Fabric network

Information

  • Patent Grant
  • 10693760
  • Patent Number
    10,693,760
  • Date Filed
    Monday, January 29, 2018
    6 years ago
  • Date Issued
    Tuesday, June 23, 2020
    3 years ago
Abstract
Systems and methods relating to communication within a fabric network are presented. The fabric network includes one or more logical networks that enables devices connected to the fabric to communicate with each other using various profiles known to the devices. A device sending a message may follow a general message format to encode the message so that other devices in the fabric may understand the message regardless of which logical networks the devices are connected to. Within the message format, a payload of data may be included for the receiving device to forward, store, or process the message. The format and the contents of the payload may vary according to a header within the payload that indicates a profile and a message type within the profile. Using the profile and message type, the receiving devices may decode the message to process the message.
Description
BACKGROUND

This disclosure relates to a fabric network that couples electronic devices using one or more network types.


This section is intended to introduce the reader to various aspects of art that may be related to various aspects of the present techniques, which are described and/or claimed below. This discussion is believed to be helpful in providing the reader with background information to facilitate a better understanding of the various aspects of the present disclosure. Accordingly, it should be understood that these statements are to be read in this light, and not as admissions of prior art.


Network-connected devices appear throughout homes. Some of these devices are often capable of communicating with each other through a single network type (e.g., WiFi connection) using a transfer protocol. It may be desired to use less power intensive connection protocols for some devices that are battery powered or receive a reduced charge. However, in some scenarios, devices connected to a lower power protocol may not be able to communicate with devices connected to a higher power protocol (e.g., WiFi).


SUMMARY

A summary of certain embodiments disclosed herein is set forth below. It should be understood that these aspects are presented merely to provide the reader with a brief summary of these certain embodiments and that these aspects are not intended to limit the scope of this disclosure. Indeed, this disclosure may encompass a variety of aspects that may not be set forth below.


Embodiments of the present disclosure relate to systems and methods a fabric network that includes one or more logical networks that enables devices connected to the fabric to communicate with each other using a list of protocols and/or profiles known to the devices. The communications between the devices may follow a typical message format that enables the devices to understand communications between the devices regardless of which logical networks the communicating devices are connected to in the fabric. Within the message format, a payload of data may be included for the receiving device to store and/or process. The format and the contents of the payload may vary according to a header within the payload that indicates a profile (including one or more protocols) and/or a type of message that is being sent according to the profile.


According to some embodiments, two or more devices in a fabric may communicate using status reporting protocols or profiles. For example, in certain embodiments, a status reporting protocol or schema may be included in a core profile that is available to devices connected to the fabric. Using the status reporting protocol, devices may send or request status information to or from other devices in the fabric.


Similarly, in certain embodiments, two or more devices in a fabric may communicate using update software protocols or profiles. In some embodiments, the update software protocol or schema may be included in a core profile that is available to devices connected to the fabric. Using the update software protocol, devices may request, send, or notify the presence of updates within the fabric.


In certain embodiments, two or more devices in a fabric may communicate using data management protocols or profiles. In some embodiments, the data management protocol or schema may be included in a core profile that is available to devices connected to the fabric. Using the update data management protocol, devices may request, view, or track node-resident information that is stored in other devices.


Furthermore, in certain embodiments, two or more devices in a fabric may transfer data using bulk data transfer protocols or profiles. In some embodiments, the bulk data transfer protocol or schema may be included in a core profile that is available to devices connected to the fabric. Using the bulk data transfer protocol, devices may initiate, send, or receive bulk data using any logical networks in the fabric. In certain embodiments, either a sending or a receiving device using the bulk data transfer protocol may be able to “drive” a synchronous transfer between the devices. In other embodiments, the bulk transfer may be performed with an asynchronous transfer.


Various refinements of the features noted above may exist in relation to various aspects of the present disclosure. Further features may also be incorporated in these various aspects as well. These refinements and additional features may exist individually or in any combination. For instance, various features discussed below in relation to one or more of the illustrated embodiments may be incorporated into any of the above-described aspects of the present disclosure alone or in any combination. The brief summary presented above is intended only to familiarize the reader with certain aspects and contexts of embodiments of the present disclosure without limitation to the claimed subject matter.





BRIEF DESCRIPTION OF THE DRAWINGS

Various aspects of this disclosure may be better understood upon reading the following detailed description and upon reference to the drawings in which:



FIG. 1 is a block diagram of an electronic device having that may be interconnected with other devices using a fabric network, in accordance with an embodiment;



FIG. 2 illustrates a block diagram of a home environment in which the general device of FIG. 1 may communicate with other devices via the fabric network, in accordance with an embodiment;



FIG. 3 illustrates a block diagram of an Open Systems Interconnection (OSI) model that characterizes a communication system for the home environment of FIG. 2, in accordance with an embodiment;



FIG. 4 illustrates the fabric network having a single logical network topology, in accordance with an embodiment;



FIG. 5 illustrates the fabric network having a star network topology, in accordance with an embodiment;



FIG. 6 illustrates the fabric network having an overlapping networks topology, in accordance with an embodiment;



FIG. 7 illustrates a service communicating with one or more fabric networks, in accordance with an embodiment;



FIG. 8 illustrates two devices in a fabric network in communicative connection, in accordance with an embodiment;



FIG. 9 illustrates a unique local address format (ULA) that may be used to address devices in a fabric network, in accordance with an embodiment;



FIG. 10 illustrates a process for proxying periphery devices on a hub network, in accordance with an embodiment;



FIG. 11 illustrates a tag-length-value (TLV) packet that may be used to transmit data over the fabric network, in accordance with an embodiment;



FIG. 12 illustrates a general message protocol (GMP) that may be used to transmit data over the fabric network that may include the TLV packet of FIG. 11, in accordance with an embodiment;



FIG. 13 illustrates a message header field of the GMP of FIG. 12, in accordance with an embodiment;



FIG. 14 illustrates a key identifier field of the GMP of FIG. 12, in accordance with an embodiment;



FIG. 15 illustrates an application payload field of the GMP of FIG. 12, in accordance with an embodiment;



FIG. 16 illustrates a status reporting schema that may be used to update status information in the fabric network, in accordance with an embodiment;



FIG. 17 illustrates a profile field of the status reporting schema of FIG. 16, in accordance with an embodiment;



FIG. 18 illustrates a protocol sequence that may be used to perform a software update between a client and a server, in accordance with an embodiment;



FIG. 19 illustrates an image query frame that may be used in the protocol sequence of FIG. 18, in accordance with an embodiment;



FIG. 20 illustrates a frame control field of the image query frame of FIG. 19, in accordance with an embodiment;



FIG. 21 illustrates a product specification field of the image query frame of FIG. 19, in accordance with an embodiment;



FIG. 22 illustrates a version specification field of the image query frame of FIG. 19, in accordance with an embodiment;



FIG. 23 illustrates a locale specification field of the image query frame of FIG. 19, in accordance with an embodiment;



FIG. 24 illustrates an integrity types supported field of the image query frame of FIG. 19, in accordance with an embodiment;



FIG. 25 illustrates an update schemes supported field of the image query frame of FIG. 19, in accordance with an embodiment;



FIG. 26 illustrates an image query response frame that may be used in the protocol sequence of FIG. 18, in accordance with an embodiment;



FIG. 27 illustrates a uniform resource identifier (URI) field of the image query response frame of FIG. 26, in accordance with an embodiment;



FIG. 28 illustrates a integrity specification field of the image query response frame of FIG. 26, in accordance with an embodiment;



FIG. 29 illustrates an update scheme field of the image query response frame of FIG. 26, in accordance with an embodiment;



FIG. 30 illustrates a sequence used to employ a data management protocol to manage data between devices in the fabric network, in accordance with an embodiment;



FIG. 31 illustrates a snapshot request frame that may be used in the sequence of FIG. 30, in accordance with an embodiment;



FIG. 32 illustrates an example profile schema that may be accessed using the snapshot request frame of FIG. 31, in accordance with an embodiment;



FIG. 33 is a binary format of a path that may indicate a path in a profile schema, in accordance with an embodiment;



FIG. 34 illustrates a watch request frame that may be used in the sequence of FIG. 30, in accordance with an embodiment;



FIG. 35 illustrates a periodic update request frame that may be used in the sequence of FIG. 30, in accordance with an embodiment;



FIG. 36 illustrates a refresh request frame that may be used in the sequence of FIG. 30, in accordance with an embodiment;



FIG. 37 illustrates a cancel view request that may be used in the sequence of FIG. 30, in accordance with an embodiment;



FIG. 38 illustrates a view response frame that may be used in the sequence of FIG. 30, in accordance with an embodiment;



FIG. 39 illustrates an explicit update request frame that may be used in the sequence of FIG. 30, in accordance with an embodiment;



FIG. 40 illustrates a view update request frame that may be used in the sequence of FIG. 30, in accordance with an embodiment;



FIG. 41 illustrates an update item frame that may be updated using the sequence of FIG. 30, in accordance with an embodiment;



FIG. 42 illustrates an update response frame that may be sent as an update response message in the sequence FIG. 30, in accordance with an embodiment;



FIG. 43 illustrates a communicative connection between a sender and a receiver in a bulk data transfer, in accordance with an embodiment;



FIG. 44 illustrates a SendInit message that may be used to initiate the communicative connection by the sender of FIG. 43, in accordance with an embodiment;



FIG. 45 illustrates a transfer control field of the SendInit message of FIG. 44, in accordance with an embodiment;



FIG. 46 illustrates a range control field of the SendInit message of FIG. 45, in accordance with an embodiment;



FIG. 47 illustrates a SendAccept message that may be used to accept a communicative connection proposed by the SendInit message of FIG. 44 sent by the sender of FIG. 44, in accordance with an embodiment;



FIG. 48 illustrates a SendReject message that may be used to reject a communicative connection proposed by the SendInit message of FIG. 44 sent by the sender of FIG. 44, in accordance with an embodiment; and



FIG. 49 illustrates a ReceiveAccept message that may be used to accept a communicative connection proposed by the receiver of FIG. 44, in accordance with an embodiment.





