediamine tetraacetic acid and nitrilotriacetic acid, and the alkali metal salts of polycarboxylates, for example, mellitic acid, succinic acid, oxydisuccinic acid, polymaleic acid, benzene 1,3,5-tricarboxylic acid, carboxymethyloxysuccinic acid, are suitable for use in the present invention as crystal growth inhibitors.




The polymers and copolymers which are useful as crystal growth inhibitors have a molecular weight which is preferably greater than about 500 daltons to about 100,000 daltons, more preferably to about 50,000 daltons.




Examples of commercially available materials for use as crystal growth inhibitors include, polyacrylate polymers Good-Rite® ex BF Goodrich, Acrysol® ex Rohm & Haas, Sokalan® ex BASF, and Norasol® ex Norso Haas. Preferred are the Norasol® polyacrylate polymers, more preferred are Norasol® 410N (MW 10,000) and Norasol® 440N (MW 4000) which is an amino phosphonic acid modified polyacrylate polymer, and also more preferred is the acid form of this modified polymer sold as Norasol® QR 784 (MW 4000) ex Norso-Haas.




Polycarboxylate crystal growth inhibitors include citrates, e.g., citric acid and soluble salts thereof (particularly sodium salt), 3,3-dicarboxy-4-oxa-1,6-hexanedioates and related compounds further disclosed in U.S. Pat. No. 4,566,984 incorporated herein by reference, C


5


—C


20


alkyl, C


5


—C


20


alkenyl succinic acid and salts thereof, of which dodecenyl succinate, lauryl succinate, myristyl succinate, palmityl succinate, 2-dodecenylsuccinate, 2-pentadecenyl succinate, are non-limiting examples. Other suitable polycarboxylates are disclosed in U.S. Pat. NO. 4,144,226, U.S. Pat. No. 3,308,067 and U.S. Pat. NO. 3,723,322, all of which are incorporated herein by reference.




Organic Phosphonic Acids




Organic diphosphonic acid are also suitable for use as crystal growth inhibitors. For the purposes of the present invention the term “organic diphosphonic acid” is defined as “an organodiphosphonic acid or salt which does not comprise a nitrogen atom”. Preferred organic diphosphonic acids include C


1


—C


4


diphosphonic acid, preferably C


2


diphosphonic acid selected from the group consisting of ethylene diphosphonic acid, α-hydroxy-2-phenyl ethyl diphosphonic acid, methylene diphosphonic acid, vinylidene-1,1-diphosphonic acid, 1,2-dihydroxyethane-1,1-diphosphonic acid, hydroxy-ethane 1,1-diphosphonic acid, the salts thereof, and mixtures thereof. More preferred is hydroxyethane-1,1-diphosphonic acid (HEDP). A preferred is phosphonic acid is 2-phosphonobutane-1,2,4-tricarboxylic acid available as BAYHIBIT AM® ex Bayer.




Fabric Abrasion Reducing Polymers




The herein disclosed polymers provide for decreased fabric abrasion as well as providing a secondary benefit related to dye transfer inhibition. The compositions of the present invention comprise from about 0.01%, preferably from about 0.1% to about 20%, preferably to about 10% by weight, of a fabric abrasion reducing polymer.




The prefered reduced abrasion polymers of the present invention are water-soluble polymers. For the purposes of the present invention the term “water-soluble” is defined as “a polymer which when dissolved in water at a level of 0.2% by weight, or less, at 25° C., forms a clear, isotropic liquid”.




The fabric abrasion reducing polymers useful in the present invention have the formula:






[—


P


(


D


)


m


—]


n








wherein the unit P is a polymer backbone which comprises units which are homopolymeric or copolymeric. D units are defined herein below. For the purposes of the present invention the term “homopolymeric” is defined as “a polymer backbone which is comprised of units having the same unit composition, i.e., formed from polymerization of the same monomer. For the purposes of the present invention the term “copolymeric” is defined as “a polymer backbone which is comprised of units having a different unit composition, i.e., formed from the polymerization of two or more monomers”.




P backbones preferably comprise units having the formula:






—[


CR




2




—CR




2


]—or—[(


CR




2


)


x




—L


]—






wherein each R unit is independently hydrogen, C


1


—C


12


aryl,and D unit as described herein below; preferably C


1


—C


4


alkyl.




Each L unit is independently selected from heteroatom-containing moieties, non-limiting examples of which are selected from the group consisting of:











polysiloxane having the formula:











units which have dye transfer inhibition activity:











and mixtures thereof, wherein R


1


is hydrogen, C


1


—C


12


alkyl, C


6


—C


12


aryl, and mixtures thereof. R


2


is C


1


—C


12


alkyl, C


1


—C


12


alkoxy, C


6


—C


12


aryloxy, and mixtures thereof; preferably methyl and methoxy. R


3


is hydrogen C


1


—C


12


alkyl, C


6


—C


12


aryl, and mixtures thereof, preferably hydrogen or C


1


—C


4


alkyl, more preferably hydrogen. R


4


is C


1


—C


12


alkyl, C


6


—C


12


aryl, and mixtures thereof.




The backbones of the fabric abrasion reducing polymers of the present invention comprise one or more D units which are units which comprise one or more units which provide a dye transfer inhibiting benefit. The D unit can be part of the backbone itself as represented in the general formula:






[—


P


(


D


)


m


—]


n








or the D unit may be incorporated into the backbone as a pendant group to a backbone unit having, for example, the formula:











However, the number of D units depends upon the formulation. For example, the number of D units will be adjusted to provide water solubility of the polymer as well as efficacy of dye transfer inhibition while providing a polymer which has fabric abrasion reducing properties. The molecular weight of the fabric abrasion reducing polymers of the present invention are from about 500, preferably from about 1,000, more preferably from about 100,000 most preferably from 160,000 to about 6,000,000, preferably to about 2,000,000, more preferably to about 1,000,000, yet more preferably to about 500,000, most preferably to about 360,000 daltons. Therefore the value of the index n is selected to provide the indicated molecular weight, and providing for a water solubility of least 100 ppm, preferably at least about 300 ppm, and more preferably at least about 1,000 ppm in water at ambient temperature which is defined herein as 25° C.




Polymers Comprising Amide Units




Non-limiting examples of preferred D units are D units which comprise an amide moiety. Examples of polymers wherein an amide unit is introduced into the polymer via a pendant group includes polyvinylpyrrolidone having the formula:











polyvinyloxazolidone having the formula:











polyvinylmethyloxazolidone having the formula:











polyacrylamides and N-substituted polyacrylamides having the formula:











wherein each R


1


is independently hydrogen, C


1


—C


6


alkyl, or both R′ units can be taken together to form a ring comprising 4-6 carbon atoms; polymethacrylamides and N-substituted polymethacrylamides having the general formula:











wherein each R′ is independently hydrogen, C


1


—C


6


alkyl, or both R′ units can be taken together to form a ring comprising 4-6 carbon atoms; poly(N-acrylylglycinamide) having the formula:











wherein each R′ is independently hydrogen, C


1


—C


6


alkyl, or both R′ units can be taken together to form a ring comprising 4-6 carbon atoms; poly(N-methacrylylglycinamide) having the formula:











wherein each R′ is independently hydrogen, C


1


—C


6


alkyl, or both R′ units can be taken together to form a ring comprising 4-6 carbon atoms; polyvinylurethanes having the formula:











wherein each R′ is independently hydrogen, C


1


—C


6


alkyl, or both R′ units can be taken together to form a ring comprising 4-6 carbon atoms.




An example of a D unit wherein the nitrogen of the dye transfer inhibiting moiety is incorporated into the polymer backbone is a poly(2-ethyl-2-oxazoline) having the formula:











wherein the index n indicates the number of monomer residues present.




The fabric abrasion reducing polymers of the present invention can comprise any mixture of dye transfer inhibition units which provides the product with suitable properties. The preferred polymers which comprise D units which are amide moieties are those which have the nitrogen atoms of the amide unit highly substituted so the nitrogen atoms are in effect shielded to a varying degree by the surrounding non-polar groups. This provides the polymers with an amphiphilic character. Non-limiting examples include polyvinyl-pyrrolidones, polyvinyloxazolidones, N,N-disubstituted polyacrylamides, and N,N-disubstituted polymethacrylamides. A detailed description of physico-chemical properties of some of these polymers are given in “Water-Soluble Synthetic Polymers: Properties and Behavior”, Philip Molyneux, Vol. 1, CRC Press, (1983) included herein by reference.




The amide containing polymers may be present partially hydrolyzed and/or crosslinked forms. A preferred polymeric compound for the present invention is polyvinylpyrrolidone (PVP). This polymer has an amphiphilic character with a highly polar amide group conferring hydrophilic and polar-attracting properties, and also has non-polar methylene and methine groups, in the backbone and/or the ring, conferring hydrophobic properties. The rings may also provide planar alignment with the aromatic rings in the dye molecules. PVP is readily soluble in aqueous and organic solvent systems. PVP is available ex ISP, Wayne, N.J., and BASF Corp., Parsippany, N.J., as a powder or aqueous solutions in several viscosity grades, designated as, e.g., K-12, K-15, K-25, and K-30. These K-values indicate the viscosity average molecular weight, as shown below:























PVP viscosity average




K-12




K-15




K-25




K-30




K-60




K-90






molecular weight (in




2.5




10




24




40




160




360






thousands of daltons)














PVP K-12, K-15, and K-30 are also available ex Polysciences, Inc. Warrington, Pa., PVP K-15, K-25, and K-30 and poly(2-ethyl-2-oxazoline) are available ex Aldrich Chemical Co., Inc., Milwaukee, Wis. PVP K30 (40,000) through to K90 (360,000) are also commercially available ex BASF under the tradename Luviskol or commercially available ex ISP. Still higher molecular PVP like PVP 1.3MM, commercially available ex Aldrich is also suitable for use herein. Yet further PVP-type of material suitable for use in the present invention are polyvinylpyrrolidone-co-dimethylaminoethylmethacrylate, commercially available commercially ex ISP in a quaternised form under the tradename Gafquat® or commercially available ex Aldrich Chemical Co. having a molecular weight of approximately 1.0 MM;




polyvinylpyrrolidone-co-vinyl acetate, available ex BASF under the tradename Luviskol®), available in vinylpyrrolidone:vinylacetate ratios of from 3:7 to 7:3.




Polymers Comprising4 N-oxide Units




Another D unit which provides dye transfer inhibition enhancement to the fabric abrasion reducing polymers described herein, are N-oxide units having the formula:











wherein R


1


, R


2


, and R


3


can be any hydrocarbyl unit (for the purposes of the present invention the term “hydrocarbyl” does not include hydrogen atom alone). The N-oxide unit may be part of a polymer, such as a polyamine, i.e., polyalkyleneamine backbone, or the N-oxide may be part of a pendant group attached to the polymer backbone. An example of a polymer which comprises an the N-oxide unit as a part of the polymer backbone is polyethyleneimine N-oxide. Non-limiting examples of groups which can comprise an N-oxide moiety include the N-oxides of certain heterocycles inter alia pyridine, pyrrole, imidazole, pyrazole, pyrazine, pyrimidine, pyridazine, piperidine, pyrrolidine, pyrrolidone, azolidine, morpholine. A preferred polymer is poly(4-vinylpyridine N-oxide, PVNO). In addition, the N-oxide unit may be pendant to the ring, for example, aniline oxide.




N-oxide comprising polymers of the present invention will preferably have a ratio of N-oxidized amine nitrogen to non-oxidized amine nitrogen of from about 1:0 to about 1:2, preferably to about 1:1, more preferably to about 3:1. The amount of N-oxide units can be adjusted by the formulator. For example, the formulator may co-polymerize N-oxide comprising monomers with non N-oxide comprising monomers to arrive at the desired ratio of N-oxide to non N-oxide amino units, or the formulator may control the oxidation level of the polymer during preparation. The amine oxide unit of the polyamine N-oxides of the present invention have a Pk


a


less than or equal to 10, preferably less than or equal to 7, more preferably less than or equal to 6. The average molecular weight of the N-oxide comprising polymers which provide a dye transfer inhibitor benefit to reduced fabric abrasion polymers is from about 500 daltons, preferably from about 100,000 daltons, more preferably from about 160,000 daltons to about 6,000,000 daltons, preferably to about 2,000,000 daltons, more preferably to about 360,000 daltons.




Polymers Comprising Amide Units and N-oxide Units




A further example of polymers which are fabric abrasion reducing polymers which have dye transfer inhibition benefits are polymers which comprise both amide units and N-oxide units as described herein above. Non-limiting examples include co-polymers of two monomers wherein the first monomer comprises an amide unit and the second monomer comprises an N-oxide unit. In addition, oligomers or block polymers comprising these units can be taken together to form the mixed amide/N-oxide polymers. However, the resulting polymers must retain the water solubility requirements described herein above.




Molecular weight




For all the above polymer of the invention, it most preferred that they have a molecular weight in the range as described herein above. This range is typically higher than the range for polymers which render only dye transfer inhibition benefits alone. Indeed, the high molecular weight enables the abrasion occurring subsequent to treatment with the polymer to be reduced, especially in a later washing procedure. Not to be bound by theory, it is believed that that this benefit is partly due to the high molecular weight, thereby enabling the deposition of the polymer on the fabric surface and providing sufficient substantivity that the polymer is able to remain adhered to the fabric during the subsequent use and washing of the fabric. Further, it is believed that for a given charge density, increasing the molecular weight will increase the substantivity of the polymer to the fabric surface. Ideally the balance of charge density and molecular weight will provide both a sufficient rate of deposition onto the fabric surface and a sufficient adherence to the fabric during a subsequent wash cycle. Increasing molecular weight is considered preferable to increasing charge density as it allows a greater choice in the range of materials which are able to provide the benefit and avoids the negative impact that increasing charge density can have such as the attraction of soil and residue onto treated fabrics. It should be noted however that a similar benefit may be predicted from the approach of increasing charge density while retaining a lower molecular weight material.




Solvents or Liquid Carriers




The compositions of the present invention may optionally comprise from about 10%, preferably from about 12%, more preferably from about 14% to about 40%, preferably to about 35%, more preferably to about 25%, most preferably to about 20% by weight of one or more solvents (liquid carriers). These solvents are further disclosed in WO 97/03169 incorporated herein by reference. The use of solvents is especially critical when formulating clear, isotropic liquid fabric conditioning compositions comprising cationic fabric softening actives. The solvent is selected to minimize solvent odor impact in the composition and to provide a low viscosity to the final composition. For example, isopropyl alcohol is not very effective and has a strong odor. n-Propyl alcohol is more effective, but also has a distinct odor. Several butyl alcohols also have odors but can be used for effective clarity/stability, especially when used as part of a ease of formulation solvent system to minimize their odor. The alcohols are also selected for optimum low temperature stability, that is they are able to form compositions that are liquid with acceptable low viscosities and translucent, preferably clear, down to about 40° F. (about 4.4° C.) and are able to recover after storage down to about 20° F. (about 6.7° C.).