DETAILED DESCRIPTION

One or more specific embodiments of the present disclosure will be described below. These described embodiments are only examples of the presently disclosed techniques. Additionally, in an effort to provide a concise description of these embodiments, all features of an actual implementation may not be described in the specification. It should be appreciated that in the development of any such actual implementation, as in any engineering or design project, numerous implementation-specific decisions must be made to achieve the developers' specific goals, such as compliance with system-related and business-related constraints, which may vary from one implementation to another. Moreover, it should be appreciated that such a development effort might be complex and time consuming, but may nevertheless be a routine undertaking of design, fabrication, and manufacture for those of ordinary skill having the benefit of this disclosure.


When introducing elements of various embodiments of the present disclosure, the articles “a,” “an,” and “the” are intended to mean that there are one or more of the elements. The terms “comprising,” “including,” and “having” are intended to be inclusive and mean that there may be additional elements other than the listed elements. Additionally, it should be understood that references to “one embodiment” or “an embodiment” of the present disclosure are not intended to be interpreted as excluding the existence of additional embodiments that also incorporate the recited features.


Embodiments of the present disclosure relate generally to an efficient fabric network that may be used by devices and/or services communicating with each other in a home environment. Generally, consumers living in homes may find it useful to coordinate the operations of various devices within their home such that all of their devices are operated efficiently. For example, a thermostat device may be used to detect a temperature of a home and coordinate the activity of other devices (e.g., lights) based on the detected temperature. In this example, the thermostat device may detect a temperature that may indicate that the temperature outside the home corresponds to daylight hours. The thermostat device may then convey to the light device that there may be daylight available to the home and that thus the light should turn off.


In addition to operating these devices efficiently, consumers generally prefer to use user-friendly devices that involve a minimum amount of set up or initialization. That is, consumers may generally prefer to purchase devices that are fully operational after performing a few number initialization steps that may be performed by almost any individual regardless of age or technical expertise.


With the foregoing in mind, to enable to effectively communicate data between each other within the home environment, the devices may use a fabric network that includes one or more logical networks to manage communication between the devices. That is, the efficient fabric network may enable numerous devices within a home to communicate with each other using one or more logical networks. The communication network may support Internet Protocol version 6 (IPv6) communication such that each connected device may have a unique local address (LA). Moreover, to enable each device to integrate with a home, it may be useful for each device to communicate within the network using low amounts of power. That is, by enabling devices to communicate using low power, the devices may be placed anywhere in a home without being coupled to a continuous power source (e.g., battery-powered).


I. Fabric Introduction


By way of introduction, FIG. 1 illustrates an example of a general device 10 that may that may communicate with other like devices within a home environment. In one embodiment, the device 10 may include one or more sensors 12, a user-interface component 14, a power supply 16 (e.g., including a power connection and/or battery), a network interface 18, a processor 20, and the like. Particular sensors 12, user-interface components 14, and power-supply configurations may be the same or similar with each devices 10. However, it should be noted that in some embodiments, each device 10 may include particular sensors 12, user-interface components 14, power-supply configurations, and the like based on a device type or model.


The sensors 12, in certain embodiments, may detect various properties such as acceleration, temperature, humidity, water, supplied power, proximity, external motion, device motion, sound signals, ultrasound signals, light signals, fire, smoke, carbon monoxide, global-positioning-satellite (GPS) signals, radio-frequency (RF), other electromagnetic signals or fields, or the like. As such, the sensors 12 may include temperature sensor(s), humidity sensor(s), hazard-related sensor(s) or other environmental sensor(s), accelerometer(s), microphone(s), optical sensors up to and including camera(s) (e.g., charged coupled-device or video cameras), active or passive radiation sensors, GPS receiver(s) or radiofrequency identification detector(s). While FIG. 1 illustrates an embodiment with a single sensor, many embodiments may include multiple sensors. In some instances, the device 10 may includes one or more primary sensors and one or more secondary sensors. Here, the primary sensor(s) may sense data central to the core operation of the device (e.g., sensing a temperature in a thermostat or sensing smoke in a smoke detector), while the secondary sensor(s) may sense other types of data (e.g., motion, light or sound), which can be used for energy-efficiency objectives or smart-operation objectives.


One or more user-interface components 14 in the device 10 may receive input from the user and/or present information to the user. The user-interface component 14 may also include one or more user-input components that may receive information from the user. The received input may be used to determine a setting. In certain embodiments, the user-input components may include a mechanical or virtual component that responds to the user's motion. For example, the user can mechanically move a sliding component (e.g., along a vertical or horizontal track) or rotate a rotatable ring (e.g., along a circular track), the user's motion along a touchpad may be detected, or motions/gestures may be detected using a contactless gesture detection sensor (e.g., infrared sensor or camera). Such motions may correspond to a setting adjustment, which can be determined based on an absolute position of a user-interface component 104 or based on a displacement of a user-interface components 104 (e.g., adjusting a setpoint temperature by 1 degree F. for every 10° rotation of a rotatable-ring component). Physically and virtually movable user-input components can allow a user to set a setting along a portion of an apparent continuum. Thus, the user may not be confined to choose between two discrete options (e.g., as would be the case if up and down buttons were used) but can quickly and intuitively define a setting along a range of possible setting values. For example, a magnitude of a movement of a user-input component may be associated with a magnitude of a setting adjustment, such that a user may dramatically alter a setting with a large movement or finely tune a setting with s small movement.


The user-interface components 14 may also include one or more buttons (e.g., up and down buttons), a keypad, a number pad, a switch, a microphone, and/or a camera (e.g., to detect gestures). In one embodiment, the user-input component 14 may include a click-and-rotate annular ring component that may enable the user to interact with the component by rotating the ring (e.g., to adjust a setting) and/or by clicking the ring inwards (e.g., to select an adjusted setting or to select an option). In another embodiment, the user-input component 14 may include a camera that may detect gestures (e.g., to indicate that a power or alarm state of a device is to be changed). In some instances, the device 10 may have one primary input component, which may be used to set various types of settings. The user-interface components 14 may also be configured to present information to a user via, e.g., a visual display (e.g., a thin-film-transistor display or organic light-emitting-diode display) and/or an audio speaker.


The power-supply component 16 may include a power connection and/or a local battery. For example, the power connection may connect the device 10 to a power source such as a line voltage source. In some instances, an AC power source can be used to repeatedly charge a (e.g., rechargeable) local battery, such that the battery may be used later to supply power to the device 10 when the AC power source is not available. In certain embodiments, the power supply component 16 may include intermittent or reduced power connections that may be less than that provided via an AC plug in the home. In certain embodiments, devices with batteries and/or intermittent or reduced power may be operated as “sleepy devices” that alternate between an online/awake state and an offline/sleep state to reduce power consumption.


The network interface 18 may include one or more components that enable the device 10 to communicate between devices using one or more logical networks within the fabric network. In one embodiment, the network interface 18 may communicate using an efficient network layer as part of its Open Systems Interconnection (OSI) model. In certain embodiments, one component of the network interface 18 may communicate with one logical network (e.g., WiFi) and another component of the network interface may communicate with another logical network (e.g., 802.15.4). In other words, the network interface 18 may enable the device 10 to wirelessly communicate via multiple IPv6 networks. As such, the network interface 18 may include a wireless card, Ethernet port, and/or other suitable transceiver connections.


The processor 20 may support one or more of a variety of different device functionalities. As such, the processor 20 may include one or more processors configured and programmed to carry out and/or cause to be carried out one or more of the functionalities described herein. In one embodiment, the processor 20 may include general-purpose processors carrying out computer code stored in local memory (e.g., flash memory, hard drive, random access memory), special-purpose processors or application-specific integrated circuits, other types of hardware/firmware/software processing platforms, and/or some combination thereof. Further, the processor 20 may be implemented as localized versions or counterparts of algorithms carried out or governed remotely by central servers or cloud-based systems, such as by virtue of running a Java virtual machine (JVM) that executes instructions provided from a cloud server using Asynchronous Javascript and XML (AJAX) or similar protocols. By way of example, the processor 20 may detect when a location (e.g., a house or room) is occupied, up to and including whether it is occupied by a specific person or is occupied by a specific number of people (e.g., relative to one or more thresholds). In one embodiment, this detection can occur, e.g., by analyzing microphone signals, detecting user movements (e.g., in front of a device), detecting openings and closings of doors or garage doors, detecting wireless signals, detecting an IP address of a received signal, detecting operation of one or more devices within a time window, or the like. Moreover, the processor 20 may include image recognition technology to identify particular occupants or objects.


In some instances, the processor 20 may predict desirable settings and/or implement those settings. For example, based on presence detection, the processor 20 may adjust device settings to, e.g., conserve power when nobody is home or in a particular room or to accord with user preferences (e.g., general at-home preferences or user-specific preferences). As another example, based on the detection of a particular person, animal or object (e.g., a child, pet or lost object), the processor 20 may initiate an audio or visual indicator of where the person, animal or object is or may initiate an alarm or security feature if an unrecognized person is detected under certain conditions (e.g., at night or when lights are off).


In some instances, devices may interact with each other such that events detected by a first device influences actions of a second device using one or more common profiles between the devices. For example, a first device can detect that a user has pulled into a garage (e.g., by detecting motion in the garage, detecting a change in light in the garage or detecting opening of the garage door). The first device can transmit this information to a second device via the fabric network, such that the second device can, e.g., adjust a home temperature setting, a light setting, a music setting, and/or a security-alarm setting. As another example, a first device can detect a user approaching a front door (e.g., by detecting motion or sudden light pattern changes). The first device may cause a general audio or visual signal to be presented (e.g., such as sounding of a doorbell) or cause a location-specific audio or visual signal to be presented (e.g., to announce the visitor's presence within a room that a user is occupying).


With the foregoing in mind, FIG. 2 illustrates a block diagram of a home environment 30 in which the device 10 of FIG. 1 may communicate with other devices via the fabric network. The depicted home environment 30 may include a structure 32 such as a house, office building, garage, or mobile home. It will be appreciated that devices can also be integrated into a home environment that does not include an entire structure 32, such as an apartment, condominium, office space, or the like. Further, the home environment 30 may control and/or be coupled to devices outside of the actual structure 32. Indeed, several devices in the home environment 30 need not physically be within the structure 32 at all. For example, a device controlling a pool heater 34 or irrigation system 36 may be located outside of the structure 32.


The depicted structure 32 includes multiple rooms 38, separated at least partly from each other via walls 40. The walls 40 can include interior walls or exterior walls. Each room 38 can further include a floor 42 and a ceiling 44. Devices can be mounted on, integrated with and/or supported by the wall 40, the floor 42, or the ceiling 44.


The home environment 30 may include multiple devices, including intelligent, multi-sensing, network-connected devices that may integrate seamlessly with each other and/or with cloud-based server systems to provide any of a variety of useful home objectives. One, more or each of the devices illustrated in the home environment 30 may include one or more sensors 12, a user interface 14, a power supply 16, a network interface 18, a processor 20 and the like.


Example devices 10 may include a network-connected thermostat 46 that may detect ambient climate characteristics (e.g., temperature and/or humidity) and control a heating, ventilation and air-conditioning (HVAC) system 48. Another example device 10 may include a hazard detection unit 50 that can detect the presence of a hazardous substance and/or a hazardous condition in the home environment 30 (e.g., smoke, fire, or carbon monoxide). Additionally, entryway interface devices 52, which can be termed a “smart doorbell”, can detect a person's approach to or departure from a location, control audible functionality, announce a person's approach or departure via audio or visual means, or control settings on a security system (e.g., to activate or deactivate the security system).


In certain embodiments, the device 10 may include a light switch 54 that may detect ambient lighting conditions, detect room-occupancy states, and control a power and/or dim state of one or more lights. In some instances, the light switches 54 may control a power state or speed of a fan, such as a ceiling fan.


Additionally, wall plug interfaces 56 may detect occupancy of a room or enclosure and control supply of power to one or more wall plugs (e.g., such that power is not supplied to the plug if nobody is at home). The device 10 within the home environment 30 may further include an appliance 58, such as refrigerators, stoves and/or ovens, televisions, washers, dryers, lights (inside and/or outside the structure 32), stereos, intercom systems, garage-door openers, floor fans, ceiling fans, whole-house fans, wall air conditioners, pool heaters 34, irrigation systems 36, security systems, and so forth. While descriptions of FIG. 2 may identify specific sensors and functionalities associated with specific devices, it will be appreciated that any of a variety of sensors and functionalities (such as those described throughout the specification) may be integrated into the device 10.


In addition to containing processing and sensing capabilities, each of the example devices described above may be capable of data communications and information sharing with any other device, as well as to any cloud server or any other device that is network-connected anywhere in the world. In one embodiment, the devices 10 may send and receive communications via a fabric network discussed below. In one embodiment, fabric may enable the devices 10 to communicate with each other via one or more logical networks. As such, certain devices may serve as wireless repeaters and/or may function as bridges between devices, services, and/or logical networks in the home environment that may not be directly connected (i.e., one hop) to each other.


In one embodiment, a wireless router 60 may further communicate with the devices 10 in the home environment 30 via one or more logical networks (e.g., WiFi). The wireless router 60 may then communicate with the Internet 62 or other network such that each device 10 may communicate with a remote service or a cloud-computing system 64 through the Internet 62. The cloud-computing system 64 may be associated with a manufacturer, support entity or service provider associated with a particular device 10. As such, in one embodiment, a user may contact customer support using a device itself rather than using some other communication means such as a telephone or Internet-connected computer. Further, software updates can be automatically sent from the cloud-computing system 64 or devices in the home environment 30 to other devices in the fabric (e.g., when available, when purchased, when requested, or at routine intervals).


By virtue of network connectivity, one or more of the devices 10 may further allow a user to interact with the device even if the user is not proximate to the device. For example, a user may communicate with a device using a computer (e.g., a desktop computer, laptop computer, or tablet) or other portable electronic device (e.g., a smartphone) 66. A webpage or application may receive communications from the user and control the device 10 based on the received communications. Moreover, the webpage or application may present information about the device's operation to the user. For example, the user can view a current setpoint temperature for a device and adjust it using a computer that may be connected to the Internet 62. In this example, the thermostat 46 may receive the current setpoint temperature view request via the fabric network via one or more underlying logical networks.


In certain embodiments, the home environment 30 may also include a variety of non-communicating legacy appliances 68, such as old conventional washer/dryers, refrigerators, and the like which can be controlled, albeit coarsely (ON/OFF), by virtue of the wall plug interfaces 56. The home environment 30 may further include a variety of partially communicating legacy appliances 70, such as infra-red (IR) controlled wall air conditioners or other IR-controlled devices, which can be controlled by IR signals provided by the hazard detection units 50 or the light switches 54.


As mentioned above, each of the example devices 10 described above may form a portion of a fabric network. Generally, the fabric network may be part of an Open Systems Interconnection (OSI) model 90 as depicted in FIG. 4. The OSI model 90 illustrates functions of a communication system with respect to abstraction layers. That is, the OSI model may specify a networking framework or how communications between devices may be implemented. In one embodiment, the OSI model may include six layers: a physical layer 92, a data link layer 94, a network layer 96, a transport layer 98, a platform layer 100, and an application layer 102. Generally, each layer in the OSI model 90 may serve the layer above it and may be served by the layer below it.


Keeping this in mind, the physical layer 92 may provide hardware specifications for devices that may communicate with each other. As such, the physical layer 92 may establish how devices may connect to each other, assist in managing how communication resources may be shared between devices, and the like.


The data link layer 94 may specify how data may be transferred between devices. Generally, the data link layer 94 may provide a way in which data packets being transmitted may be encoded and decoded into bits as part of a transmission protocol.


The network layer 96 may specify how the data being transferred to a destination node is routed. The network layer 96 may also provide a security protocol that may maintain the integrity of the data being transferred. The efficient network layer discussed above corresponds to the network layer 96. In certain embodiments, the network layer 96 may be completely independent of the platform layer 100 and include any suitable IPv6 network type (e.g., WiFi, Ethernet, HomePlug, 802.15.4, etc).


The transport layer 98 may specify a transparent transfer of the data from a source node to a destination node. The transport layer 98 may also control how the transparent transfer of the data remains reliable. As such, the transport layer 98 may be used to verify that data packets intended to transfer to the destination node indeed reached the destination node. Example protocols that may be employed in the transport layer 98 may include Transmission Control Protocol (TCP) and User Datagram Protocol (UDP).


The platform layer 100 includes the fabric network and establishes connections between devices according to the protocol specified within the transport layer 98 and may be agnostic of the network type used in the network layer 96. The platform layer 100 may also translate the data packets into a form that the application layer 102 may use. The application layer 102 may support a software application that may directly interface with the user. As such, the application layer 102 may implement protocols defined by the software application. For example, the software application may provide serves such as file transfers, electronic mail, and the like.