The suitability of any solvent for the formulation of embodiments which are clear isotropic liquids, is surprisingly selective. Suitable solvents can be selected based upon their octanol/water partition coefficient (P) as defined in WO 97/03169. The solvents suitable for use herein are selected from those having a ClogP of from about 0.15 to about 0.64, preferably from about 0.25 to about 0.62, and more preferably from about 0.40 to about 0.60, said ease of formulation solvent preferably being at least somewhat asymmetric, and preferably having a melting, or solidification, point that allows it to be liquid at, or near room temperature. Solvents that have a low molecular weight and are biodegradable are also desirable for some purposes. The more asymmetric solvents appear to be very desirable, whereas the highly symmetrical solvents such as 1,7-heptanediol, or 1,4-bis(hydroxymethyl) cyclohexane, which have a center of symmetry, appear to be unable to provide the essential clear compositions when used alone, even though their ClogP values fall in the preferred range.




Non-limiting examples of solvents include mono-ols, C6 diols, C7 diols, octanediol isomers, butanediol derivatives, trimethylpentanediol isomers, ethylmethylpentanediol isomers, propyl pentanediol isomers, dimethylhexanediol isomers, ethylhexanediol isomers, methylheptanediol isomers, octanediol isomers, nonanediol isomers, alkyl glyceryl ethers, di(hydroxy alkyl) ethers, and aryl glyceryl ethers, aromatic glyceryl ethers, alicyclic diols and derivatives, C


3


—C


7


diol alkoxylated derivatives, aromatic diols, and unsaturated diols. Preferred solvents include 1,2-hexanediol, 2-Ethyl-1,3-hexanediol, and 2,2,4-Trimethyl-1,3-pentanediol.




Enzymes




The compositions and processes herein can optionally employ one or more enzymes inter alia lipases, proteases, cellulase, amylases and peroxidases. A preferred enzyme for use herein is cellulase enzyme. Cellulases usable for use in the fabric enhancement compositions of the present invention include both bacterial and fungal types which preferably exhibit an optimal performance at a pH of from 5 to 9.5. U.S. Pat. No. 4,435,307 Barbesgaard et al., issued Mar. 6, 1984, included herein by reference, discloses suitable fungal cellulases ex


Humicola insolens


or


Humicola


strain DSM1800 or a cellulase 212-producing fungus belonging to the genus Aeromonas, and cellulase enzymes extracted from the hepatopancreas of a marine mollusk, Dolabella Auricula Solander. Suitable cellulases are also disclosed in GB-A-2.075.028; GB-A-2.095.275 and DE-OS-2.247.832 each of which is included herein by reference. CAREZYME® and CELLUZYME® (Novo) are especially useful. Other suitable cellulases are also disclosed in WO 91/17243 to Novo, WO 96/34092, WO 96/34945 and EP-A-0,739,982. Compositions may comprise up to 5 mg by weight, more typically 0.01 mg to 3 mg, of active enzyme per gram of the composition. Stated otherwise, the compositions herein will typically comprise from 0.001%, preferably from 0.01% to 5%, preferably to 1% by weight, of a commercial enzyme preparation. In the particular cases where activity of the enzyme preparation can be defined otherwise such as with cellulases, corresponding activity units are preferred (e.g. CEVU or cellulase Equivalent Viscosity Units). For instance, the compositions of the present invention can contain cellulase enzymes at a level equivalent to an activity from 0.5 to 1000 CEVU/gram of composition. Cellulase enzyme preparations used for the purpose of formulating the compositions of this invention typically have an activity comprised between 1,000 and 10,000 CEVU/gram in liquid form, around 1,000 CEVU/gram in solid form.




Chelant




The compositions of the present invention optionally comprise from about 0.001%, preferably from about 0.01% to about 10%, preferably to about 5%, more preferably to about 3% by weight, of a chelant. Preferred chelants according to the present invention which is preferably used in fabric softening compositions of the present invention is N,N,N′N′-(2-hydroxypropyl)ethylenediamine diethylenetriamine-pentaacetic acid (DTPA) or ethylenediamine-N,N′-disuccinnic acid (EDDS) which can be added during the formation of the fabric softening active or the fabric softening composition.. Other suitable chelants are described in U.S. Pat. No. 5,874,396 Littig et al., issued Feb. 23, 1999; and U.S. Pat. No. 5,686,376 Rusche et al., issued Nov. 11, 1997 included herein by reference.




Such water-soluble chelating agents can be selected from the group consisting of amino carboxylates, amino phosphonates, polyfunctionally-substituted aromatic chelating agents and mixtures thereof, all as hereinafter defined and all preferably in their acidic form. Amino carboxylates useful as chelating agents herein include ethylenediaminetetraacetic acid (EDTA), N-hydroxyethylethylenediaminetriacetates, nitrilotriacetates (NTA), ethylenediamine tetraproprionates, ethylenediamine-N,N′-diglutamates, 2-hyroxypropylenediamine-N,N′-disuccinates, triethylenetetraaminehexacetates, diethylenetriaminepentaacetates (DTPA) and ethanoldiglycines, including their water-soluble salts such as the alkali metal, ammonium, and substituted ammonium salts thereof and mixtures thereof.




Amino phosphonates are also suitable for use as chelating agents in the compositions of the invention when at least low levels of total phosphorus are permitted in rinse-added fabric softener compositions, and include ethylenediaminetetrakis (methylenephosphonates), diethylenetriamine-N,N,N′,N″,N″-pentakis(methane phosphonate) (DTMP) and 1-hydroxyethane-1,1-diphosphonate (HEDP). Preferably, these amino phosphonates to not contain alkyl or alkenyl groups with more than about 6 carbon atoms.




As can be seen from the foregoing, a wide variety of chelators may be added to the compositions. Indeed, simple polycarboxylates such as citrate, oxydisuccinate, and the like, may also be used, although such chelators are not as effective as the amino carboxylates and phosphonates, on a weight basis. Accordingly, usage levels may be adjusted to take into account differing degrees of chelating effectiveness. The chelators herein will preferably have a stability constant (of the fully ionized chelator) for copper ions of at least about 5 preferably at least about 7. Typically, the chelators will comprise from about 0.5% to about 10%, more preferably from about 0.75% to about 5%, by weight of the compositions herein.




Polyolefin dispersion




The compositions of the present invention optionally comprise from about 0.01%, preferably from about 0.1% to about 8%, preferably to about 5%, more preferably to about 3% by weight, of a poly olefin emulsion or suspension in order to provide anti-wrinkle and improved water absorbency benefits to the fabrics treated by the fabric care compositions of the present invention. Preferably, the polyolefin is a polyethylene, polypropylene or mixtures thereof. The polyolefin may be at least partially modified to contain various functional groups, such as carboxyl, carbonyl, ester, ether, alkylamide, sulfonic acid or amide groups. More preferably, the polyolefin employed in the present invention is at least partially carboxyl modified or, in other words, oxidized. In particular, oxidized or carboxyl modified polyethylene is preferred in the compositions of the present invention.




When considering ease of formulation, the polyolefin is preferably introduced as a suspension or an emulsion of polyolefin dispersed by use of an emulsifying agent. The polyolefin suspension or emulsion preferably has from 1, preferably from 10%, more preferably from 15% to 50%, more preferably to 35% more preferably to 30% by weight, of polyolefin in the emulsion. The polyolefin preferably has a molecular weight of from 1,000, preferably from 4,000 to 15,000, preferably to 10,000. When an emulsion is employed, the emulsifier may be any suitable emulsification or suspending agent. Preferably, the emulsifier is a cationic, nonionic, zwitterionic or anionic surfactant or mixtures thereof. Most preferably, any suitable cationic, nonionic or anionic surfactant may be employed as the emulsifier. Preferred emulsifiers are cationic surfactants such as the fatty amine surfactants and in particular the ethoxylated fatty amine surfactants. In particular, the cationic surfactants are preferred as emulsifiers in the present invention. The polyolefin is dispersed with the emulsifier or suspending agent in a ratio of emulsifier to polyolefin of from 1:10 to 3:1. Preferably, the emulsion includes from 0.1, preferably from 1%, more preferably from 2.5% to 50%, preferably to 20%, more preferably to 10% by weight, of emulsifier in the polyolefin emulsion. Polyethylene emulsions and suspensions suitable for use in the present invention are available under the tradename VELUSTROL exHOECHST Aktiengesellschaft of Frankfurt am Main, Germany. In particular, the polyethylene emulsions sold under the tradename VELUSTROL PKS, VELUSTROL KPA, or VELUSTROL P-40 may be employed in the compositions of the present invention.




Stabilizers




The compositions of the present invention can optionally comprise from about 0.01%, preferably from about 0.035% to about 0.2%, more preferably to about 0.1% for antioxidants, preferably to about 0.2% for reductive agents, of a stabilizer. The term “stabilizer,” as used herein, includes antioxidants and reductive agents. These agents assure good odor stability under long term storage conditions for the compositions and compounds stored in molten form. The use of antioxidants and reductive agent stabilizers is especially critical for low scent products (low perfume).




Non-limiting examples of antioxidants that can be added to the compositions of this invention include a mixture of ascorbic acid, ascorbic palmitate, propyl gal late, ex Eastman Chemical Products, Inc., under the trade names Tenox® PG and Tenox S-1; a mixture of BHT (butylated hydroxytoluene), BHA (butylated hydroxyanisole), propyl gallate, and citric acid, ex Eastman Chemical Products, Inc., under the trade name Tenox-6; butylated hydroxytoluene, available from UOP Process Division under the trade name Sustane® BHT; tertiary butylhydroquinone, Eastman Chemical Products, Inc., as Tenox TBHQ; natural tocopherols, Eastman Chemical Products, Inc., as Tenox GT-1/GT-2; and butylated hydroxyanisole, Eastman Chemical Products, Inc., as BHA; long chain esters (C


8


—C


22


) of gallic acid, e.g., dodecyl gallate; Irganox® 1010; Irganox® 1035; Irganox® B 1171; Irganox® 1425; Irganox® 3114; Irganox® 3125; and mixtures thereof, preferably Irganox® 3125, Irganox® 1425, Irganox® 3114, and mixtures thereof; more preferably Irganox® 3125 alone or mixed with citric acid and/or other chelators such as isopropyl citrate, Dequest® 2010, ex Monsanto with a chemical name of 1-hydroxyethylidene-1,1-diphosphonic acid (etidronic acid), and Tiron®, ex Kodak with a chemical name of 4,5-dihydroxy-m-benzene-sulfonic acid/sodium salt, EDDS, and DTPA®, ex Aldrich with a chemical name of diethylenetriaminepentaacetic acid.




Hydrophobic Dispersant




A preferred composition of the present invention comprises from about 0.1%, preferably from about 5%, more preferably form about 10% to about 80%, preferably to about 50%, more preferably to about 25% by weight, of a hydrophobic polyamine dispersant having the formula:











wherein R, R


1


and B are suitably described in U.S. Pat. No. 5,565,145 Watson et al., issued Oct. 15, 1996 incorporated herein by reference, and w, x, and y have values which provide for a backbone prior to substitution of preferably at least about 1200 daltons, more preferably 1800 daltons.




R


1


units are preferably alkyleneoxy units having the formula:






—(


CH




2




CHR′O


)


m


(


CH




2




CH




2




O


)


n




H








wherein R′ is methyl or ethyl, m and n are preferably from about 0 to about 50, provided the average value of alkoxylation provided by m+n is at least about 2, preferably 4.




A further description of polyamine dispersants suitable for use in the present invention is found in U.S. Pat. No. 4,891,160 Vander Meer, issued Jan. 2, 1990; U.S. Pat. No. 4,597,898, Vander Meer, issued Jul. 1, 1986; European Patent Application 111,965, Oh and Gosselink, published Jun. 27, 1984; European Patent Application 111,984, Gosselink, published Jun. 27, 1984; European Patent Application 112,592, Gosselink, published Jul. 4, 1984; U.S. Pat. No. 4,548,744, Connor, issued Oct. 22, 1985; and U.S. Pat. No. 5,565,145 Watson et al., issued Oct. 15, 1996; all of which are included herein by reference. However, any suitable clay/soil dispersent or anti-redepostion agent can be used in the laundry compositions of the present invention.




Electrolyte




The fabric softening embodiments of the compositions of the present invention, especially clear, isotropic liquid fabric softening compositions, may also optionally, but preferably comprise, one or more electrolytes for control of phase stability, viscosity, and/or clarity. For example, the presence of certain electrolytes inter alia calcium chloride, magnesium chloride may be key to insuring initial product clarity and low viscosity, or may affect the dilution viscosity of liquid embodiments, especially isotropic liquid embodiments. Not wishing to be limited by theory, but only wishing to provide an example of a circumstance wherein the formulator must insure proper dilution viscosity, includes the following example. Isotropic or non-isotropic liquid fabric softener compositions can be introduced into the rinse phase of laundry operations via an article of manufacture designed to dispense a measured amount of said composition. Typically the article of manufacture is a dispenser which delivers the softener active only during the rinse cycle. These dispensers are typically designed to allow an amount of water equal to the volume of softener composition to enter into the dispenser to insure complete delivery of the softener composition. An electrolyte may be added to the compositions of the present invention to insure phase stability and prevent the diluted softener composition from “gelling out” or from undergoing an undesirable or unacceptable viscosity increase. Prevention of gelling or formation of a “swelled”, high viscosity solution insures thorough delivery of the softener composition.




However, those skilled in the art of fabric softener compositions will recognize that the level of electrolyte is also influenced by other factors inter alia the type of fabric softener active, the amount of principal solvent,. and the level and type of nonionic surfactant. For example, triethanol amine derived ester quaternary amines suitable for use as softener actives according to the present invention are typically manufactured in such a way as to yield a distribution of mono-, di-, and tri- esterified quaternary ammonium compounds and amine precursors. Therefore, as in this example, the variability in the distribution of mono-, di-, and tri- esters and amines may predicate a different level of electrolyte. Therefore, the formulator must consider all of the ingredients, namely, softener active, nonionic surfactant, and in the case of isotropic liquids, the principal solvent type and level, as well as level and identity of adjunct ingredients before selecting the type and/or level of electrolyte




A wide variety of ionizable salts can be used. Examples of suitable salts are the halides of the Group IA and IIA metals of the Periodic Table of the elements, e.g., calcium chloride, sodium chloride, potassium bromide, and lithium chloride. The ionizable salts are particularly useful during the process of mixing the ingredients to make the compositions herein, and later to obtain the desired viscosity. The amount of ionizable salts used depends on the amount of active ingredients used in the compositions and can be adjusted according to the desires of the formulator. Typical levels of salts used to control the composition viscosity are from about 20 to about 10,000 parts per million (ppm), preferably from about 20 to about 5,000 ppm, of the composition.




Alkylene polyammonium salts can be incorporated into the composition to give viscosity control in addition to or in place of the water-soluble, ionizable salts above, In addition, these agents can act as scavengers, forming ion pairs with anionic detergent carried over from the main wash, in the rinse, and on the fabrics, and can improve softness performance. These agents can stabilized the viscosity over a broader range of temperature, especially at low temperatures, compared to the inorganic electrolytes. Specific examples of alkylene polyammonium salts include L-lysine, monohydrochloride and 1,5-diammonium 2-methyl pentane dihydrochloride.




Cationic Charge Booster System




The compositions of the present invention may optionally comprise from about 0.2%, preferably from about 5% to about 10%, preferably to about 7% by weight, of a charge booster system. Typically, ethanol is used to prepare many of the below listed ingredients and is therefore a source of solvent into the final product formulation. The formulator is not limited to ethanol, but instead can add other solvents inter alia hexyleneglycol to aid in formulation of the final composition. This is especially true in clear, translucent, isotropic compositions.




Cationic Charge Booster Admixtures




One type of preferred cationic charge booster system of the present invention is an admixture of two or more di-amino compounds wherein at least one of said di-amino compounds is a di-quaternary ammonium compound.




Preferably said charge booster system is the admixture of di-amino compounds which results from a process comprising the steps of:




i) reacting one equivalent of a diamine having the formula:











 wherein R is C


2


—C


12


alkylene; each R


1


is independently hydrogen, C


1


—C


4


alkyl, a unit having the formula:









R




2




—Z








 wherein R


2


is C


2


—C


6


linear or branched alkylene, C


2


—C


6


linear or branched hydroxy substituted alkylene, C


2


—C


6


linear or branched amino substituted alkylene, and mixtures thereof; Z is hydrogen, —OH, —NH2, and mixtures thereof; with from about 0.1 equivalent to about 8 equivalents of an acylating unit to form an acylated di-amino admixture; and




ii) reacting said acylated di-amino admixture with from 0.1 equivalents to 2 equivalents of a quaternizing agent to form said cationic charge booster system.




Step (i) of the present cationic charge booster producing process, is an acylation step. The acylation of the amino compound may be conducted under any conditions which allow the formulator to prepare the desired final cationic admixture or an admixture which has the desired final charge boosting properties.




Step (ii) of the present cationic charge booster producing process, is the quaternization step. The formulator may use any quaternizing agent which provides an admixture having the desired charge boosting properties. The choice of from 0.1 equivalents to 2 equivalents of quaternizing agent will provide the formulator with a wide array of cationically charged diamines in the final admixture.




Non-limiting examples of acylating agents suitable for use in the present invention include, acylating agents selected from the group consisting of:




a) acyl halides having the formula:











b) an ester having the formula:











c) anhydrides having the formula:











d) carboxylic/carbonic anhydrides having the formula:











e) acyl azides having the formula:











f) and mixtures thereof;




wherein R


4


is C


6


—C


22


linear or branched, substituted or unsubstituted alkyl, C


6


—C


12


linear or branched, substituted or unsubstituted alkenyl, or mixtures thereof; Hal is a halogen selected from chlorine, bromine, or iodine; R


6


is R


4


, C


1


—C


5


linear or branched alkyl; Y is R


4


, —CF


3


, —CCl


3


, and mixtures thereof.




An example of a preferred process comprises the reaction of an amine having the formula:











wherein R is hexamethylene, with about two equivalents of an acylating agent to form a partially acylated diamine admixture, followed by reaction of said admixture with from about 1.25 to about 1.75 equivalents of a quaternizing unit, preferably dimethyl sulfate.




Non-limiting examples of preferred di-amines which comprise the cationic charge booster systems of the present invention include:




i) one or more diamines having the formula:











ii) one or more quaternary ammonium compounds having the formula:











iii) one or more di-quaternary ammonium compounds having the formula:











wherein R is C


2


—C


12


alkylene, preferably C


2


—C


8


alkylene, more preferably hexamethylene; each R


3


is independently R


1


, an acyl comprising unit having the formula:











wherein R


4


is C


6


—C


22


linear or branched, substituted or unsubstituted alkyl, C


6


—C


22


linear or branched, substituted or unsubstituted alkenyl, or mixtures thereof; and mixtures thereof; each R


5


is independently hydrogen, —OH, —NH


2


, —(CH


2


)


z


WC(O)R


4


, and mixtures thereof; Q is a quaternizing unit selected from the group consisting of C


1


—C


12


alkyl, benzyl, and mixtures thereof; W is —O—, —NH—, and mixtures thereof; X is a water soluble cation; the index n is 1 or 2; y is from 2 to 6; z is from 0 to 4; y+z is less than 7.




Suitable sources of acyl units which comprise the cationic charge booster systems include acyl units which are derived from sources of triglycerides selected from the group consisting of tallow, hard tallow, lard, coconut oil, partially hydrogenated coconut oil, canola oil, partially hydrogenated canola oil, safflower oil, partially hydrogenated safflower oil, peanut oil, partially hydrogenated peanut oil, sunflower oil, partially hydrogenated sunflower oil, corn oil, partially hydrogenated corn oil, soybean oil, partially hydrogenated soybean oil, tall oil, partially hydrogenated tall oil, rice bran oil, partially hydrogenated rice bran oil, synthetic triglyceride feedstocks and mixtures thereof




Preferably at least two R


3


units are units having the formula;











wherein R


4


comprises an acyl which is derived from a triglyceride source selected from the group consisting of hard tallow, soft tallow, canola, oleoyl, and mixtures thereof; Q is methyl; X is a water soluble cation; the index n is 2.




The following is an example of a di-amino admixture suitable for use as a cationic charge boosting system according to the present invention.




i) diamines having the formula:






(


HOCH




2




CH




2


)


2




N


(


CH




2


)


6




N


(


CH




2




CH




2




OH


)


2










(


HOCH




2




CH




2


)


2




N


(


CH




2


)


6




N


(


CH




2




CH




2




OH


)(


CH




2




CH




2




OCR




4


)








(


R




4




HOCH




2




CH




2


)(


COCH




2




CH




2


)


N


(


CH




2


)


6




N


(


CH




2




CH




2




OH


)(


CH




2




CH




2




OCR




4


)








(


R




4




COCH




2




CH




2


)(


HOCH




2




CH




2


)


N


(


CH




2


)


6




N


(


CH




2




CH




2




OCR




4


)


2










(


R




4




COCH




2




CH




2


)(


HOCH




2




CH




2


)


N


(


CH




2


)


6




N


(


CH




2




CH




2




OH


)


2










(


R




4




COCH




2




CH




2


)


2




N


(


CH




2


)


6




N


(


CH




2




CH




2




OCR




4


)


2








ii) quaternary ammonium compounds having the formula:






(


HOCH




2




CH




2


)


2




N




+


(


CH




3


)(


CH




2


)


6




N


(


CH




2




CH




2




OH


)


2










(


HOCH




2




CH




2


)


2




N




+


(


CH




3


)(


CH




2


)


6




N


(


CH




2




CH




2




OH


)(


CH




2




CH




2




OCR




4


)








(


R




4




COCH




2




CH




2


)(


HOCH




2




CH




2


)


N




+


(


CH




3


)(


CH




2


)(


6




N


(


CH




2




CH




2




OH


)


2










(


R




4




COCH




2




CH




2


)(


HOCH




2




CH




2


)


N




+


(


CH




3


)(


CH




2


)


6




N


(


CH




2




CH




2




OH


)(


CH




2




CH




2




OCR




4


)








(


HOCH




2




CH




2


)


2




N




+


(


CH




3


)


6




N


(


CH




2




CH




2




OCR




4


)


2










(


R




4




COCH




2




CH




2


)


2




N




+


(


CH




3


)(


CH




2


)


6




N


(


CH




2




CH




2




OH


)


2










(


R




4




COCH




2




CH




2


)


2




N




+


(


CH




3


)(


CH




2


)


6




N


(


CH




2




CH




2




OH


)(


CH




2




CH




2




OCR




4


)








(


R




4




COCH




2




CH




2


)(


HOCH




2




CH




2


)


N




+


(


CH




3


)(


CH




2


)


6




N


(


CH




2




CH




2




OCR




4


)


2










(


R




4




COCH




2




CH




2


)


2




N




+


(


CH




3


)(


CH




2


)


6




N


(


CH




2




CH




2




OCR




4


)


2








iii) di-quaternary ammonium compounds having the formula:






(


HOCH




2




CH




2


)


2




N







(


CH




3


)(


CH




2


)


6




N




+


(


CH




3


)(


CH




2




CH




2




OH


)


2










(


R




4




COCH




2




CH




2


)(


HOCH




2




CH




2


)


N




+


(


CH




3


)(


CH




2


)


6




N




+


(


CH




3


)(


CH




2




CH




2




OH


)


2










(


R




4




COCH




2




CH




2


)(


HOCH




2




CH




2


)


N




+


(


CH




3


)(


CH




2


)


6




N




+


(


CH




3


)(


CH




2




CH




2




OH


)(


CH




2




CH




2




OCR




4


)








(


R




4




COCH




2




CH




2


)


2




N




+


(


CH




3


)(


CH




2


)


6




N




+


(


CH




3


)(


CH




2




CH




2




OH


)(


CH




2




CH




2




OCR




4


)








(


R




4




COCH




2




CH




2


)


2




N







(


CH




3


)(


CH




2


)


6




N




+


(


CH




3


)(


CH




2




CH




2




OCR




4


)


2








wherein the acyl unit —C(O)R


4


is derived from canola.




Non-admixture Cationic Charge Boosters




When formulating non-admixture cationic charge booster systems into the fabric enhancement or fabric care compositions of the present invention, the following are non-limiting preferred examples.




i) Quaternary Ammonium Compounds




A preferred composition of the present invention comprises at least about 0.2%, preferably from about 0.2% to about 10%, more preferably from about 0.2% to about 5% by weight, of a cationic charge booster having the formula:











wherein R


1


, R


2


, R


3


, and R


4


are each independently C


1


—C


22


alkyl, C


3


—C


22


alkenyl, R


5


—Q— (CH


2


)


m


—, wherein R


5


is C


1


—C


22


alkyl, and mixtures thereof, m is from 1 to about 6; X is an anion.




Preferably R


1


is C


6


—C


22


alkyl, C


6


—C


22


alkenyl, and mixtures thereof, more preferably C


11


—C


18


alkyl, C


11


—C


18


alkenyl, and mixtures thereof; R


2


, R


3


, and R


4


are each preferably C


1


—C


4


alkyl, more preferably each R


2


, R


3


, and R


4


are methyl.




The formulator may similarly choose R


1


to be a R


5


—Q—(CH


2


)


m


— moiety wherein R


5


is an alkyl or alkenyl moiety having from 1 to 22 carbon atoms, preferably the alkyl or alkenyl moiety when taken together with the Q unit is an acyl unit derived preferably derived from a source of triglyceride selected from the group consisting of tallow, partially hydrogenated tallow, lard, partially hydrogenated lard, vegetable oils and/or partially hydrogenated vegetable oils, such as, canola oil, safflower oil, peanut oil, sunflower oil, corn oil, soybean oil, tall oil, rice bran oil, etc. and mixtures thereof.




An example of a fabric softener cationic booster comprising a R


5


—Q—(CH


2


)


m


— moiety has the formula:











wherein R


5


—Q— is an oleoyl units and m is equal to 2.




X is a softener compatible anion, preferably the anion of a strong acid, for example, chloride, bromide, methylsulfate, ethylsulfate, sulfate, nitrate and mixtures thereof, more preferably chloride and methyl sulfate.




ii) Polyvinyl Amines




A preferred embodiment of the present invention contains at least about 0.2%, preferably from about 0.2% to about 5%, more preferably from about 0.2% to about 2% by weight, of one or more polyvinyl amines having the formula











wherein y is from about 3 to about 10,000, preferably from about 10 to about 5,000, more preferably from about 20 to about 500. Polyvinyl amines suitable for use in the present invention are available from BASF.




Optionally, one or more of the polyvinyl amine backbone —NH2 unit hydrogens can be substituted by an alkyleneoxy unit having the formula:






—(


R




1




O


)


x




R




2








wherein R


1


is C


2


—C


4


alkylene, R


2


is hydrogen, C


1


—C


4


alkyl, and mixtures thereof; x is from 1 to 50. In one embodiment or the present invention the polyvinyl amine is reacted first with a substrate which places a 2-propyleneoxy unit directly on the nitrogen followed by reaction of one or more moles of ethylene oxide to form a unit having the general formula:











wherein x has the value of from 1 to about 50. Substitutions such as the above are represented by the abbreviated formula PO—EO


X


—. However, more than one propyleneoxy unit can be incorporated into the alkyleneoxy substituent.




Polyvinyl amines are especially preferred for use as cationic charge booster in liquid fabric softening compositions since the greater number of amine moieties per unit weight provides substantial charge density. In addition, the cationic charge is generated in situ and the level of cationic charge can be adjusted by the formulator.




iii) Poly-Quaternary Ammonium Compounds




A preferred composition of the present invention comprises at least about 0.2%, preferably from about 0.2% to about 10%, more preferably from about 0.2% to about 5% by weight, of a cationic charge booster having the formula:











wherein R is C


2


—C


12


alkylene, preferably C


2


—C8 alkylene, more preferably hexamethylene; each R


3


is independently R


1


, an acyl comprising unit having the formula:











wherein R


4


is C


6


—C


22


linear or branched, substituted or unsubstituted alkyl, C


6


—C


22


linear or branched, substituted or unsubstituted alkenyl, or mixtures thereof; and mixtures thereof; each R


5


is independently hydrogen, —OH, —NH


2


, —(CH


2


)


z


WC(O)R


4


, and mixtures thereof; Q is a quaternizing unit selected from the group consisting of C


1


—C


12


alkyl, benzyl, and mixtures thereof; W is —O—, —NH—, and mixtures thereof; X is a water soluble cation; the index n is 1 or 2; y is from 2 to 6; z is from 0 to 4; y+z is less than 7.




An example of a fabric softener cationic booster comprising a —(CH


2


)


z


WC(O)R


4


moiety has the formula:











wherein R


3


is methyl or —(CH


2


)


z


WC(O)R


4


, Q is methyl, W is oxygen, the index z is equal to 2, such that —WC(O)R


4


is an oleoyl unit.