II. Fabric Device Interconnection


As discussed above, a fabric may be implemented using one or more suitable communications protocols, such as IPv6 protocols. In fact, the fabric may be partially or completely agnostic to the underlying technologies (e.g., network types or communication protocols) used to implement the fabric. Within the one or more communications protocols, the fabric may be implemented using one or more network types used to communicatively couple electrical devices using wireless or wired connections. For example, certain embodiments of the fabric may include Ethernet, WiFi, 802.15.4, ZigBee®, ISA100.11a, WirelessHART, MiWi™, power-line networks, and/or other suitable network types. Within the fabric devices (e.g., nodes) can exchange packets of information with other devices (e.g., nodes) in the fabric, either directly or via intermediary nodes, such as intelligent thermostats, acting as IP routers. These nodes may include manufacturer devices (e.g., thermostats and smoke detectors) and/or customer devices (e.g., phones, tablets, computers, etc.). Additionally, some devices may be “always on” and continuously powered using electrical connections. Other devices may have partially reduced power usage (e.g., medium duty cycle) using a reduced/intermittent power connection, such as a thermostat or doorbell power connection. Finally, some devices may have a short duty cycle and run solely on battery power. In other words, in certain embodiments, the fabric may include heterogeneous devices that may be connected to one or more sub-networks according to connection type and/or desired power usage. FIGS. A-C illustrate three embodiments that may be used to connect electrical devices via one or more sub-networks in the fabric.


A. Single Network Topology



FIG. 4 illustrates an embodiment of the fabric 1000 having a single network topology. As illustrated, the fabric 1000 includes a single logical network 1002. The network 1002 could include Ethernet, WiFi, 802.15.4, power-line networks, and/or other suitable network types in the IPv6 protocols. In fact, in some embodiments where the network 1002 includes a WiFi or Ethernet network, the network 1002 may span multiple WiFi and/or Ethernet segments that are bridged at a link layer.


The network 1002 includes one or more nodes 1004, 1006, 1008, 1010, 1012, 1014, and 1016, referred to collectively as 1004-1016. Although the illustrated network 1002 includes seven nodes, certain embodiments of the network 1002 may include one or more nodes interconnected using the network 1002. Moreover, if the network 1002 is a WiFi network, each of the nodes 1004-1016 may be interconnected using the node 1016 (e.g., WiFi router) and/or paired with other nodes using WiFi Direct (i.e., WiFi P2P).


B. Star Network Topology



FIG. 5 illustrates an alternative embodiment of fabric 1000 as a fabric 1018 having a star network topology. The fabric 1018 includes a hub network 1020 that joins together two periphery networks 1022 and 1024. The hub network 1020 may include a home network, such as WiFi/Ethernet network or power line network. The periphery networks 1022 and 1024 may additional network connection types different of different types than the hub network 1020. For example, in some embodiments, the hub network 1020 may be a WiFi/Ethernet network, the periphery network 1022 may include an 802.15.4 network, and the periphery network 1024 may include a power line network, a ZigBee® network, a ISA100.11a network, a WirelessHART, network, or a MiWi™ network. Moreover, although the illustrated embodiment of the fabric 1018 includes three networks, certain embodiments of the fabric 1018 may include any number of networks, such as 2, 3, 4, 5, or more networks. In fact, some embodiments of the fabric 1018 include multiple periphery networks of the same type.


Although the illustrated fabric 1018 includes fourteen nodes, each referred to individually by reference numbers 1024-1052, respectively, it should be understood that the fabric 1018 may include any number of nodes. Communication within each network 1020, 1022, or 1024, may occur directly between devices and/or through an access point, such as node 1042 in a WiFi/Ethernet network. Communications between periphery network 1022 and 1024 passes through the hub network 1020 using inter-network routing nodes. For example, in the illustrated embodiment, nodes 1034 and 1036 are be connected to the periphery network 1022 using a first network connection type (e.g., 802.15.4) and to the hub network 1020 using a second network connection type (e.g., WiFi) while the node 1044 is connected to the hub network 1020 using the second network connection type and to the periphery network 1024 using a third network connection type (e.g., power line). For example, a message sent from node 1026 to node 1052 may pass through nodes 1028, 1030, 1032, 1036, 1042, 1044, 1048, and 1050 in transit to node 1052.


C. Overlapping Networks Topology



FIG. 6 illustrates an alternative embodiment of the fabric 1000 as a fabric 1054 having an overlapping networks topology. The fabric 1054 includes networks 1056 and 1058. As illustrated, each of the nodes 1062, 1064, 1066, 1068, 1070, and 1072 may be connected to each of the networks. In other embodiments, the node 1072 may include an access point for an Ethernet/WiFi network rather than an end point and may not be present on either the network 1056 or network 1058, whichever is not the Ethernet/WiFi network. Accordingly, a communication from node 1062 to node 1068 may be passed through network 1056, network 1058, or some combination thereof. In the illustrated embodiment, each node can communicate with any other node via any network using any network desired. Accordingly, unlike the star network topology of FIG. 5, the overlapping networks topology may communicate directly between nodes via any network without using inter-network routing.


D. Fabric Network Connection to Services


In addition to communications between devices within the home, a fabric (e.g., fabric 1000) may include services that may be located physically near other devices in the fabric or physically remote from such devices. The fabric connects to these services through one or more service end points. FIG. 7 illustrates an embodiment of a service 1074 communicating with fabrics 1076, 1078, and 1080. The service 1074 may include various services that may be used by devices in fabrics 1076, 1078, and/or 1080. For example, in some embodiments, the service 1074 may be a time of day service that supplies a time of day to devices, a weather service to provide various weather data (e.g., outside temperature, sunset, wind information, weather forecast, etc.), an echo service that “pings” each device, data management services, device management services, and/or other suitable services. As illustrated, the service 1074 may include a server 1082 (e.g., web server) that stores/accesses relevant data and passes the information through a service end point 1084 to one or more end points 1086 in a fabric, such as fabric 1076. Although the illustrated embodiment only includes three fabrics with a single server 1082, it should be appreciated that the service 1074 may connect to any number of fabrics and may include servers in addition to the server 1082 and/or connections to additional services.


In certain embodiments, the service 1074 may also connect to a consumer device 1088, such as a phone, tablet, and/or computer. The consumer device 1088 may be used to connect to the service 1074 via a fabric, such as fabric 1076, an Internet connection, and/or some other suitable connection method. The consumer device 1088 may be used to access data from one or more end points (e.g., electronic devices) in a fabric either directly through the fabric or via the service 1074. In other words, using the service 1074, the consumer device 1088 may be used to access/manage devices in a fabric remotely from the fabric.


E. Communication Between Devices in a Fabric


As discussed above, each electronic device or node may communicate with any other node in the fabric, either directly or indirectly depending upon fabric topology and network connection types. Additionally, some devices (e.g., remote devices) may communicate through a service to communicate with other devices in the fabric. FIG. 8 illustrates an embodiment of a communication 1090 between two devices 1092 and 1094. The communication 1090 may span one or more networks either directly or indirectly through additional devices and/or services, as described above. Additionally, the communication 1090 may occur over an appropriate communication protocol, such as IPv6, using one or more transport protocols. For example, in some embodiments the communication 1090 may include using the transmission control protocol (TCP) and/or the user datagram protocol (UDP). In some embodiments, the device 1092 may transmit a first signal 1096 to the device 1094 using a connectionless protocol (e.g., UDP). In certain embodiments, the device 1092 may communicate with the device 1094 using a connection-oriented protocol (e.g., TCP). Although the illustrated communication 1090 is depicted as a bi-directional connection, in some embodiments, the communication 1090 may be a uni-directional broadcast.


i. Unique Local Address


As discussed above, data transmitted within a fabric received by a node may be redirected or passed through the node to another node depending on the desired target for the communication. In some embodiments, the transmission of the data may be intended to be broadcast to all devices. In such embodiments, the data may be retransmitted without further processing to determine whether the data should be passed along to another node. However, some data may be directed to a specific endpoint. To enable addressed messages to be transmitted to desired endpoints, nodes may be assigned identification information.


Each node may be assigned a set of link-local addresses (LLA), one assigned to each network interface. These LLAs may be used to communicate with other nodes on the same network. Additionally, the LLAs may be used for various communication procedures, such as IPv6 Neighbor Discovery Protocol. In addition to LLAs, each node is assigned a unique local address (ULA).



FIG. 9 illustrates an embodiment of a unique local address (ULA) 1098 that may be used to address each node in the fabric. In certain embodiments, the ULA 1098 may be formatted as an IPv6 address format containing 128 bits divided into a global ID 1100, a subnet ID 1102, and an interface ID 1104. The global ID 1100 includes 40 bits and the subnet ID 1102 includes 16 bits. The global ID 1100 and subnet ID 1102 together form a fabric ID 1103 for the fabric.


The fabric ID 1103 is a unique 64-bit identifier used to identify a fabric. The fabric ID 1103 may be generated at creation of the associated fabric using a pseudo-random algorithm. For example, the pseudo-random algorithm may 1) obtain the current time of day in 64-bit NTP format, 2) obtain the interface ID 1104 for the device, 3) concatenate the time of day with the interface ID 1104 to create a key, 4) compute and SHA-1 digest on the key resulting in 160 bits, 5) use the least significant 40 bits as the global ID 1100, and 6) concatenate the ULA and set the least significant bit to 1 to create the fabric ID 1103. In certain embodiments, once the fabric ID 1103 is created with the fabric, the fabric ID 1103 remains until the fabric is dissolved.