Cationic Nitrogen Compounds




The fabric enhancement compositions of the present invention may optionally comprise from about 0.5%, preferably from about 1% to about 10%, preferably to about 5% by weight, of one or more cationic nitrogen containing compound, preferably a cationic compound having the formula:











wherein R is C


10


—C


18


alkyl, each R


1


is independently C


1


—C


4


alkyl, X is a water soluble anion; preferably R is C


12


—C


14


, preferably R


1


is methyl. Preferred X is halogen, more preferably chlorine. Examples of cationic nitrogen compounds suitable for use in the fabric care compositions of the present invention are




Non-limiting examples of preferred cationic nitrogen compounds are N,N-dimethyl-(2-hydroxyethyl)-N-dodecyl ammonium bromide, N,N-dimethyl-(2-hydroxyethyl)-N-tetradecyl ammonium bromide. Suitable cationic nitrogen compounds are available ex Akzo under the tradenames Ethomeen T/15®, Secomine TA15®, and Ethoduomeen T/20®.




BLEACHING SYSTEM




The compositions of the present invention can optionally comprise an effective amount of a bleach catalyst. The term “an effective amount” is defined as “an amount of the transition- metal bleach catalyst present in the present invention compositions, or during use according to the present invention methods, that is sufficient, under whatever comparative or use conditions are employed, to result in at least partial oxidation of the material sought to be oxidized by the composition or method.” Typically the material to be oxidized is an unwanted substance inter alia food and beverage stains, greasy/oily stains, body soils on fabric, however, this is not the limitation to which the invention is applicable. Bleaching with the herein described catalysts is accomplished in the absence of a source of peroxygen




Preferably the compositions of the present invention comprise from about 1 ppb (0.0000001%), more preferably from about 100 ppb (0.00001%), yet more preferably from about 500 ppb (0.00005%), still more preferably from about 1 ppm (0.0001%) to about 99.9%, more preferably to about 50%, yet more preferably to about 5%, still more preferably to about 500 ppm (0.05%) by weight of the composition, of a transition-metal bleach catalyst as described herein below.




In the broadest view, the transition-metal bleach catalysts which can be used in the compositions of the present invention comprise:




i) a transition metal selected from the group consisting of Mn(II), Mn(III), Mn(IV), Mn(V), Fe(II), Fe(III), Fe(IV), Co(I), Co(II), Co(III), Ni(I), Ni(II), Ni(III), Cu(I), Cu(II), Cu(III), Cr(II), Cr(III), Cr(IV), Cr(V), Cr(VI), V(III), V(IV), V(V), Mo(IV), Mo(V), Mo(VI), W(IV), W(V), W(VI), Pd(II), Ru(II), Ru(III), and Ru(IV), preferably Mn(II), Mn(III), Mn(IV), Fe(II), Fe(III), Fe(IV), Cr(II), Cr(III), Cr(IV), Cr(V), Cr(VI), and mixtures thereof; and




ii) a cross-bridged macropolycyclic ligand being coordinated by four or five donor atoms to the same transition metal, said ligand comprising:




a) an organic macrocycle ring containing four or more donor atoms (preferably at least 3, more preferably at least 4, of these donor atoms are N) separated from each other by covalent linkages of 2 or 3 non-donor atoms, two to five (preferably three to four, more preferably four) of these donor atoms being coordinated to the same transition metal atom in the complex;




b) a cross-bridged chain which covalently connects at least 2 non-adjacent donor atoms of the organic macrocycle ring, said covalently connected non-adjacent donor atoms being bridgehead donor atoms which are coordinated to the same transition metal in the complex, and wherein said cross-bridged chain comprises from 2 to about 10 atoms (preferably the cross-bridged chain is selected from 2, 3 or 4 non-donor atoms, and 4-6 non-donor atoms with a further donor atom);




c) optionally, one or more non-macropolycyclic ligands, preferably selected from the group consisting of H


2


O, ROH, NR


3,


RCN, OH





, OOH





, RS





, RO





, RCOO





, OCN





, SCN





, N


3







, CN





, F





, Cl





, Br





, I





, O


2







, NO


3







, NO


2







, SO


4




2−


, SO


3




2−


, PO


4




3−


, organic phosphates, organic phosphonates, organic sulfates, organic sulfonates, and aromatic N donors such as pyridines, pyrazines, pyrazoles, imidazoles, benzimidazoles, pyrimidines, triazoles and thiazoles with R being H, optionally substituted alkyl, optionally substituted aryl.




The preferred cross-bridged macropolycyclic ligands are is selected from the group consisting of:




a) a cross-bridged macropolycyclic ligand of formula (I) having denticity of 4 or 5:











b) a cross-bridged macropolycyclic ligand of formula (II) having denticity of 5 or 6:











c) the cross-bridged macropolycyclic ligand of formula (III) having denticity of 6 or 7:











where in each E unit represents the moiety having the formula:






(


CR




n


)


a




—X—


(


CR




n


)


a









wherein X is selected from the group consisting of oxygen, sulfur, —NR—, phosphorous, or X represents a covalent bond wherein E has the formula:






(


CR




n


)


a


—(


CR




n


)


a









for each E units the sum of a+a′ is independently selected from 1 to 5; each G unit is a moiety (CR


n


)


b


; each R unit is independently selected from H, alkyl, alkenyl, alkynyl, aryl, alkylaryl, and heteroaryl, or two or more R units are covalently bonded to form an aromatic, heteroaromatic, cycloalkyl, or heterocycloalkyl ring; each D unit is a donor atom independently selected from the group consisting of nitrogen, oxygen, sulfur, and phosphorous, and at least two atoms which comprise D units are bridgehead donor atoms coordinated to the transition metal; B units are a carbon atom, a D unit, or a cycloalkyl or heterocyclic ring; each n is an integer independently selected from 1 and 2, completing the valence of the carbon atoms to which the R units are covalently bonded; each n′ is an integer independently selected from 0 and 1, completing the valence of the D donor atoms to which the R moieties are covalently bonded; each n″ is an integer independently selected from 0, 1, and 2 completing the valence of the B atoms to which the R moieties are covalently bonded; each a and a′ is an integer independently selected from 0 to 5. wherein the sum of all a+a′ values in the ligand of formula (I) is within the range of from about 8 to about 12; the sum of all a+a′ values in the ligand of formula (II) is within the range of from about 10 to about 15; and the sum of all a+a′ values in the ligand of formula (III) is within the range of from about 12 to about 18; each b is an integer independently selected from 0 to 9, or in any of the above formulas, one or more of the (CR


n


)


b


moieties covalently bonded from any D to the B atom is absent as long as at least two (CR


n


)


b


covalently bond two of the D donor atoms to the B atom in the formula, and the sum of all b indices is within the range of from about 2 to about 5.




A further description of the bleach catalysts of the present invention can be found in WO 98/39406 A1, published Sep. 11, 1998, WO 98/39098 A1, published Sep. 11, 1998, and WO 98/39335 A1, published Sep. 11, 1998, all of which are included herein by reference.




The nomenclature used throughout this patent to describe the transition-metal bleach catalysts is the same nomenclature style used in the above-identified references. However, the chemical names of one or more of the herein described ligands may vary from the chemical name assigned under the rules of the International Union of Pure and Applied Chemistry (IUPAC). For example, a preferred ligand for the purposes of the present invention, 5,12-dimethyl-1,5,8,12-tetraaza-bicyclo[6.6.2]hexadecane, has the IUPAC name 4,11-dimethyl-1,4,8,11-tetraaza-bicyclo[6.6.2]hexadecane.




Transition-metal bleach catalysts useful in the invention compositions can in general include known compounds where they conform with the invention definition, as well as, more preferably, any of a large number of novel compounds expressly designed for the present laundry or cleaning uses. Non-limiting examples of suitable catalysts according to the present invention include:




Dichloro-5,12-dimethyl-1,5,8,12-tetraazabicyclo[6.6.2]hexadecane Manganese(II)




Dichloro-4,10-dimethyl-1,4,7,10-tetraazabicyclo[5.5.2]tetradecane Manganese(II)




Diaquo-5,12-dimethyl-1,5,8,12-tetraazabicyclo[6.6.2]hexadecane Manganese(II) Hexafluorophosphate




Aquo-hydroxy-5,12-dimethyl-1,5,8,12-tetraazabicyclo[6.6.2]hexadecane Manganese(III) Hexafluorophosphate




Diaquo4,10-dimethyl-1,4,7,10-tetraazabicyclo[5.5.2]tetradecane Manganese(II) Hexafluorophosphate




Diaquo-5,12-dimethyl-1,5,8,12-tetraazabicyclo[6.6.2]hexadecane Manganese(II) Tetrafluoroborate




Diaquo4,10-dimethyl-1,4,7,10-tetraazabicyclo[5.5.2]tetradecane Manganese(II) Tetrafluoroborate




Dichloro-5,12-dimethyl-1,5,8,12-tetraazabicyclo[6.6.2]hexadecane Manganese(III) Hexafluorophosphate




Dichloro-5,12-di-n-butyl-1,5,8,12-tetraaza-bicyclo[6.6.2]hexadecane Manganese(II)




Dichloro-5,12-dibenzyl-1,5,8,12-tetraazabicyclo[6.6.2]hexadecane Manganese(II)




Dichloro-5-n-butyl-12-methyl-1,5,8,12-tetraaza-bicyclo[6.6.2]hexadecane Manganese(II)




Dichloro-5-n-octyl-12-methyl-1,5,8,12-tetraaza-bicyclo[6.6.2]hexadecane Manganese(II)




Dichloro-5-n-butyl-12-methyl-1,5,8,12-tetraaza-bicyclo[6.6.2]hexadecane Manganese(II)




Dichloro-5,12-dimethyl-1,5,8,12-tetraazabicyclo[6.6.2]hexadecane Iron(II)




Dichloro4,10-dimethyl-1,4,7,10-tetraazabicyclo[5.5.2]tetradecane Iron(II)




Dichloro-5,12-dimethyl-1,5,8,12-tetraazabicyclo[6.6.2]hexadecane Copper(II)




Dichloro-4,10-dimethyl-1,4,7,10-tetraazabicyclo[5.5.2]tetradecane Copper(II)




Dichloro-5,12-dimethyl-1,5,8,12-tetraazabicyclo[6.6.2]hexadecane Cobalt(II)




Dichloro-4,10-dimethyl-1,4,7,10-tetraazabicyclo[5.5.2]tetradecane Cobalt(II)




Dichloro-5,12-dimethyl-4-phenyl-1,5,8,12-tetraazabicyclo[6.6.2]hexadecane Manganese(I)




Dichloro-4,10-dimethyl-3-phenyl-1,4,7,10-tetraazabicyclo[5.5.2]tetradecane Manganese(II)




Dichloro-5,12-dimethyl4,9-diphenyl-1,5,8,12-tetraazabicyclo[6.6.2]hexadecane Manganese(II)




Dichloro-4,10-dimethyl-3,8-diphenyl-1,4,7,10-tetraazabicyclo[5.5.2]tetradecane Manganese(II)




Dichloro-5,12-dimethyl-2,11-diphenyl-1,5,8,12-tetraazabicyclo[6.6.2]hexadecane Manganese(II)




Dichloro-4,10-dimethyl-4,9-diphenyl-1,4,7,10-tetraazabicyclo[5.5.2]tetradecane Manganese(II)




Dichloro-2,4,5,9,11,12-hexamethyl-1,5,8,12-tetraazabicyclo[6.6.2]hexadecane Manganese(II)




Dichloro-2,3,5,9,10,12-hexamethyl-1,5,8,12-tetraazabicyclo[6.6.2]hexadecane Manganese(II)




Dichloro-2,2,4,5,9,9,11,12-octamethyl-1,5,8,12-tetraazabicyclo[6.6.2]hexadecane Manganese(II)




Dichloro-2,2,4,5,9,11,11,12-octamethyl-1,5,8,12-tetraazabicyclo[6.6.2]hexadecane Manganese(II)




Dichloro-3,3,5,10,10,12-hexamethyl-1,5,8,12-tetraazabicyclo[6.6.2]hexadecane Manganese(II)




Dichloro-3,5,10,12-tetramethyl-1,5,8,12-tetraazabicyclo[6.6.2]hexadecane Manganese(II)




Dichloro-3-butyl-5,10,12-trimethyl-1,5,8,12-tetraazabicyclo[6.6.2]hexadecane Manganese(II)




Dichloro-1,5,8,12-tetraazabicyclo[6.6.2]hexadecane Manganese(II)




Dichloro-1,4,7,10-tetraazabicyclo[5.5.2]tetradecane Manganese(II)




Dichloro-1,5,8,12-tetraazabicyclo[6.6.2]hexadecane Iron(II)




Dichloro-1,4,7,10-tetraazabicyclo[5.5.2]tetradecane Iron(II)




Aquo-chloro-2-(2-hydroxyphenyl)-5,12-dimethyl-1,5,8,12-tetraazabicyclo[6.6.2]hexadecane Manganese(II)




Aquo-chloro-10-(2-hydroxybenzyl)-4,10-dimethyl-1,4,7,10-tetraazabicyclo[5.5.2]tetradecane Manganese(II)




Chloro-2-(2-hydroxybenzyl)-5-methyl 1,5,8,12-tetraazabicyclo[6.6.2]hexadecane Manganese(II)




Chloro-10-(2-hydroxybenzyl)-4-methyl-1,4,7,10-tetraazabicyclo[5.5.2]tetradecane Manganese(II)




Chloro-5-methyl-12-(2-picolyl)-1,5,8,12-tetraazabicyclo[6.6.2]hexadecane Manganese(II) Chloride




Chloro-4-methyl-10-(2-picolyl)-1,4,7,10-tetraazabicyclo[5.5.2]tetradecane Manganese(II) Chloride




Dichloro-5-(2-sulfato)dodecyl-12-methyl-1,5,8,12-tetraazabicyclo[6.6.2]hexadecane Manganese(III)




Aquo-Chloro-5-(2-sulfato)dodecyl-12-methyl-1,5,8,12-tetraazabicyclo[6.6.2]hexadecane Manganese(II)




Aquo-Chloro-5-(3-sulfonopropyl)-12-methyl-1,5,8,12-tetraazabicyclo[6.6.2]hexadecane Manganese(II)




Dichloro-5-(Trimethylammoniopropyl)dodecyl-12-methyl-1,5,8,12-tetraazabicyclo[6.6.2]hexadecane Manganese(III) Chloride




Dichloro-5,12-dimethyl-1,4,7,10,13-pentaazabicyclo[8.5.2]heptadecane Manganese(II)




Dichloro-14,20-dimethyl-1,10,14,20-tetraazatriyclo[8.6.6]docosa-3(8),4,6-triene Manganese(II)




Dichloro-4,11-dimethyl-1,4,7,11-tetraazabicyclo[6.5.2]pentadecane Manganese(II)




Dichloro-5,12-dimethyl-1,5,8,12-tetraazabicyclo[7.6.2]heptadecane Manganese(II)




Dichloro-5,13-dimethyl-1,5,9,13-tetraazabicyclo[7.7.2]heptadecane Manganese(II)