The global ID 1100 identifies the fabric to which the node belongs. The subnet ID 1102 identifies logical networks within the fabric. The subnet ID F3 may be assigned monotonically starting at one with the addition of each new logical network to the fabric. For example, a WiFi network may be identified with a hex value of 0x01, and a later connected 802.15.4 network may be identified with a hex value of 0x02 continuing on incrementally upon the connection of each new network to the fabric.


Finally, the ULA 1098 includes an interface ID 1104 that includes 64 bits. The interface ID 1104 may be assigned using a globally-unique 64-bit identifier according to the IEEE EUI-64 standard. For example, devices with IEEE 802 network interfaces may derive the interface ID 1104 using a burned-in MAC address for the devices “primary interface.” In some embodiments, the designation of which interface is the primary interface may be determined arbitrarily. In other embodiments, an interface type (e.g., WiFi) may be deemed the primary interface, when present. If the MAC address for the primary interface of a device is 48 bits rather than 64-bit, the 48-bit MAC address may be converted to a EUI-64 value via encapsulation (e.g., organizationally unique identifier encapsulating). In consumer devices (e.g., phones or computers), the interface ID 1104 may be assigned by the consumer devices' local operating systems.


ii. Routing Transmissions Between Logical Networks


As discussed above in relation to a star network topology, inter-network routing may occur in communication between two devices across logical networks. In some embodiments, inter-network routing is based on the subnet ID 1102. Each inter-networking node (e.g., node 1034 of FIG. 5) may maintain a list of other routing nodes (e.g., node B 14 of FIG. 5) on the hub network 1020 and their respective attached periphery networks (e.g., periphery network 1024 of FIG. 5). When a packet arrives addressed to a node other than the routing node itself, the destination address (e.g., address for node 1052 of FIG. 5) is compared to the list of network prefixes and a routing node (e.g., node 1044) is selected that is attached to the desired network (e.g., periphery network 1024). The packet is then forwarded to the selected routing node. If multiple nodes (e.g., 1034 and 1036) are attached to the same periphery network, routing nodes are selected in an alternating fashion.


Additionally, inter-network routing nodes may regularly transmit Neighbor Discovery Protocol (NDP) router advertisement messages on the hub network to alert consumer devices to the existence of the hub network and allow them to acquire the subnet prefix. The router advertisements may include one or more route information options to assist in routing information in the fabric. For example, these route information options may inform consumer devices of the existence of the periphery networks and how to route packets the periphery networks.


In addition to, or in place of route information options, routing nodes may act as proxies to provide a connection between consumer devices and devices in periphery networks, such as the process 1105 as illustrated in FIG. 10. As illustrated, the process 1105 includes each periphery network device being assigned a virtual address on the hub network by combining the subnet ID 1102 with the interface ID 1104 for the device on the periphery network (block 1106). To proxy using the virtual addresses, routing nodes maintain a list of all periphery nodes in the fabric that are directly reachable via one of its interfaces (block 1108). The routing nodes listen on the hub network for neighbor solicitation messages requesting the link address of a periphery node using its virtual address (block 1110). Upon receiving such a message, the routing node attempts to assign the virtual address to its hub interface after a period of time (block 1112). As part of the assignment, the routing node performs duplicate address detection so as to block proxying of the virtual address by more than one routing node. After the assignment, the routing node responds to the neighbor solicitation message and receives the packet (block 1114). Upon receiving the packet, the routing node rewrites the destination address to be the real address of the periphery node (block 1116) and forwards the message to the appropriate interface (block 1118).


iii. Consumer Devices Connecting to a Fabric


To join a fabric, a consumer device may discover an address of a node already in the fabric that the consumer device wants to join. Additionally, if the consumer device has been disconnected from a fabric for an extended period of time may need to rediscover nodes on the network if the fabric topology/layout has changed. To aid in discovery/rediscovery, fabric devices on the hub network may publish Domain Name System-Service Discovery (DNS-SD) records via mDNS that advertise the presence of the fabric and provide addresses to the consumer device


III. Data Transmitted in the Fabric


After creation of a fabric and address creation for the nodes, data may be transmitted through the fabric. Data passed through the fabric may be arranged in a format common to all messages and/or common to specific types of conversations in the fabric. In some embodiments, the message format may enable one-to-one mapping to JavaScript Object Notation (JSON) using a TLV serialization format discussed below. Additionally, although the following data frames are described as including specific sizes, it should be noted that lengths of the data fields in the data frames may be varied to other suitable bit-lengths.


It should be understood that each of the following data frames, profiles, and/or formats discussed below may be stored in memory (e.g., memory of the device 10) prior to and/or after transmission of a message. In other words, although the data frame, profiles, and formats may be generally discussed as transmissions of data, they may also be physically stored (e.g., in a buffer) before, during, and/or after transmission of the data frame, profiles, and/or formats. Moreover, the following data frames, profiles, schemas, and/or formats may be stored on a non-transitory, computer-readable medium that allows an electronic device to access the data frames, profiles, schemas, and/or formats. For example, instructions for formatting the data frames, profiles, schemas, and/or formats may be stored in any suitable computer-readable medium, such as in memory for the device 10, memory of another device, a portable memory device (e.g., compact disc, flash drive, etc.), or other suitable physical device suitable for storing the data frames, profiles, schemas, and/or formats.


A. Security


Along with data intended to be transferred, the fabric may transfer the data with additional security measures such as encryption, message integrity checks, and digital signatures. In some embodiments, a level of security supported for a device may vary according to physical security of the device and/or capabilities of the device. In certain embodiments, messages sent between nodes in the fabric may be encrypted using the Advanced Encryption Standard (AES) block cipher operating in counter mode (AES-CTR) with a 128-bit key. As discussed below, each message contains a 32-bit message id. The message id may be combined with a sending nodes id to form a nonce for the AES-CTR algorithm. The 32-bit counter enables 4 billion messages to be encrypted and sent by each node before a new key is negotiated.


In some embodiments, the fabric may insure message integrity using a message authentication code, such as HMAC-SHA-1, that may be included in each encrypted message. In some embodiments, the message authentication code may be generated using a 160-bit message integrity key that is paired one-to-one with the encryption key. Additionally, each node may check the message id of incoming messages against a list of recently received ids maintained on a node-by-node basis to block replay of the messages.


B. Tag Length Value (TLV) Formatting


To reduce power consumption, it is desirable to send at least a portion of the data sent over the fabric that compactly while enabling the data containers to flexibly represents data that accommodates skipping data that is not recognized or understood by skipping to the next location of data that is understood within a serialization of the data. In certain embodiments, tag-length-value (TLV) formatting may be used to compactly and flexibly encode/decode data. By storing at least a portion of the transmitted data in TLV, the data may be compactly and flexibly stored/sent along with low encode/decode and memory overhead, as discussed below in reference to Table 7. In certain embodiments, TLV may be used for some data as flexible, extensible data, but other portions of data that is not extensible may be stored and sent in an understood standard protocol data unit (PDU).


Data formatted in a TLV format may be encoded as TLV elements of various types, such as primitive types and container types. Primitive types include data values in certain formats, such as integers or strings. For example, the TLV format may encode: 1, 2, 3, 4, or 8 byte signed/unsigned integers, UTF-8 strings, byte strings, single/double-precision floating numbers (e.g., IEEE 754-1985 format), boolean, null, and other suitable data format types. Container types include collections of elements that are then sub-classified as container or primitive types. Container types may be classified into various categories, such as dictionaries, arrays, paths or other suitable types for grouping TLV elements, known as members. A dictionary is a collection of members each having distinct definitions and unique tags within the dictionary. An array is an ordered collection of members with implied definitions or no distinct definitions. A path is an ordered collection of members that described how to traverse a tree of TLV elements.


As illustrated in FIG. 11, an embodiment of a TLV packet 1120 includes three data fields: a tag field 1122, a length field 1124, and a value field 1126. Although the illustrated fields 1122, 1124, and 1126 are illustrated as approximately equivalent in size, the size of each field may be variable and vary in size in relation to each other. In other embodiments, the TLV packet 1120 may further include a control byte before the tag field 1122.


In embodiments having the control byte, the control byte may be sub-divided into an element type field and a tag control field. In some embodiments, the element type field includes 5 lower bits of the control byte and the tag control field occupies the upper 3 bits. The element type field indicates the TLV element's type as well as the how the length field 1124 and value field 1126 are encoded. In certain embodiments, the element type field also encodes Boolean values and/or null values for the TLV. For example, an embodiment of an enumeration of element type field is provided in Table 1 below.









TABLE 1







Example element type field values.