Dichloro-3,10-bis(butylcarboxy)-5,12-dimethyl-1,5,8,12-tetraazabicyclo[6.6.2]hexadecane Manganese(II)




Diaquo-3,10-dicarboxy-5,12-dimethyl-1,5,8,12-tetraazabicyclo[6.6.2]hexadecane Manganese(II)




Chloro-20-methyl-1,9,20,24,25-pentaaza-tetracyclo[7.7.7.1


3,7


1


11,15


.]pentacosa-3,5,7(24),11,13,15(25)-hexa-ene manganese(II Hexafluorophosphate




Trifluoromethanesulfono-20-methyl-1,9,20,24,25-pentaaza-tetracyclo[7.7.7.1


3,7


.1


11,15


.]pentacosa-3,5,7(24),11,13,15(25)-hexaene Manganese(II) Trifluoromethanesulfonate




Trifluoromethanesulfono-20-methyl-1,9,20,24,25-pentaaza-tetracyclo[7.7.7.1


3,7


.1


11,15


.]pentacosa-3,5,7(24),11,13,15(25)-hexaene Iron(II) Trifluoromethanesulfonate




Chloro-5,12,17-trimethyl-1,5,8,12,17-pentaazabicyclo[6.6.5]nonadecane Manganese(II) Hexafluorophosphate




Chloro4,10,15-trimethyl-1,4,7,10,15-pentaazabicyclo[5.5.5]heptadecane Manganese(II) Hexafluorophosphate




Chloro-5,12,17-trimethyl-1,5,8,12,17-pentaazabicyclo[6.6.5]nonadecane Manganese(II) Chloride




Chloro4,10,15 -trimethyl-1,4,7,10,15 -pentaazabicyclo[5.5.5]heptadecane Manganese(II) Chloride




Dichloro 5,12,15,16-tetramethyl-1,5,8,12-tetraazabicyclo[6.6.2]hexadecane Manganese(II)




Chloro 5-methyl-12-(2′-oxybenzyl)-1,5,8,12-tetraazabicyclo[6.6.2]hexadecane Manganese(II)




Preferred complexes useful as transition-metal bleach catalysts more generally include not only monometallic, mononuclear kinds such as those illustrated hereinabove but also bimetallic, trimetallic or cluster kinds. Monometallic, mononuclear complexes are preferred. As defined herein, a monometallic transition-metal bleach catalyst contains only one transition metal atom per mole of complex. A monometallic, mononuclear complex is one in which any donor atoms of the essential macrocyclic ligand are bonded to the same transition metal atom, that is, the essential ligand does not “bridge” across two or more transition-metal atoms.




Builders




The laundry detergent compositions of the present invention preferably comprise one or more detergent builders or builder systems. When present, the compositions will typically comprise at least about 1% builder, preferably from about 5%, more preferably from about 10% to about 80%, preferably to about 50%, more preferably to about 30% by weight, of detergent builder.




The level of builder can vary widely depending upon the end use of the composition and its desired physical form. When present, the compositions will typically comprise at least about 1% builder. Formulations typically comprise from about 5% to about 50%, more typically about 5% to about 30%, by weight, of detergent builder. Granular formulations typically comprise from about 10% to about 80%, more typically from about 15% to about 50% by weight, of the detergent builder. Lower or higher levels of builder, however, are not meant to be excluded.




Inorganic or P-containing detergent builders include, but are not limited to, the alkali metal, ammonium and alkanolammonium salts of polyphosphates (exemplified by the tripolyphosphates, pyrophosphates, and glassy polymeric meta-phosphates), phosphonates, phytic acid, silicates, carbonates (including bicarbonates and sesquicarbonates), sulphates, and aluminosilicates. However, non-phosphate builders are required in some locales. Importantly, the compositions herein function surprisingly well even in the presence of the so-called “weak” builders (as compared with phosphates) such as citrate, or in the so-called “underbuilt” situation that may occur with zeolite or layered silicate builders.




Examples of silicate builders are the alkali metal silicates, particularly those having a SiO


2


:Na


2


O ratio in the range 1.6:1 to 3.2:1 and layered silicates, such as the layered sodium silicates described in U.S. Pat. No. 4,664,839 Rieck, issued May 12, 1987. NaSKS-6 is the trademark for a crystalline layered silicate marketed by Hoechst (commonly abbreviated herein as “SKS-6”). Unlike zeolite builders, the Na SKS-6 silicate builder does not contain aluminum. NaSKS-6 has the delta-Na


2


SiO


5


morphology form of layered silicate. It can be prepared by methods such as those described in German DE-A-3,417,649 and DE-A-3,742,043. SKS6 is a highly preferred layered silicate for use herein, but other such layered silicates, such as those having the general formula NaMSi


X


O


2x+1


.yH


2


O wherein M is sodium or hydrogen, x is a number from 1.9 to 4, preferably 2, and y is a number from 0 to 20, preferably 0 can be used herein. Various other layered silicates from Hoechst include NaSKS-5, NaSKS-7 and NaSKS-11, as the alpha, beta and gamma forms. As noted above, the delta-Na


2


SiO


5


(NaSKS-6 form) is most preferred for use herein. Other silicates may also be useful such as for example magnesium silicate, which can serve as a crispening agent in granular formulations, as a stabilizing agent for oxygen bleaches, and as a component of suds control systems.




Examples of carbonate builders are the alkaline earth and alkali metal carbonates as disclosed in German Patent Application No. 2,321,001 published on Nov. 15, 1973.




Aluminosilicate builders are useful in the present invention. Aluminosilicate builders are of great importance in most currently marketed heavy duty granular detergent compositions, and can also be a significant builder ingredient in liquid detergent formulations. Aluminosilicate builders include those having the empirical formula:






[


M




Z


(


zAlO




2


)


y




].xH




2




O








wherein z and y are integers of at least 6, the molar ratio of z to y is in the range from 1.0 to about 0.5, and x is an integer from about 15 to about 264.




Useful aluminosilicate ion exchange materials are commercially available. These aluminosilicates can be crystalline or amorphous in structure and can be naturally-occurring aluminosilicates or synthetically derived. A method for producing aluminosilicate ion exchange materials is disclosed in U.S. Pat. No. 3,985,669, Krummel et al, issued Oct. 12, 1976. Preferred synthetic crystalline aluminosilicate ion exchange materials useful herein are available under the designations Zeolite A, Zeolite P (B), Zeolite MAP and Zeolite X. In an especially preferred embodiment, the crystalline aluminosilicate ion exchange material has the formula:








Na




12


[(


AlO




2


)


12


(


SiO




2


)


12




].xH




2


O






wherein x is from about 20 to about 30, especially about 27. This material is known as Zeolite A. Dehydrated zeolites (x=0−10) may also be used herein. Preferably, the aluminosilicate has a particle size of about 0.1-10 microns in diameter.




Organic detergent builders suitable for the purposes of the present invention include, but are not restricted to, a wide variety of polycarboxylate compounds. As used herein, “polycarboxylate” refers to compounds having a plurality of carboxylate groups, preferably at least 3 carboxylates. Polycarboxylate builder can generally be added to the composition in acid form, but can also be added in the form of a neutralized salt. When utilized in salt form, alkali metals, such as sodium, potassium, and lithium, or alkanolammonium salts are preferred.




Included among the polycarboxylate builders are a variety of categories of useful materials. One important category of polycarboxylate builders encompasses the ether polycarboxylates, including oxydisuccinate, as disclosed in U.S. Pat. No. 3,128,287 Berg, issued Apr. 7, 1964, and U.S. Pat. No. 3,635,830 Lamberti et al., issued Jan. 18, 1972. See also “TMS/TDS” builders of U.S. Pat. No. 4,663,071 Bush et al., issued May 5, 1987. Suitable ether polycarboxylates also include cyclic compounds, particularly alicyclic compounds, such as those described in U.S. Pat. No. 3,923,679 Rapko, issued Dec. 2, 1975; U.S. Pat. No. 4,158,635 Crutchfield et al., issued Jun. 19, 1979; U.S. Pat. No. 4,120,874 Crutchfield et al., issued Oct. 17, 1978; and U.S. Pat. No. 4,102,903 Crutchfield et al., issued Jul. 25, 1978.




Other useful detergency builders include the ether hydroxypolycarboxylates, copolymers of maleic anhydride with ethylene or vinyl methyl ether, 1,3,5-trihydroxy benzene-2,4,6-trisulphonic acid, and carboxymethyloxysuccinic acid, the various alkali metal, ammonium and substituted ammonium salts of polyacetic acids such as ethylenediamine tetraacetic acid and nitrilotriacetic acid, as well as polycarboxylates such as mellitic acid, succinic acid, oxydisuccinic acid, polymaleic acid, benzene 1,3,5-tricarboxylic acid, carboxymethyloxysuccinic acid, and soluble salts thereof.




Citrate builders, e.g., citric acid and soluble salts thereof (particularly sodium salt), are polycarboxylate builders of particular importance for heavy duty liquid detergent formulations due to their availability from renewable resources and their biodegradability. Citrates can also be used in granular compositions, especially in combination with zeolite and/or layered silicate builders. Oxydisuccinates are also especially useful in such compositions and combinations.




Also suitable in the detergent compositions of the present invention are the 3,3-dicarboxy-4-oxa-1,6-hexanedioates and the related compounds disclosed in U.S. Pat. No. 4,566,984, Bush, issued Jan. 28, 1986. Useful succinic acid builders include the C


5


—C


20


alkyl and alkenyl succinic acids and salts thereof. A particularly preferred compound of this type is dodecenylsuccinic acid. Specific examples of succinate builders include: laurylsuccinate, myristylsuccinate, palmitylsuccinate, 2-dodecenylsuccinate (preferred), 2-pentadecenylsuccinate, and the like. Laurylsuccinates are the preferred builders of this group, and are described in European Patent Application 86200690.5/0,200,263, published Nov. 5, 1986.




Other suitable polycarboxylates are disclosed in U.S. Pat No. 4,144,226, Crutchfield et al., issued Mar. 13, 1979 and in U.S. Pat. No. 3,308,067, Diehl, issued Mar. 7, 1967. See also Diehl U.S. Pat. No. 3,723,322.




Fatty acids, e.g., C


12


—C


8


monocarboxylic acids, can also be incorporated into the compositions alone, or in combination with the aforesaid builders, especially citrate and/or the succinate builders, to provide additional builder activity. Such use of fatty acids will generally result in a diminution of sudsing, which should be taken into account by the formulator.




In situations where phosphorus-based builders can be used, and especially in the formulation of bars used for hand-laundering operations, the various alkali metal phosphates such as the well-known sodium tripolyphosphates, sodium pyrophosphate and sodium orthophosphate can be used. Phosphonate builders such as ethane-1-hydroxy-1,1-diphosphonate and other known phosphonates (see, for example, U.S. Pat. Nos. 3,159,581; 3,213,030; 3,422,021; 3,400,148 and 3,422,137) can also be used.




Dispersants




A description of other suitable polyalkyleneimine dispersants which may be optionally combined with the bleach stable dispersants of the present invention can be found in U.S. Pat. No. 4,597,898 Vander Meer, issued Jul. 1, 1986; European Patent Application 111,965 Oh and Gosselink, published Jun. 27, 1984; European Patent Application 111,984 Gosselink, published Jun. 27, 1984; European Patent Application 112,592 Gosselink, published Jul. 4, 1984; U.S. Pat. No. 4,548,744 Connor, issued Oct. 22, 1985; and U.S. Pat. No. 5,565,145 Watson et al., issued Oct. 15, 1996; all of which are included herein by reference. However, any suitable clay/soil dispersant or anti-redepostion agent can be used in the laundry compositions of the present invention.




In addition, polymeric dispersing agents which include polymeric polycarboxylates and polyethylene glycols, are suitable for use in the present invention. Polymeric polycarboxylate materials can be prepared by polymerizing or copolymerizing suitable unsaturated monomers, preferably in their acid form. Unsaturated monomeric acids that can be polymerized to form suitable polymeric polycarboxylates include acrylic acid, maleic acid (or maleic anhydride), fumaric acid, itaconic acid, aconitic acid, mesaconic acid, citraconic acid and methylenemalonic acid. The presence in the polymeric polycarboxylates herein or monomeric segments, containing no carboxylate radicals such as vinylmethyl ether, styrene, ethylene, etc. is suitable provided that such segments do not constitute more than about 40% by weight.




Particularly suitable polymeric polycarboxylates can be derived from acrylic acid. Such acrylic acid-based polymers which are useful herein are the water-soluble salts of polymerized acrylic acid. The average molecular weight of such polymers in the acid form preferably ranges from about 2,000 to 10,000, more preferably from about 4,000 to 7,000 and most preferably from about 4,000 to 5,000. Water-soluble salts of such acrylic acid polymers can include, for example, the alkali metal, ammonium and substituted ammonium salts. Soluble polymers of this type are known materials. Use of polyacrylates of this type in detergent compositions has been disclosed, for example, in Diehl, U.S. Pat. No. 3,308,067, issued Mar. 7, 1967.




Acrylic/maleic-based copolymers may also be used as a preferred component of the dispersing/anti-redeposition agent. Such materials include the water-soluble salts of copolymers of acrylic acid and maleic acid. The average molecular weight of such copolymers in the acid form preferably ranges from about 2,000, preferably from about 5,000, more preferably from about 7,000 to 100,000, more preferably to 75,000, most preferably to 65,000. The ratio of acrylate to maleate segments in such copolymers will generally range from about 30:1 to about 1:1, more preferably from about 10:1 to 2:1. Water-soluble salts of such acrylic acid/maleic acid copolymers can include, for example, the alkali metal, ammonium and substituted ammonium salts. Soluble acrylate/maleate copolymers of this type are known materials which are described in European Patent Application No. 66915, published Dec. 15, 1982, as well as in EP 193,360, published Sep. 3, 1986, which also describes such polymers comprising hydroxypropylacrylate. Still other useful dispersing agents include the maleic/acrylic/vinyl alcohol terpolymers. Such materials are also disclosed in EP 193,360, including, for example, the 45/45/10 terpolymer of acrylic/maleic/vinyl alcohol.




Another polymeric material which can be included is polyethylene glycol (PEG). PEG can exhibit dispersing agent performance as well as act as a clay soil removal-antiredeposition agent. Typical molecular weight ranges for these purposes range from about 500 to about 100,000, preferably from about 1,000 to about 50,000, more preferably from about 1,500 to about 10,000.




Polyaspartate and polyglutamate dispersing agents may also be used, especially in conjunction with zeolite builders. Dispersing agents such as polyaspartate preferably have a molecular weight (avg.) of about 10,000.




Soil Release Agents




The compositions according to the present invention may optionally comprise one or more soil release agents. If utilized, soil release agents will generally comprise from about 0.01%, preferably from about 0.1%, more preferably from about 0.2% to about 10%, preferably to about 5%, more preferably to about 3% by weight, of the composition. Polymeric soil release agents are characterized by having both hydrophilic segments, to hydrophilize the surface of hydrophobic fibers, such as polyester and nylon, and hydrophobic segments, to deposit upon hydrophobic fibers and remain adhered thereto through completion of the laundry cycle and, thus, serve as an anchor for the hydrophilic segments. This can enable stains occuring subsequent to treatment with the soil release agent to be more easily cleaned in later washing procedures.




The following, all included herein by reference, describe soil release polymers suitable for use in the present invention. U.S. Pat. No. 5,728,671 Rohrbaugh et al., issued Mar. 17, 1998; U.S. Pat. No. 5,691,298 Gosselink et al., issued Nov. 25, 1997; U.S. Pat. No. 5,599,782 Pan et al., issued Feb. 4, 1997; U.S. Pat. No. 5,415,807 Gosselink et al., issued May 16, 1995; U.S. Pat. No. 5,182,043 Morrall et al., issued Jan. 26, 1993; U.S. Pat. No. 4,956,447 Gosselink et al., issued Sep. 11, 1990; U.S. Pat. No. 4,976,879 Maldonado et al. issued Dec. 11, 1990; U.S. Pat. No. 4,968,451 Scheibel et al., issued Nov. 6, 1990; U.S. Pat. No. 4,925,577 Borcher, Sr. et al., issued May 15, 1990; U.S. Pat. No. 4,861,512 Gosselink, issued Aug. 29, 1989; U.S. Pat. No. 4,877,896 Maldonado et al., issued Oct. 31, 1989; U.S. Pat. No. 4,771,730 Gosselink et al., issued Oct. 27, 1987; U.S. Pat. No. 711,730 Gosselink et al., issued Dec. 8, 1987; U.S. Pat. No. 4,721,580 Gosselink issued Jan. 26, 1988; U.S. Pat. No. 4,000,093 Nicol et al., issued Dec. 28, 1976; U.S. Pat. No. 3,959,230 Hayes, issued May 25, 1976; U.S. Pat. No. 3,893,929 Basadur, issued Jul. 8, 1975; and European Patent Application 0 219 048, published Apr. 22, 1987 by Kud et al.




Further suitable soil release agents are described in U.S. Pat. No. 4,201,824 Voilland et al.; U.S. Pat. No. 4,240,918 Lagasse et al; U.S. Pat. No. 4,525,524 Tung et al.; U.S. Pat. No. 4,579,681 Ruppert et al.; U.S. Pat. No. 4,220,918; U.S. Pat. No. 4,787,989; EP 279,134 A, 1988 to Rhone-Poulenc Chemie; EP 457,205 A to BASF (1991); and DE 2,335,044 to Unilever N.V., 1974; all incorporated herein by reference.




FABRIC CARE COMPOSITIONS




The following are examples of fabric care compositions of the present invention which comprise one or more polyalkyleneimine dispersants, said compositions providing and/or maintaining fabric appearance.




A preferred composition comprises:




a) from about 0.01%, preferably from about 0.75%, more preferably from 2%, most preferably from about 5% to about 50%, preferably to about 35%, more preferably to about 20%, most preferably to about 15% by weight, of a modified polyamine, said polyamine selected from:




i) linear polyamines having the formula:











 wherein R is 1,2-propylene, 1,3-propylene, and mixtures thereof; R


1


is hydrogen, methyl, ethyl, alkyleneoxy having the formula:






—(


R




3




O


)—


R




4








 wherein each R


3


is independently ethylene, 1,2-propylene, 1,3-propylene, and mixtures thereof, R


4


is hydrogen, C


1


—C


4


alkyl, or mixtures thereof; and mixtures thereof; R


2


is hydrogen, R


1


, —RN(R


1


)


2,


and mixtures thereof; n is 1 or2;




ii) cyclic polyamines having the formula:






(


R




1


)


2




N


—(


CH




2


)


k




—L


—(


CH




2


)


k




—N


(


R




1


)


2








 wherein L is a linking unit, said linking unit comprising a ring having at least 2 nitrogen atoms; R


1


is hydrogen, methyl, ethyl, alkyleneoxy having the formula:






—(


R




3




O


)—


R




4








 wherein each R


3


is independently ethylene, 1,2-propylene, 1,3-propylene, and mixtures thereof, R


4


is hydrogen, C


1


—C


4


alkyl, or mixtures thereof; each k independently has the value of from 2 to 4;




iii) and mixtures thereof; and




b) the balance carriers and adjunct ingredients.




A further example of a fabric care composition comprises:




a) from about 0.01%, preferably from about 0.75%, more preferably from 2%, most preferably from about 5% to about 50%. preferably to about 35%, more preferably to about 20%, most preferably to about 15% by weight, of one or more linear or cyclic polyamines as described herein above;




b) from about 0.001% to about 90% by weight, of one or more dye fixing agents; and




c) the balance carriers and adjunct ingredients.




A preferred fabric care composition comprises:




a) from about 0.01%, preferably from about 0.75%, more preferably from 2%, most preferably from about 5% to about 50%, preferably to about 35%, more preferably to about 20%, most preferably to about 15% by weight, of one or more linear or cyclic polyamines as described herein above;




b) about 0.005% to about 1% by weight, of one or more crystal growth inhibitors;




c) from about 0.001%, preferably from about 0.01% to about 10%, preferably to about 5%, more preferably to about 3% by weight, of a chelant; and




d) the balance carriers and adjunct ingredients.




FABRIC SOFTENING COMPOSITIONS




The following are examples of fabric softening compositions of the present invention which comprise one or more polyalkyleneimine dispersants, said compositions providing and/or maintaining fabric appearance as well as providing anti-static benefits.




A preferred composition comprises:




a) from about 0.01%, preferably from about 0.75%, more preferably from 2% to about 50%, preferably to about 35%, more preferably to about 20%, most preferably to about 15% by weight, of a modified polyamine, said polyamine selected from:




i) linear polyamines having the formula:











 wherein R is 1,2-propylene, 1,3-propylene, and mixtures thereof; R


1


is hydrogen, methyl, ethyl, alkyleneoxy having the formula:






—(


R




3




O


)—


R




4








 wherein each R


3


is independently ethylene, 1,2-propylene, 1,3-propylene, and mixtures thereof, R


4


is hydrogen, C


1


—C


4


alkyl, or mixtures thereof; and mixtures thereof; R


2


is hydrogen, R


1


, —RN(R


1


)


2


, and mixtures thereof;




n is 1 or 2;




ii) cyclic polyamines having the formula:






(


R




1


)


2




N


—(


CH




2


)


k




—L


—(


CH




2


)


k




—N


(


R




1


)


2








 wherein L is a linking unit, said linking unit comprising a ring having at least 2 nitrogen atoms; R


1


is hydrogen, methyl, ethyl, alkyleneoxy having the formula:






—(


R




3




O


)—


R




4








 wherein each R


1


is independently ethylene, 1,2-propylene, 1,3-propylene, and mixtures thereof, R


4


is hydrogen, C


1


—C


4


alkyl, or mixtures thereof; each k independently has the value of from 2 to 4;




iii) and mixtures thereof;




b) from about 1%, preferably from about 10%, more preferably from about 20% to about 80%, more preferably to about 60%, most preferably to about 45% by weight, of one or more fabric softener actives;




c) from about 20 to about 10,000 parts per million (ppm) by weight, of a electrolyte; and




d) the balance carriers and adjunct ingredients.




A further example of a liquid fabric softener composition comprises:




a) from about 0.01%, preferably from about 0.75%, more preferably from 2% to about 50%, preferably to about 35%, more preferably to about 20%, most preferably to about 15% by weight, of one or more linear or cyclic polyamines as described herein above;




b) from about 1%, preferably from about 10%, more preferably from about 20% to about 80%, more preferably to about 60%, most preferably to about 45% by weight, of one or more fabric softener actives;




c) from about 0.001%, preferably from about 0.01% to about 10%, preferably to about 5%, more preferably to about 3% by weight, of a chelant; and




d) the balance carriers and adjunct ingredients.




A preferred isotropic liquid fabric softener composition comprises:




a) from about 0.01%, preferably from about 0.75%, more preferably from 2% to about 50%, preferably to about 35%, more preferably to about 20%, most preferably to about 15% by weight, of one or more linear or cyclic polyamines as described herein above;




b) from about 1%, preferably from about 10%, more preferably from about 20% to about 80%, more preferably to about 60%, most preferably to about 45% by weight, of one or more fabric softener actives;




c) from about 0.01% to about 0.2% by weight, a stabilizing system, said stabilizing system comprising:




i) from about 0.25%, preferably from about 0.5%, more preferably from about 1%, most preferably from about 1.5% to about 13.5%, preferably to about 10%, more preferably to about 7%, most preferably to about 5% by weight of an organic solvent; and




ii) from about 0.25%, preferably from about 0.5%, more preferably from about 1%, most preferably from about 2.5% to about 20%, preferably to about 15%, more preferably to about 12%, still more preferably to about 10%, most preferably to about 8% by weight, of a bilayer modifier; and




d) the balance carriers and adjunct ingredients.




LAUNDRY DETERGENT COMPOSITIONS




The following are examples of laundry detergent compositions of the present invention which comprise one or more polyalkyleneimine dispersants, said compositions providing enhanced color fidelity and/or bleach stability.




A preferred composition comprises:




a) from about 0.01%, preferably from about 0.75%, more preferably from 2% to about 50%, preferably to about 35%, more preferably to about 20%, most preferably to about 15% by weight, of one or more linear or cyclic polyamines as described herein above;




b) from about 0.01% by weight, preferably from about 0.1%, more preferably from about 1%, yet more preferably from about 5%, most preferably from about 10% to about 90%, preferably to about 60%, more preferably to about 30% by weight, of a detersive surfactant system, said detersive surfactant system selected from the group consisting of anionic, cationic, nonionic, zwitterionic, ampholytic surfactants, and mixtures thereof;




c) from about 1%, preferably from about 5% to about 30%, preferably to about 20% by weight, of a bleaching system, and




d) the balance carriers and adjunct ingredients.




A further preferred example of a laundry detergent composition according to the present invention comprises:




a) from about 0.01%, preferably from about 0.75%, more preferably from 2% to about 50%, preferably to about 35%, more preferably to about 20%, most preferably to about 15% by weight, of one or more linear or cyclic polyamines as described herein above;




b) from about 0.01% by weight, preferably from about 0. 1%, more preferably from about 1%, yet more preferably from about 5%, most preferably from about 10% to about 90%, preferably to about 60%, more preferably to about 30% by weight, of a detersive surfactant system, said detersive surfactant system selected from the group consisting of anionic, cationic, nonionic, zwitterionic, ampholytic surfactants, and mixtures thereof;




c) from about 1%, preferably from about 5% to about 30%, preferably to about 20% by weight, of a bleaching system, said bleaching system comprising one or more transition metal complexes as described herein above; and




d) the balance carriers and adjunct ingredients.




The following are non-limiting examples of adjunct ingredients useful in the laundry compositions of the present invention, said adjunct ingredients include builders, optical brighteners, soil release polymers, dye transfer agents, dispersents, enzymes, suds suppressers, dyes, perfumes, colorants, filler salts, hydrotropes, photoactivators, fluorescers, fabric conditioners, hydrolyzable surfactants, preservatives, anti-oxidants, chelants, stabilizers, anti-shrinkage agents, anti-wrinkle agents, germicides, fungicides, anti corrosion agents, and mixtures thereof.




METHOD OF USE




The present invention also relates to a method for using the laundry detergent, pre-treatment or post treatment, or rinse-added fabric conditioning compositions to suitably provide enhancement to fabric.




The methods of the present invention include a method for providing fabric enhancement “through-the-wash” comprising the step of contacting fabric in need of cleaning with an aqueous solution containing a least 50 ppm, preferably at least about 100 ppm, more preferably at least about 200 ppm, of a composition which comprises:




a) from about 0.01% by weight, of a detersive surfactant selected from the group consisting of anionic, cationic, nonionic, zwitterionic, ampholytic surfactants, and mixtures thereof;




b) from about 0.01%, preferably from about 0.75%, more preferably from 2%, most preferably from about 5% to about 50%, preferably to about 35%, more preferably to about 20%, most preferably to about 15% by weight, of a low molecular weight polyamine as described herein above; and




c) the balance carriers and adjunct ingredients.




The methods of the present invention include a method for providing fabric enhancement “through-the-wash” comprising the step of contacting fabric in need of cleaning with an aqueous solution containing a least 50 ppm, preferably at least about 100 ppm, more preferably at least about 200 ppm, of a composition which comprises:




a) from about 0.01%, preferably from about 0.75%, more preferably from 2%, most preferably from about 5% to about 50%, preferably to about 35%, more preferably to about 20%, most preferably to about 15% by weight; and




b) the balance carriers and adjunct ingredients as described herein above.




The methods of the present invention include a method for providing fabric enhancement “through-the-wash” comprising the step of contacting fabric in need of cleaning with an aqueous solution containing a least 50 ppm, preferably at least about 100 ppm, more preferably at least about 200 ppm, of a composition which comprises:




a) from about 0.01%, preferably from about 0.75%, more preferably from 2%, most preferably from about 5% to about 50%, preferably to about 35%, more preferably to about 20%, most preferably to about 15% by weight, of one or more low molecular weight polyamines as described herein above;




b) from about 1% to about 80% by weight of one or more fabric softening actives; and




c) the balance carriers and adjunct ingredients.




The methods of the present invention provide for enhancement of fabric. For example, the compositions of the present invention can be used to enhance color fidelity of fabric, to mitigate fabric dye damage, and to provide fabric wear benefits.




The enhancement of fabric is measured by one or more conventional means, inter alia, Hunter Color analysis.




METHOD OF DELIVERY




The compositions of the present invention need not be delivered via the laundry liquor or during the rinse cycle. For example, the embodiments of the present invention can be delivered directly to fabric either after drying, while still wet, or before the fabric is laundered. Thus the fabric treatment compositions of the present invention can be delivered to the situs of required treatment by any method suitable to the formulator.




One means for delivering the fabric care compositions, especially to areas wherein the composition will be allowed to remain on the surface of fabric, is via aerosol mousse discharged as an expandable and subsequently collapsible foam. For example, the composition is applied to an article of clothing having a porous surface (i.e., cotton) as a foam which expands to fill the interstices of the surface, remains as a foam until the composition is evenly delivered, and then collapses, after a period of time, signaling to the consumer that the composition has been effectively applied.




Non-limiting examples of methods for delivering the compositions of the present invention include direct pump sprayers, aerosol sprays (using aqueous or non-aqueous based propellants), by soft-tipped applicator, or by an applicator which comprises an abrasive element to aid in breaking up any dirt or other surface residue and delivering the composition directly to the surface.