7
6
5
4
3
2
1
0

















0
0
0
0
0
Signed Integer, 1byte value value



0
0
0
0
1
Signed Integer, 2byte value



0
0
0
1
0
Signed Integer, 4byte value



0
0
0
1
1
Signed Integer, 8byte value



0
0
1
0
0
Unsigned Integer, 1byte value



0
0
1
0
1
Unsigned Integer, 2byte value



0
0
1
1
0
Unsigned Integer, 4byte value



0
0
1
1
1
Unsigned Integer, 8byte value



0
1
0
0
0
Boolean False



0
1
0
0
1
Boolean True



0
1
0
1
0
Floating Point Number, 4byte








value



0
1
0
1
1
Floating Point Number, 8byte








value



0
1
1
0
0
UTF8-String, 1byte length



0
1
1
0
1
UTF8-String, 2byte length



0
1
1
1
0
UTF8-String, 4byte length



0
1
1
1
1
UTF8-String, 8byte length



1
0
0
0
0
Byte String, 1byte length



1
0
0
0
1
Byte String, 2byte length



1
0
0
1
0
Byte String, 4byte length



1
0
0
1
1
Byte String, 8byte length



1
0
1
0
0
Null



1
0
1
0
1
Dictionary



1
0
1
1
0
Array



1
0
1
1
1
Path



1
1
0
0
0
End of Container










The tag control field indicates a form of the tag in the tag field 1122 assigned to the TLV element (including a zero-length tag). Examples, of tag control field values are provided in Table 2 below.









TABLE 2







Example values for tag control field.















7
6
5
4
3
2
1
0





0
0
0





Anonymous, 0 bytes


0
0
1





Context-specific Tag, 1 byte


0
1
0





Core Profile Tag, 2 bytes


0
1
1





Core Profile Tag, 4 bytes


1
0
0





Implicit Profile Tag, 2 bytes


1
0
1





Implicit Profile Tag, 4 bytes


1
1
0





Fully-qualified Tag, 6 bytes


1
1
1





Fully-qualified Tag, 8 bytes









In other words, in embodiments having a control byte, the control byte may indicate a length of the tag.


In certain embodiments, the tag field 1122 may include zero to eight bytes, such as eight, sixteen, thirty two, or sixty four bits. In some embodiments, the tag of the tag field may be classified as profile-specific tags or context-specific tags. Profile-specific tags identify elements globally using a vendor Id, a profile Id, and/or tag number as discussed below. Context-specific tags identify TLV elements within a context of a containing dictionary element and may include a single-byte tag number. Since context-specific tags are defined in context of their containers, a single context-specific tag may have different interpretations when included in different containers. In some embodiments, the context may also be derived from nested containers.


In embodiments having the control byte, the tag length is encoded in the tag control field and the tag field 1122 includes a possible three fields: a vendor Id field, a profile Id field, and a tag number field. In the fully-qualified form, the encoded tag field 1122 includes all three fields with the tag number field including 16 or 32 bits determined by the tag control field. In the implicit form, the tag includes only the tag number, and the vendor Id and profile number are inferred from the protocol context of the TLV element. The core profile form includes profile-specific tags, as discussed above. Context-specific tags are encoded as a single byte conveying the tag number. Anonymous elements have zero-length tag fields 1122.


In some embodiments without a control byte, two bits may indicate a length of the tag field 1122, two bits may indicate a length of the length field 1124, and four bits may indicate a type of information stored in the value field 1126. An example of possible encoding for the upper 8 bits for the tag field is illustrated below in Table 3.









TABLE 3







Tag field of a TLV packet















Byte










0


7
6
5
4
3
2
1
0
Description





0
0






Tag is 8 bits


0
1






Tag is 16 bits


1
0






Tag is 32 bits


1
1






Tag is 64 bits




0
0




Length is 8 bits




0
1




Length is 16 bits




1
0




Length is 32 bits




1
1




Length is 64 bits






0
0
0
0
Boolean






0
0
0
1
Fixed 8-bit Unsigned






0
0
1
0
Fixed 8-bit Signed






0
0
1
1
Fixed 16-bit Unsigned






0
1
0
0
Fixed 16-bit Signed






0
1
0
1
Fixed 32-bit Unsigned






0
1
1
0
Fixed 32-bit Signed






0
1
1
1
Fixed 64-bit Unsigned






1
0
0
0
Fixed 64-bit Signed






1
0
0
1
32-bit Floating Point






1
0
1
0
64-bit Floating Point






1
0
1
1
UTF-8 String






1
1
0
0
Opaque Data






1
1
0
1
Container










As illustrated in Table 3, the upper 8 bits of the tag field 1122 may be used to encode information about the tag field 1122, length field 1124, and the value field 1126, such that the tag field 112 may be used to determine length for the tag field 122 and the length fields 1124. Remaining bits in the tag field 1122 may be made available for user-allocated and/or user-assigned tag values.


The length field 1124 may include eight, sixteen, thirty two, or sixty four bits as indicated by the tag field 1122 as illustrated in Table 3 or the element field as illustrated in Table 2. Moreover, the length field 1124 may include an unsigned integer that represents a length of the encoded in the value field 1126. In some embodiments, the length may be selected by a device sending the TLV element. The value field 1126 includes the payload data to be decoded, but interpretation of the value field 1126 may depend upon the tag length fields, and/or control byte. For example, a TLV packet without a control byte including an 8 bit tag is illustrated in Table 4 below for illustration.









TABLE 4







Example of a TLV packet including an 8-bit tag












Tag
Length
Value
Description







0x0d
0x24





0x09
0x04
0x42 95 00 00
74.5



0x09
0x04
0x42 98 66 66
76.2



0x09
0x04
0x42 94 99 9a
74.3



0x09
0x04
0x42 98 99 9a
76.3



0x09
0x04
0x42 95 33 33
74.6



0x09
0x04
0x42 98 33 33
76.1











As illustrated in Table 4, the first line indicates that the tag field 1122 and the length field 1124 each have a length of 8 bits. Additionally, the tag field 1122 indicates that the tag type is for the first line is a container (e.g., the TLV packet). The tag field 1124 for lines two through six indicate that each entry in the TLV packet has a tag field 1122 and length field 1124 consisting of 8 bits each. Additionally, the tag field 1124 indicates that each entry in the TLV packet has a value field 1126 that includes a 32-bit floating point. Each entry in the value field 1126 corresponds to a floating number that may be decoded using the corresponding tag field 1122 and length field 1124 information. As illustrated in this example, each entry in the value field 1126 corresponds to a temperature in Fahrenheit. As can be understood, by storing data in a TLV packet as described above, data may be transferred compactly while remaining flexible for varying lengths and information as may be used by different devices in the fabric. Moreover, in some embodiments, multi-byte integer fields may be transmitted in little-endian order or big-endian order.


By transmitting TLV packets in using an order protocol (e.g., little-endian) that may be used by sending/receiving device formats (e.g., JSON), data transferred between nodes may be transmitted in the order protocol used by at least one of the nodes (e.g., little endian). For example, if one or more nodes include ARM or ix86 processors, transmissions between the nodes may be transmitted using little-endian byte ordering to reduce the use of byte reordering. By reducing the inclusion of byte reordering, the TLV format enable devices to communicate using less power than a transmission that uses byte reordering on both ends of the transmission. Furthermore, TLV formatting may be specified to provide a one-to-one translation between other data storage techniques, such as JSON+ Extensible Markup Language (XML). As an example, the TLV format may be used to represent the following XML Property List:














<?xml version=“1.0” encoding=“UTF-8”?>


<!DOCTYPE plist PUBLIC “-//Apple Computer//DTD PLIST 1.0//EN”


“http://www.apple.com/DTDs/PropertyList-1.0.dtd”>


<plist version=“1.0”>


<dict>


 <key>OfflineMode</key>


 <false/>


 <key>Network</key>


 <dict>









<key>IPv4</key>



<dict>









<key>Method</key>



<string>dhcp</string>









</dict>



<key>IPv6</key>



<dict>









<key>Method</key>



<string>auto</string>









</dict>







 </dict>


 <key>Technologies</key>


 <dict>









<key>wifi</key>



<dict>









<key>Enabled</key>



<true/>



<key>Devices</key>



<dict>









<key>wifi_18b4300008b027</key>



<dict>



<key>Enabled</key>



<true/>









</dict>









 </dict>



 <key>Services</key>



 <array>









<string>wifi_18b4300008b027_3939382d33204



16c70696e652054657 272616365</string>









 </array>



</dict>



<key>802.15.4</key>



<dict>



 <key>Enabled</key>



 <true/>



 <key>Devices</key>



 <dict>









<key>802.15.4_18b43000000002fac4</key>



<dict>









<key>Enabled</key>



<true/>









</dict>









 </dict>



 <key>Services</key>



 <array>









<string>802.15.4_18b43000000002fac4_3



939382d3320416c70696e6520546572</string>









 </array>



</dict>







 </dict>


 <key>Services</key>


 <dict>


 <key>wifi_18b4300008b027_3939382d3320416c70696e6520546572


 72616365</key>









<dict>



 <key>Name</key>



 <string>998-3 Alpine Terrace</string>



 <key>SSID</key>



 <data>3939382d3320416c70696e652054657272616365



 </data>



 <key>Frequency</key>



 <integer>2462</integer>



 <key>AutoConnect</key>



 <true/>



 <key>Favorite</key>



 <true/>



 <key>Error</key>



 <string/>



 <key>Network</key>



 <dict>









<key>IPv4</key>



<dict>









<key>DHCP</key>



<dict>









<key>LastAddress</key>



<data>0a02001e</data>









</dict>









</dict>



<key>IPv6</key>



<dict/>









 </dict>



</dict>



<key>802.15.4_18b43000000002fac4_3939382d3320416c70696e



6520546572</key>



<dict>



 <key>Name</key>



 <string>998-3 Alpine Ter</string>



 <key>EPANID</key>



 <data>3939382d3320416c70696e6520546572</data>



 <key>Frequency</key>



 <integer>2412</integer>



 <key>AutoConnect</key>



 <true/>



 <key>Favorite</key>



 <true/>



 <key>Error</key>



 <string/>



 <key>Network</key>



 <dict/>



</dict>







 </dict>


</dict>


</plist










As an example, the above property list may be represented in tags of the above described TLV format (without a control byte) according to Table 5 below.