The detergent compositions according to the present invention can be in liquid, paste, laundry bar, or granular form. Such compositions can be prepared by combining the essential and optional components in the requisite concentrations in any suitable order and by any conventional means.




The polyalkyleneimines of the present invention can be incorporated into granular detergent compositions in a variety of ways inter alia they can be suitably added as a slurry followed by spray drying of the slurry, the dispersants can be added as a separate particle, sprayed on to a nearly finished product, added with the balance of adjunct ingredients.




As a non-limiting example, granular compositions are generally made by combining base granule ingredients, e.g., surfactants, builders, water, etc., as a slurry, and spray drying the resulting slurry to a low level of residual moisture (5-12%). The remaining dry ingredients, e.g., granules of the polyalkyleneimine dispersant, can be admixed in granular powder form with the spray dried granules in a rotary mixing drum. The liquid ingredients, e.g., solutions of the polyalkyleneimine dispersant. enzymes, binders and perfumes, can be sprayed onto the resulting granules to form the finished detergent composition. Granular compositions according to the present invention can also be in “compact form”, i.e. they may have a relatively higher density than conventional granular detergents, i.e. from 550 to 950 g/l. In such case, the granular detergent compositions according to the present invention will contain a lower amount of “inorganic filler salt”, compared to conventional granular detergents; typical filler salts are alkaline earth metal salts of sulphates and chlorides, typically sodium sulphate; “compact” detergents typically comprise not more than 10% filler salt.




Liquid detergent compositions can be prepared by admixing the essential and optional ingredients thereof in any desired order to provide compositions containing components in the requisite concentrations. Liquid compositions according to the present invention can also be in “compact form”, in such case, the liquid detergent compositions according to the present invention will contain a lower amount of water, compared to conventional liquid detergents. Addition of the polyalkyleneimine dispersant to liquid detergent or other aqueous compositions of this invention may be accomplished by simply mixing into the liquid solutions the polyalkyleneimine dispersant.




The compositions of the present invention can be suitably prepared by any process chosen by the formulator, non-limiting examples of which are described in U.S. Pat. No. 5,691,297 Nassano et al., issued Nov. 11, 1997; U.S. Pat. No. 5,574,005 Welch et al., issued Nov. 12, 1996; U.S. Pat. No. 5,569,645 Dinniwell et al., issued Oct. 29, 1996; U.S. Pat. No. 5,565,422 Del Greco et al., issued Oct. 15, 1996; U.S. Pat. No. 5,516,448 Capeci et al., issued May 14, 1996; U.S. Pat. No. 5,489,392 Capeci et al., issued Feb. 6, 1996; U.S. Pat. No. 5,486,303 Capeci et al., issued Jan. 23, 1996 all of which are incorporated herein by reference.




The following compositions illustrate the present invention.















TABLE I













Weight %
















Ingredients




1




2




3




4


















DEQA


1






26.0




25.7









30.0






MAQ


2
















26.0











Polypropyleneimine


3






2.0





















Polypropyleneimine


4











1.0
















Polypropyleneimine


5
















2.0




2.4






Ethanol




2.2




2.4




2.2




2.6






Hexylene glycol




2.6




2.3




2.6




2.6






1,2-Hexanediol




17.0









17.0











TMPD


6











11.9









12.0






CHDM


7











5.0









48.1






Water




52.5




53.6




52.5




48.1






Minors


8






balance




balance




balance




balance













1


N,N-di(canoyloxyethyl)-N-2-hydroxyethyl-N-methyl ammonium methyl sulfate available from Witco.












2


Monocanolyl trimethyl ammonium chloride, available as Adogen 417 ® from Witco.












3


N,N′-bis(3-aminopropyl)-1,4-piperazine.












4


N,N′-bis[N,N-bis(ethyleneoxy)-3-aminopropyl]-1,4-piperazine.












5


N,N′-bis(3-aminopropyl)-1,3-propylenediamine.












6


Trimethyl pentanediol available from Eastman Chemical.












7


1,4-cyclohexane dimethanol available from Eastman Chemical.












8


Minors can incude perfume, dye, acid, preservatives, etc.























TABLE II













weight %
















Ingredients




5




6




7




8




9



















Softener Active


1






28.0




30.0




30.0




30.0




30.0






Polypropyleneimine


2






2.0




2.3




2.0
















Polypropyleneimine


3





















2.5




3.0






Ethanol




2.4




2.3




2.6




2.6




2.6






Hexyleneglycol




2.3




2.7




2.3




2.3




2.3






2,2,4-Trimethyl-1,3-




4.0









5.0




9.0




9.0






pentanediol






2-Ethyl-1,3-hexandiol




4.0


























Polyoxyalkylene




1.5




1.5




1.5




1.5











alkylamide


4








Polyoxyalkylene
























1.5






alkylamide


5








CaCl


2






0.05




0.5




0.125




0.125




0.125






Perfume




2.5




1.0




2.5




2.5




2.5






Demineralized water




balance




balance




balance




balance




balance













1


N,N-di-(canolyl-oxy-ethyl)-N-methyl-N-(2-hydroxyethyl) ammonium methyl sulfate.












2


N,N′-bis(3-aminopropyl)-1,3-propylenediamine.












3


N,N-bis(3-aminopropyl)methylamine.












4


PEG-6 cocamide, (Rewopal C6 ex Witco Chemical).












5


PEG-5 lauramide (Amidox L-5, ex Stepan Chemical).























TABLE III













weight %
















Ingredients




10




11




12




13




14



















Softener Active


1






30.0




30.0




35.0




23.4




36.0






Polypropyleneimine


2






2.0




2.3




2.0




2.0




3.0






Ethanol




2.6




3.4




2.5




2.0




3.1






Hexyleneglycol




2.3




2.3




2.5









6.2






2,2,4-Trimethyl-1,3-




9.0




9.0




4.0
















pentanediol






2-Ethyl-1,3-hexandiol














4.0
















Polyoxyalkylene









1.5




3.0




2.1




1.8






alkylamide


3








Polyoxyalkylene




1.5






















alkylamide


4








Monocanola trimethyl-









1.5





















ammonium chloride


5








CaCl


2






0.125




0.125




0.125




0.33




0.125






Perfume




2.5




2.5




2.5




2.1




1.2






Demineralized water




balance




balance




balance




balance




balance













1


N,N-di(canolyl-oxy-ethyl)-N-methyl-N-(2-hydroxyethyl) ammonium methyl sulfate.












2


N,N′-bis(propyleneamino)-1,4-piperazine.












3


PEG-6 cocamide, (Rewopal C6 ex Witco Chemical).












4


PEG-7 oleamide (Ethomid 0/17, ex Akzo Chemical).












5


Adogen 417, ex Witco Chemical.













The following are examples of compositions which prevent the fading of dye from fabric, especially cotton fabric.














TABLE IV













weight %
















Ingredients




15




16




17




18




19



















Softener Active


1






10.00




15.00









28.00











Cationic dye fixative


2











3.00





















Hydrophobic dispersant


3






25.00




10.00




15.00
















Hydrophobic dispersant


4





















10.00











Hydrophobic dispersant


5


























50.00






Anti-scaling agent


6






1.00














1.00











Anti-scaling agent
























2.00






Enzyme


8











0.50





















Polyamine


9






10.00




20.00




5.00












Polyamine


10





















15.00











Polyamine


11


























10.00






Perfume




0.15




0.40




0.10




0.15




0.15






Minors




balance




balance




balance




balance




balance













1


N,N-di-(canolyl-oxy-ethyl)-N-methyl-N-(2-hydroxymethyl) ammonium methyl sulfate.












2


Selected from REWIN SRF, REWIN SRF-O and REWIN DWR ex CHT-Beitlich GMBH.












3


Polyalkyleneimine having a molecular weight of 1800 and an average ethoxylation per backbone nitrogen of approximately 4.












4


Polyalkyleneimine having a molecular weight of 1800 and an average ethoxylation per backbone nitrogen of approximately 1.












5


Polyalkyleneimine having a molecular weight of 1800 and an average ethoxylation per backbone nitrogen of approximately 7.












6


Hydroxyethanediphoshonate (HEDP).












7


BAYHIBIT AM ex Baeyer.












8


Suitable enzymes include cellulase, lipase, protease, perioxidase, and mixtures thereof.












9


N,N′-bis(propyleneamino)-1,4-piperazine.












10


N,N′-bis(propyleneamino)-1,4-piperazine E1.












11


N,N′-bis(propyleneamino)-1,4-piperazine P1.













The following are examples of liquid laundry detergent compositions according to the present invention wherein fabric enhancement benefits are obtained “through-the wash”.














TABLE V













weight %















Ingredients




20




21




22




23


















Polyhydroxy coco-fatty acid amide




2.50




4.00




4.50











NEODOL 24-7


1











4.50
















NEODOL 23-9


2






0.63









4.50




2.00






C


25


Alkyl ethoxylate sulphate




20.15




4.00




5.50




20.50






C


25


Alkyl sulfate









14.00




15.00











C11.8 linear alkylbenzene



















6.00






sulfonate






C


8-10


-Amidopropyl Amine














1.30











C


10


-Amidopropyl Amine




0.50














1.50






Citric acid




3.00




2.00




3.00




2.50






C12-18 fatty acid




2.00




6.50




5.00




5.00






Rapeseed fatty acid









4.10









6.50






Ethanol




3.36




1.53




5.60




0.50






Propanediol




7.40




9.20




6.22




4.00






Monoethanolamine




1.00




7.90




8.68




0.50






Sodium hydroxide




2.75




1.30




0.75




4.40






Sodium p-toluene sulfonate




2.25









1.90











Borax/Boric acid




2.50




2.00




3.50




2.50






Protease


3






0.88




0.74




1.50




0.88






Lipolase


4











0.12




0.18











Duramyl


5






0.15




0.11









0.15






CAREZYME




0.053




0.028




0.080




0.053






Dispersant


6






0.60




0.70




1.50




0.60






Ethoxylated polyalkyleneimine


7






1.20




0.70




1.50




1.20






Optical Brightener




0.13




0.15




0.30




0.15






Polyamine


8






5.00




3.25
















Polyamine


9
















2.00











Polyamine


10





















3.00






Suds suppresser




0.12




0.28




0.12




0.12






Minors, aesthetics, stabilizers,




balance




balance




balance




balance






water













1


C


12


-C


14


alkyl ethoylate as sold by Shell Oil Co.












2


C


12


-C


13


alkyl ethoylate as sold by Shell Oil Co.












3


Protease B variant of BPN′ wherein Tyr 17 is replaced with Leu.












4


Derived from


Humicola lanuginosa


and commerically available from Novo.












5


Disclosed in WO 9510603 A and available from Novo.












6


Hydrophilic dispersant PEI 189 E


15


-E


18


according to U.S. Pat No. 4,597,898, Vander Meer, issued July 1, 1986.












7


Polyalkyleneimine dispersant PEI 600 E


20−














8


N,N′-bis(3-aminopropyl)-1,3-propylenediamine.












9


N,N′-bis(3-aminopropyl)-1,4-piperazine.












10


Bis-hexamethylenetriamine.























TABLE VI













Weight %















Ingredients




24




25




26




27


















Sodium C


11


-C


13






23.00




24.45




18.00




20.00






alkylbenzenesulfonate






C


12


-C


14


Dimethyl hydroxyethyl




0.40




0.40
















quaternary amine






C


9


-C


14


Dimethyl hydroxyethyl














1.0




1.0






quaternary amine






C


14


-C


15


Alcohol ethoxylate














1.00




1.00






(3) sulfate






Sodium tripolyphosphate




28.00




25.00




20.00




24.00






Zeolite




12.00




14.50
















CMC




1.10




1.10




0.50




0.50






Soil Release Agent


1






0.15




0.15




0.15




0.15






Polyamine


2






0.70




0.70




0.70




0.70






Sodium polyacrylate (MW = 4500)




0.90





















Sodium Polyacrylate/maleate














1.00




1.00






polymer






Enzymes; selected from




0.54




0.46




2.00




2.00






amylase, cellulase, protease,






and lipase






TAED














0.30











DTPA


3






0.90









0.80




0.80






Magnesium sulfate




1.18









1.00











Optical Brightener




0.20




0.30




0.20




0.30






Photobleach


4






0.40




0.40
















Sodium carbonate




23.00




22.74




13.00




13.00






Sodium silicate




2.00




2.00




9.00




9.00






Sodium sulfate














20.00




20.00






Perfume




0.36




0.36




0.40




0.40






Minors including moisture




balance




balance




balance




balance













1


Soil release polymer according to U.S. Pat. No. 5,415,807 Gosselink et al., issued May 16, 1995.












2


N,N′-bis(3-aminopropyl)-1,3-propyleneamine.












3


Diethylene triamine pentaacetate.












4


Photobleach according to U.S. Pat No. 4,255,273 Sakkab, issued March 10, 1981.













The following examples describe fabric enhancement compositions of the present invention which can be applied to fabric to achieve color fidelity and other fabric benefits.















TABLE VII













Weight %


















Ingredients




28




29




30




31











Polyamine


1






50.00






















Polyamine


2











36.00

















Polyamine


3
















50.00












Polyamine


4





















42.00







Water




balance




balance




balance




balance















1


N,N′-bis(3-aminopropyl)-1,3-propylamine.













2


Hexapropyleneoxy N,N′-bis(3-aminopropyl)-1,3-propylamine (TPTA having each nitrogen fully substitued with a propyleneoxy unit).













3


N,N′-bis(3-aminopropyl)-1,4-peperazine.













4


Tetraethyleneoxy N,N′-bis(3-aminopropyl)-1,4-piperazine (BNPP having each terminal nitrogen fully substituted with an ethyleneoxy unit).
























TABLE VIII













Weight %


















Ingredients




32




33




34




35











Polyamine


1






50.00






















Polyamine


2











36.00

















Polyamine


3
















50.00












Polyamine


4





















42.00







Water




balance




balance




balance




balance















1


Tetramethyl dipropylenetriamine.













2


Permethylated dipropylenetriamine.













3


Mono-methylated dipropylenetriamine.













4


Mono-methylated dipropylenetriamine having each terminal nitrogen fully substitued with an ethyleneoxy unit.













The following are non-limiting examples of fabric conditioning compositions according to the present invention.