TABLE 5







Example representation of the XML Property List in TLV format











XML Key
Tag Type
Tag Number















OfflineMode
Boolean
1



IPv4
Container
3



IPv6
Container
4



Method
String
5



Technologies
Container
6



WiFi
Container
7



802.15.4
Container
8



Enabled
Boolean
9



Devices
Container
10



ID
String
11



Services
Container
12



Name
String
13



SSID
Data
14



EPANID
Data
15



Frequency
16-bit Unsigned
16



AutoConnect
Boolean
17



Favorite
Boolean
18



Error
String
19



DHCP
String
20



LastAddress
Data
21



Device
Container
22



Service
Container
23











Similarly, Table 6 illustrates an example of literal tag, length, and value representations for the example XML Property List.









TABLE 6







Example of literal values for tag, length, and value fields for XML Property List










Tag
Length
Value
Description





0x40 01
0x01
  0
OfflineMode


0x4d 02
0x14

Network


0x4d 03
0x07

Network.IPv4


0x4b 05
0x04
“dhcp”
Network.IPv4.Method


0x4d 04
0x07

Network.IPv6


0x4b 05
0x04
“auto”
Network.IPv6.Method


0x4d 06
0xd6

Technologies


0x4d 07
0x65

Technologies.wifi


0x40 09
0x01
  1
Technologies.wifi.Enabled


0x4d 0a
0x5e

Technologies.wifi.Devices


0x4d 16
0x5b

Technologies.wifi.Devices.Device.[0]


0x4b 0b
0x13
“wifi_18b43 . . .”
Technologies.wifi.Devices.Device.[0].ID


0x40 09
0x01
  1
Technologies.wifi.Devices.Device.[0].Enabled


0x4d 0c
0x3e

Technologies.wifi.Devices.Device.[0].Services


0x0b
0x 3c
“wifi_18b43 . . .”
Technologies.wifi.Devices.Device.[0].Services.[0]


0x4d 08
0x6b

Technologies.802.15.4


0x40 09
0x01
  1
Technologies.802.15.4.Enabled


0x4d 0a
0x64

Technologies.802.15.4.Devices


0x4d 16
0x61

Technologies.802.15.4.Devices.Device.[0]


0x4b 0b
0x1a
“802.15.4_18 . . .”
Technologies.802.15.4.Devices.Device.[0].ID


0x40 09
0x01
  1
Technologies.802.15.4.Devices.Device.[0].Enabled


0x4d 0c
0x3d

Technologies.802.15.4.Devices.Device.[0].Services


0x0b
0x 3b
“802.15.4_18 . . .”
Technologies.802.15.4.Devices.Device.[0].Services.[0]


0x4d 0c
0xcb

Services


0x4d 17
0x75

Services.Service.[0]


0x4b 0b
0x13
“wifi_18b43 . . .”
Services.Service.[0].ID


0x4b 0d
0x14
“998-3 Alp . . .”
Services.Service.[0].Name


0x4c 0f
0x28
3939382d . . .
Services.Service.[0].SSID


0x45 10
0x02
2462
Services.Service.[0].Frequency


0x40 11
0x01
  1
Services.Service.[0].AutoConnect


0x40 12
0x01
  1
Services.Service.[0].Favorite


0x4d 02
0x0d

Services.Service.[0].Network


0x4d 03
0x0a

Services.Service.[0].Network.IPv4


0x4d 14
0x07

Services.Service.[0].Network.IPv4.DHCP


0x45 15
0x04
0x0a02001e
Services.Service.[0].Network.IPv4.LastAddress


0x4d 17
0x50

Services.Service.[1]


0x4b 0b
0x1a
“802.15.4_18 . . .”
Services.Service.[1].ID


0x4c 0d
0x10
“998-3 Alp . . .”
Services.Service.[1].Name


0x4c 0f
0x10
3939382d . . .
Services.Service.[1].EPANID


0x45 10
0x02
2412
Services.Service.[1].Frequency


0x40 11
0x01
  1
Services.Service.[1].AutoConnect


0x40 12
0x01
  1
Services.Service.[1].Favorite










The TLV format enables reference of properties that may also be enumerated with XML, but does so with a smaller storage size. For example, Table 7 illustrates a comparison of data sizes of the XML Property List, a corresponding binary property list, and the TLV format.









TABLE 7







Comparison of the sizes of property list data sizes.











List Type
Size in Bytes
Percentage of XML Size















XML
2,199




Binary
730
−66.8%



TLV
450
−79.5%











By reducing the amount of data used to transfer data, the TLV format enables the fabric 1000 transfer data to and/or from devices having short duty cycles due to limited power (e.g., battery supplied devices). In other words, the TLV format allows flexibility of transmission while increasing compactness of the data to be transmitted.


C. General Message Protocol


In addition to sending particular entries of varying sizes, data may be transmitted within the fabric using a general message protocol that may incorporate TLV formatting. An embodiment of a general message protocol (GMP) 1128 is illustrated in FIG. 12. In certain embodiments, the general message protocol (GMP) 1128 may be used to transmit data within the fabric. The GMP 1128 may be used to transmit data via connectionless protocols (e.g., UDP) and/or connection-oriented protocols (e.g., TCP). Accordingly, the GMP 1128 may flexibly accommodate information that is used in one protocol while ignoring such information when using another protocol. Moreover, the GMP 1226 may enable omission of fields that are not used in a specific transmission. Data that may be omitted from one or more GMP 1226 transfers is generally indicated using grey borders around the data units. In some embodiments, the multi-byte integer fields may be transmitted in a little-endian order or a big-endian order.


i. Packet Length


In some embodiments, the GMP 1128 may include a Packet Length field 1130. In some embodiments, the Packet Length field 1130 includes 2 bytes. A value in the Packet Length field 1130 corresponds to an unsigned integer indicating an overall length of the message in bytes, excluding the Packet Length field 1130 itself. The Packet Length field 1130 may be present when the GMP 1128 is transmitted over a TCP connection, but when the GMP 1128 is transmitted over a UDP connection, the message length may be equal to the payload length of the underlying UDP packet obviating the Packet Length field 1130.


ii. Message Header


The GMP 1128 may also include a Message Header 1132 regardless of whether the GMP 1128 is transmitted using TCP or UDP connections. In some embodiments, the Message Header 1132 includes two bytes of data arranged in the format illustrated in FIG. 13. As illustrated in FIG. 13, the Message Header 1132 includes a Version field 1156. The Version field 1156 corresponds to a version of the GMP 1128 that is used to encode the message. Accordingly, as the GMP 1128 is updated, new versions of the GMP 1128 may be created, but each device in a fabric may be able to receive a data packet in any version of GMP 1128 known to the device. In addition to the Version field 1156, the Message Header 1132 may include an S Flag field 1158 and a D Flag 1160. The S Flag 1158 is a single bit that indicates whether a Source Node Id (discussed below) field is included in the transmitted packet. Similarly, the D Flag 1160 is a single bit that indicates whether a Destination Node Id (discussed below) field is included in the transmitted packet.


The Message Header 1132 also includes an Encryption Type field 1162. The Encryption Type field 1162 includes four bits that specify which type of encryption/integrity checking applied to the message, if any. For example, 0x0 may indicate that no encryption or message integrity checking is included, but a decimal 0x1 may indicate that AES-128-CTR encryption with HMAC-SHA-1 message integrity checking is included.


Finally, the Message Header 1132 further includes a Signature Type field 1164. The Signature Type field 1164 includes four bits that specify which type of digital signature is applied to the message, if any. For example, 0x0 may indicate that no digital signature is included in the message, but 1x1 may indicate that the Elliptical Curve Digital Signature Algorithm (ECDSA) with Prime256v1 elliptical curve parameters is included in the message.


iii. Message Id


Returning to FIG. 12, the GMP 1128 also includes a Message Id field 1134 that may be included in a transmitted message regardless of whether the message is sent using TCP or UDP. The Message Id field 1134 includes four bytes that correspond to an unsigned integer value that uniquely identifies the message from the perspective of the sending node. In some embodiments, nodes may assign increasing Message Id 1134 values to each message that they send returning to zero after reaching 232 messages.


iv. Source Node Id


In certain embodiments, the GMP 1128 may also include a Source Node Id field 1136 that includes eight bytes. As discussed above, the Source Node Id field 1136 may be present in a message when the single-bit S Flag 1158 in the Message Header 1132 is set to 1. In some embodiments, the Source Node Id field 1136 may contain the Interface ID 1104 of the ULA 1098 or the entire ULA 1098. In some embodiments, the bytes of the Source Node Id field 1136 are transmitted in an ascending index-value order (e.g., EUI[0] then EUI[1] then EUI[2] then EUI[3], etc.).


v. Destination Node Id


The GMP 1128 may include a Destination Node Id field 1138 that includes eight bytes. The Destination Node Id field 1138 is similar to the Source Node Id field 1136, but the Destination Node Id field 1138 corresponds to a destination node for the message. The Destination Node Id field 1138 may be present in a message when the single-bit D Flag 1160 in the Message Header 1132 is set to 1. Also similar to the Source Node Id field 1136, in some embodiments, bytes of the Destination Node Id field 1138 may be transmitted in an ascending index-value order (e.g., EUI[0] then EUI[1] then EUI[2] then EUI[3], etc.).


vi. Key Id


In some embodiments, the GMP 1128 may include a Key Id field 1140. In certain embodiments, the Key Id field 1140 includes two bytes. The Key Id field 1140 includes an unsigned integer value that identifies the encryption/message integrity keys used to encrypt the message. The presence of the Key Id field 1140 may be determined by the value of Encryption Type field 1162 of the Message Header 1132. For example, in some embodiments, when the value for the Encryption Type field 1162 of the Message Header 1132 is 0x0, the Key Id field 1140 may be omitted from the message.