TABLE IX













weight %

















Ingredients




36




37




38




39




40




41




















Softener




24.0
























25.0






active


1








Softener














19.2





















active


2








Softener
























18.0











active


3








Softener









11.0









4.0
















active


4








Softener









13.5


























active


5








Softener















3.4
















active


6








Ethanol




4.0




5.0









1.0









4.0






Isopropanol














3.0









6.0











Color care




2.5




3.0




3.0




3.0




4.0











agent


7








Calcium




2.0




0.5




0.2




0.05




0.5




0.6






chloride






Hydrochloric




0.75









0.06




0.2




0.02




0.05






acid






Soil release




0.5









0.2














0.5






agent


8








Polyamine


9






1.0




1.0


























Polyamine


10
















1.0




1.0
















Polyamine


11


























1.0











Polyamine


12































1.0






Silicone




0.01









0.01




0.01









0.01






anti-foam






Miscellaneous




1.4




1.0




0.7




0.4




1.0




1.3






Water




balance




balance




balance




balance




balance




balance













1


N,N-di(tallowyl-oxy-ethyl)-N,N-dimethyl ammonium chloride (tallowyl having an I.V. of 50).












2


N,N-di(tallowyl-oxy-ethyl)-N,N-dimethyl ammonium chloride (tallowyl having an I.V. of 18).












3


1,2-Ditallowyloxy-3-N,N,N-trimethylammoniopropane chloride.












4


Ditallow dimethyl ammonium chloride.












5


Methyl bis(tallow amidoethyl)-2-hydroxyethyl ammonium methyl sulfate.












6


1-Tallowamidoethyl-2-imidazoline.












7


N,N,N′,N′-terakis(2-hydroxypropyl)ethylenediamine.












8


Dimethyl terephthalate, 1,2-propylene glycol, methyl capped PEG polymer.












9


N,N′-bis(3-aminopropyl)-1,3-propylenediamine.












10


N,N′-bis(3-aminopropyl)-1,3-propylenediamine wherein each N-H unit is replaced by a 1,2-propyleneoxy unit.












11


Pnetrol ® available ex BASF












12


Bis(hexamethylene)triamine wherein each N-H unit is replaced by a methyl unit.













The following are non-limiting examples of fabric care compositions according to the present invention.















TABLE X













Weight %


















Ingredients




42




43




44




45





















Polymer


1











7.5




3.5




3.5







Dye fixative


2






2.5




5.0




2.4




2.4







Polyamine


3











5.0




10.0












Polyamine


4





















10.0







Bayhibit


5






1.0




1.0




1.0




1.0







Water




balance




balance




balance




balance















1


Polyvinylpyrrolidone K85 available ex BASF as Luviskol ® K85.













2


Dye fixing agent ex Clariant under the tradename Cartafix CB ®.













3


1,1-N-dimethyl-9,9-N″-dimethyl dipropylentriamine.













4


1,1-N-dimethyl-5-N′-methyl-9,9-N′-methyl-9,9-N″-demethyl dipropylenetriamine.













5


2-Phosphonobutane-1,2,4-tricarboylic acid ex Bayer.
























TABLE XI













Weight %


















Ingredients




46




47




48




49





















Polymer


1






3.5




3.5




2.0












Dye fixative


2






2.4




2.4




1.0




2.5







Polyamine


3






15.0




17.0




5.0




7.0







Fabric softener


4
















10.0












Bayhibit


5






1.0




1.0




0.2




1.0







Water




balance




balance




balance




balance















1


Polyvinylpyrrolidone K85 available ex BASF as Luvisol ® K85.













2


Dye fixing agent ex Clariant under the tradename Cartafix CB ®.













3


N,N′-bis(3-aminopropyl)-1,4-piperazine.













4


Di(tallowyloxyethyl)dimethyl ammonium chloride.













5


2-Phosphonobutane-1,2,4-tricarboxylic acid ex Bayer.
























TABLE XII













Weight %


















Ingredients




50




51




52




53





















Polymer


1






4.5




4.5




3.5




3.5







Dye fixative


2






2.4




2.4




2.4




2.4







Polyamine


3






7.0




8.0

















Polyamine


4
















15.0












Polyamine


5





















15.0







Bayhibit


6






1.0




1.0




1.0




1.0







Water




balance




balance




balance




balance















1


Polyvinylpyrrolidone K85 available ex BASF as Luviskol ® K85.













2


Dye fixing agent ex Clariant under the tradename Cartafix CB ®.













3


1,1-N-dimethyl-9,9-N″-dimethyl dipropylentriamine.













4


1,1-N-dimethyl-5-N′-methyl-9,9-N″-demethyl dipropylenetriamine.













5


N,N′-bis(3-aminopropyl)-1,4-piperazine.













6


2-Phosphonobutane-1,2,4-tricarboxylic acid ex Bayer.
























TABLE XIII













Weight %


















Ingredients




54




55




56




57





















Polymer


1






4.5




4.5




3.5




3.5







Dye fixative


2






2.4




2.4




2.4




2.0







Polyamine


3
















17.0




25.0







Polyamine


4






20.0




25.0

















Bayhibit


5






1.0




1.0




1.0




0.2







Water




balance




balance




balance




balance















1


Polyvinylpyrrolidone K85 available ex BASF as Luviskol ® K85.













2


Dye fixing agent ex Clariant under the tradename Cartafix CB ®.













3


N,N′-bis(3-aminopropyl)-1,4-piperazine.













4


1,1-N-dimethyl-5-N′-methyl-9,9-N″-dimethyl dipropylenetriamine.













5


2-Phosphonobutane-1,2,4-tricarboxylic acid ex Bayer.













In addition to the above examples, the low molecular weight polyamines of the present invention can be formulated into any suitable laundry detergent composition, non-limiting examples of which are described in U.S. Pat. No. 5,679,630 Baeck et al., issued Oct. 21, 1997; U.S. Pat. No. 5,565,145 Watson et al., issued Oct. 15, 1996: U.S. Pat. No. 5,478,489 Fredj et al., issued Dec. 26, 1995; U.S. Pat. No. 5,470,507 Fredj et al., issued Nov. 28, 1995; U.S. Pat. No. 5,466,802 Panandiker et al., issued Nov. 14, 1995; U.S. Pat. No. 5,460,752 Fredj et al., issued Oct. 24, 1995: U.S. Pat. No. 5,458,810 Fredj et al., issued Oct. 17, 1995; U.S. Pat. No. 5,458,809 Fredj et al.. issued Oct. 17, 1995; U.S. Pat. No. 5,288,431 Huber et al., issued Feb. 22, 1994 all of which are incorporated herein by reference.



Claims
  • 1. A fabric care composition comprising:a) from about 0.01% to about 50% by weight, of a modified polyamine, said polyamine selected from: i) linear polyamines having the formula:  wherein R is 1,3-propylene, and mixtures thereof; R1 is hydrogen, C1—C2 alkyl, alkyleneoxy having the formula: —(R3O)—R4 wherein R3is ethylene, 1,2-propylene, 1,2-butylene, or mixtures thereof, R4is hydrogen, C1—C4 alkyl, or mixtures thereof; and mixtures thereof; R2 is hydrogen, R1, —RN(R1)2, and mixtures thereof; n is 1 or 2;ii) cyclic polyamines having the formula: R—L—R  wherein L is a linking unit, said linking unit comprising a ring having at least 2 nitrogen atoms; R is hydrogen, —(CH2)kN(R1)2, and mixtures thereof, wherein R1 is exclusively hydrogen, or a moiety selected from the group consisting of C1—C2 alkyl, alkyleneoxy having the formula: —(R3O)—R4 wherein each R3 is independently ethylene, 1,2-propylene, 1,2-butylene, or mixtures thereof, R4 is hydrogen, C1—C4 alkyl, or mixtures thereof; and mixtures thereof; each index k is independently has the value from 2 to 4; iii) and mixtures thereof; and b) the balance carrier and adjunct ingredients.
  • 2. A composition according to claim 1 wherein said polyamine is a linear polyamine wherein R is 1,3-propylene, R1 and R2 are each independently hydrogen, and alkyleneoxy unit having the formula:—(R3O)—R4wherein R3 is 1,3-propylene, and R4 is hydrogen.
  • 3. A composition according to claim 2 wherein said polyamine is N,N′-bis(3-aminopropyl)-1,3-propylenediamine having the formula:
  • 4. A composition according to claim 1 wherein said polyamine is a cyclic polyamine wherein L is 1,4-piperazine, R is 3-aminopropylene, each R1 is independently hydrogen or 2-hydroxypropyl.
  • 5. A composition according to claim 4 wherein said polyamine is N,N′-bis-(3-aminopropyl)-1,4-piperazine having the formula:
  • 6. A composition according to claim 1 wherein said polyamine is 1,1,5,9,9-N-pentamethyl dipropylenetriamine having the formula:
  • 7. A composition according to claim 1 wherein said polyamine is 1,1,9,9-N-tetramethyl dipropylenetriamine having the formula:
  • 8. A composition according to claim 1 further comprising from about 0.001% to about 90% by weight, of one or more dye fixing agents.
  • 9. A composition according to claim 8 wherein said dye fixing agent is a polycationic copolymer.
  • 10. A composition according to claim 1 further comprising from about 0.1% to about 80% by weight, of a chelant.
  • 11. A composition according to claim 10 wherein said chelant is hydroxyethane-1,1-diphosphonate.
  • 12. A fabric care composition comprising:a) from about 0.01% to about 50% by weight, of a modified polyamine, said polyamine having the formula: wherein R is 1,3-propylene, and mixtures thereof; R1 is hydrogen, C1—C2 alkyl, alkyleneoxy having the formula:—(R3O)—R4wherein R3 is ethylene, 1,2-propylene, 1,2-butylene, or mixtures thereof, R4is hydrogen, C1—C4 alkyl, and mixtures thereof; and mixtures thereof; R2 is hydrogen, R1, —RN(R1)2, and mixtures thereof; n is 1 or 2;b) from about 0.001% to about 90% by weight, of one or more dye fixing agents; c) from about 0.005% to about 1% by weight, of one or more crystal growth inhibitors; d) from about 0.01% to about 20% by weight, of a fabric abrasion reducing polymer; and e) the balance carrier and adjunct ingredients.
  • 13. A composition according to claim 12 wherein said modified polyamine is selected from the group consisting of:i) 1,1,5,9,9-N-pentamethyl dipropylenetriamine having the formula: ii) 1,1,9,9-N-tetramethyl dipropylenetriamine having the formula: iii) and mixtures thereof.
  • 14. A laundry detergent composition comprising:a) from about 0.01% to about 50% by weight, of a modified polyamine, said polyamine selected from: i) linear polyamines having the formula:  wherein R is 1,3-propylene, and mixtures thereof; R1 is hydrogen, C1—C2 alkyl, alkyleneoxy having the formula: —(R3O)—R4 wherein each R3 is independently ethylene, 1,2-propylene, 1,2-butylene, or mixtures thereof, R4is hydrogen, C1—C4 alkyl, or mixtures thereof; and mixtures thereof; R2 is hydrogen, R1, —RN(R1)2, and mixtures thereof; n is 1 or2; ii) cyclic polyamines having the formula: (R1)2N—(CH2)k—L—(CH2)k—N(R1)2 wherein L is a linking unit, said linking unit comprising a ring having at least 2 nitrogen atoms; R1 is exclusively hydrogen, or a moiety selected from the group consisting of C1—C2 alkyl, alkyleneoxy having the formula: —(R3O)—R4 wherein each R3 is independently ethylene, 1,2-propylene, 1,2-butylene, or mixtures thereof, R4 is hydrogen, C1—C4 alkyl, or mixtures thereof; each index k is independently from 2 to 4; iii) and mixtures thereof; b) from about 0.01% to about 90% by weight, of a detersive surfactant system, said detersive surfactant system selected from the group consisting of anionic, cationic, nonionic, zwitterionic, ampholytic surfactants, and mixtures thereof; and c) the balance carrier and adjunct ingredients.
  • 15. A composition according to claim 14 further comprising:i) from about 0.01% to about 15% by weight, of a non-polymeric chlorine scavenger; ii) from about 0.001% to about 1% by weight, of an enzyme; iii) optionally from about 0.01% to about 10% by weight, of a soil release agent; and iv) optionally from about 1% to about 80% by weight, of a builder.
  • 16. A composition according to claim 14 wherein said modified polyamine is selected from the group consisting of:i) 1,1,5,9,9-N-pentamethyl dipropylenetriamine having the formula: ii) 1,1,9,9-N-tetramethyl dipropylenetriamine having the formula: iii) and mixtures thereof.
  • 17. A composition according to claim 14 wherein said polyamine is N,N′-bis-(3-aminopropyl)-1,4-piperazine having the formula:
  • 18. A method for providing care to fabric comprising the step of contacting fabric with an aqueous solution of a composition comprising:a) from about 0.01% to about 50% by weight, of a modified polyamine, said polyamine selected from: i) linear polyamines having the formula:  wherein R is 1,3-propylene, and mixtures thereof; R1 is hydrogen, C1—C2 alkyl, alkyleneoxy having the formula: —(R3O)—R4 wherein R3 is ethylene, 1,2-propylene, 1,2-butylene, or mixtures thereof, R4 is hydrogen, C1—C4 alkyl, or mixtures thereof; and mixtures thereof; R2 is hydrogen, R1, —RN(R1)2, and mixtures thereof; n is 1 or 2; ii) cyclic polyamines having the formula: R—L—R  wherein L is a linking unit, said linking unit comprising a ring having at least 2 nitrogen atoms; R is hydrogen, —(CH2)kN(R1)2, and mixtures thereof, wherein R1 is exclusively hydrogen, or a moiety selected from the group consisting of C1—C2 alkyl, alkyleneoxy having the formula: —(R3O)—R4 wherein each R3 is independently ethylene, 1,2-propylene, 1,2-butylene, or mixtures thereof, R4 is hydrogen, C1—C4 alkyl, or mixtures thereof; and mixtures thereof; each index k is independently has the value from 2 to 4; iii) and mixtures thereof; and b) the balance carrier and adjunct ingredients.
  • 19. A method according to claim 18 wherein said modified polyamine is selected from the group consisting of:i) 1,1,5,9,9-N-pentamethyl dipropylenetriamine having the formula: ii) 1,1,9,9-N-tetramethyl dipropylenetriamine having the formula: iii) and mixtures thereof.
Parent Case Info

This application claims priority to U.S. Provisional Application Ser. No. 60/100,442 filed Sep. 15, 1998.

PCT Information
Filing Document Filing Date Country Kind
PCT/US99/20812 WO 00
Publishing Document Publishing Date Country Kind
WO00/15746 3/23/2000 WO A
US Referenced Citations (3)
Number Name Date Kind
5968893 Manohar et al. Oct 1999 A
6087316 Watson et al. Jul 2000 A
6127331 Cleary et al. Oct 2000 A
Foreign Referenced Citations (7)
Number Date Country
19643281 Apr 1998 DE
196 43 281 Apr 1998 DE
043046 Jun 1981 EP
WO 9742282 Nov 1997 WO
WO 9742290 Nov 1997 WO
WO 9812296 Mar 1998 WO
WO 9817762 Apr 1998 WO
Provisional Applications (1)
Number Date Country
60/100442 Sep 1998 US