An embodiment of the Key Id field 1140 is presented in FIG. 14. In the illustrated embodiment, the Key Id field 1140 includes a Key Type field 1166 and a Key Number field 1168. In some embodiments, the Key Type field 1166 includes four bits. The Key Type field 1166 corresponds to an unsigned integer value that identifies a type of encryption/message integrity used to encrypt the message. For example, in some embodiments, if the Key Type field 1166 is 0x0, the fabric key is shared by all or most of the nodes in the fabric. However, if the Key Type field 1166 is 1x1, the fabric key is shared by a pair of nodes in the fabric.


The Key Id field 1140 also includes a Key Number field 1168 that includes twelve bits that correspond to an unsigned integer value that identifies a particular key used to encrypt the message out of a set of available keys, either shared or fabric keys.


vii. Payload Length


In some embodiments, the GMP 1128 may include a Payload Length field 1142. The Payload Length field 1142, when present, may include two bytes. The Payload Length field 1142 corresponds to an unsigned integer value that indicates a size in bytes of the Application Payload field. The Payload Length field 1142 may be present when the message is encrypted using an algorithm that uses message padding, as described below in relation to the Padding field.


viii. Initialization Vector


In some embodiments, the GMP 1128 may also include an Initialization Vector (IV) field 1144. The IV field 1144, when present, includes a variable number of bytes of data. The IV field 1144 contains cryptographic IV values used to encrypt the message. The IV field 1144 may be used when the message is encrypted with an algorithm that uses an IV. The length of the IV field 1144 may be derived by the type of encryption used to encrypt the message.


ix. Application Payload


The GMP 1128 includes an Application Payload field 1146. The Application Payload field 1146 includes a variable number of bytes. The Application Payload field 1146 includes application data conveyed in the message. The length of the Application Payload field 1146 may be determined from the Payload Length field 1142, when present. If the Payload Length field 1142 is not present, the length of the Application Payload field 1146 may be determined by subtracting the length of all other fields from the overall length of the message and/or data values included within the Application Payload 1146 (e.g., TLV).


An embodiment of the Application Payload field 1146 is illustrated in FIG. 15. The Application Payload field 1146 includes an APVersion field 1170. In some embodiments, the APVersion field 1170 includes eight bits that indicate what version of fabric software is supported by the sending device. The Application Payload field 1146 also includes a Message Type field 1172. The Message Type field 1172 may include eight bits that correspond to a message operation code that indicates the type of message being sent within a profile. For example, in a software update profile, a 0x00 may indicate that the message being sent is an image announce. The Application Payload field 1146 further includes an Exchange Id field 1174 that includes sixteen bits that corresponds to an exchange identifier that is unique to the sending node for the transaction.


In addition, the Application Payload field 1146 includes a Profile Id field 1176. The Profile Id 1176 indicates a “theme of discussion” used to indicate what type of communication occurs in the message. The Profile Id 1176 may correspond to one or more profiles that a device may be capable of communicating. For example, the Profile Id 1176 may indicate that the message relates to a core profile, a software update profile, a status update profile, a data management profile, a climate and comfort profile, a security profile, a safety profile, and/or other suitable profile types. Each device on the fabric may include a list of profiles which are relevant to the device and in which the device is capable of “participating in the discussion.” For example, many devices in a fabric may include the core profile, the software update profile, the status update profile, and the data management profile, but only some devices would include the climate and comfort profile. The APVersion field 1170, Message Type field 1172, the Exchange Id field, the Profile Id field 1176, and the Profile-Specific Header field 1176, if present, may be referred to in combination as the “Application Header.”


In some embodiments, an indication of the Profile Id via the Profile Id field 1176 may provide sufficient information to provide a schema for data transmitted for the profile. However, in some embodiments, additional information may be used to determine further guidance for decoding the Application Payload field 1146. In such embodiments, the Application Payload field 1146 may include a Profile-Specific Header field 1178. Some profiles may not use the Profile-Specific Header field 1178 thereby enabling the Application Payload field 1146 to omit the Profile-Specific Header field 1178. Upon determination of a schema from the Profile Id field 1176 and/or the Profile-Specific Header field 1178, data may be encoded/decoded in the Application Payload sub-field 1180. The Application Payload sub-field 1180 includes the core application data to be transmitted between devices and/or services to be stored, rebroadcast, and/or acted upon by the receiving device/service.


x. Message Integrity Check


Returning to FIG. 12, in some embodiments, the GMP 1128 may also include a Message Integrity Check (MIC) field 1148. The MIC field 1148, when present, includes a variable length of bytes of data containing a MIC for the message. The length and byte order of the field depends upon the integrity check algorithm in use. For example, if the message is checked for message integrity using HMAC-SHA-1, the MIC field 1148 includes twenty bytes in big-endian order. Furthermore, the presence of the MIC field 1148 may be determined by whether the Encryption Type field 1162 of the Message Header 1132 includes any value other than 0x0.


xi. Padding


The GMP 1128 may also include a Padding field 1150. The Padding field 1150, when present, includes a sequence of bytes representing a cryptographic padding added to the message to make the encrypted portion of the message evenly divisible by the encryption block size. The presence of the Padding field 1150 may be determined by whether the type of encryption algorithm (e.g., block ciphers in cipher-block chaining mode) indicated by the Encryption Type field 1162 in the Message Header 1132 uses cryptographic padding.


xii. Encryption


The Application Payload field 1146, the MIC field 1148, and the Padding field 1150 together form an Encryption block 1152. The Encryption block 1152 includes the portions of the message that are encrypted when the Encryption Type field 1162 in the Message Header 1132 is any value other than 0x0.


xiii. Message Signature


The GMP 1128 may also include a Message Signature field 1154. The Message Signature field 1154, when present, includes a sequence of bytes of variable length that contains a cryptographic signature of the message. The length and the contents of the Message Signature field may be determined according to the type of signature algorithm in use and indicated by the Signature Type field 1164 of the Message Header 1132. For example, if ECDSA using the Prime256v1 elliptical curve parameters is the algorithm in use, the Message Signature field 1154 may include two thirty-two bit integers encoded in little-endian order.


IV. Profiles and Protocols


As discussed above, one or more schemas of information may be selected upon desired general discussion type for the message. A profile may consist of one or more schemas. For example, one set of schemas of information may be used to encode/decode data in the Application Payload sub-field 1180 when one profile is indicated in the Profile Id field 1176 of the Application Payload 1146. However, a different set of schemas may be used to encode/decode data in the Application Payload sub-field 1180 when a different profile is indicated in the Profile Id field 1176 of the Application Payload 1146.


Additionally, in certain embodiments, each device may include a set of methods used to process profiles. For example, a core protocol may include the following profiles: GetProfiles, GetSchema, GetSchemas, GetProperty, GetProperties, SetProperty, SetProperties, RemoveProperty, RemoveProperties, RequestEcho, NotifyPropertyChanged, and/or NotifyPropertiesChanged. The Get Profiles method may return an array of profiles supported by a queried node. The GetSchema and GetSchemas methods may respectively return one or all schemas for a specific profile. GetProperty and GetProperties may respectively return a value or all value pairs for a profile schema. SetProperty and SetProperties may respectively set single or multiple values for a profile schema. RemoveProperty and RemoveProperties may respectively attempt to remove a single or multiple values from a profile schema. RequestEcho may send an arbitrary data payload to a specified node which the node returns unmodified. NotifyPropertyChange and NotifyPropertiesChanged may respectively issue a notification if a single/multiple value pairs have changed for a profile schema.


To aid in understanding profiles and schemas, a non-exclusive list of profiles and schemas are provided below for illustrative purposes.


A. Status Reporting


A status reporting schema is presented as the status reporting frame 1182 in FIG. 16. The status reporting schema may be a separate profile or may be included in one or more profiles (e.g., a core profile). In certain embodiments, the status reporting frame 1182 includes a profile field 1184, a status code field 1186, a next status field 1188, and may include an additional status info field 1190.


i. Profile Field


In some embodiments, the profile field 1184 includes four bytes of data that defines the profile under which the information in the present status report is to be interpreted. An embodiment of the profile field 1184 is illustrated in FIG. 17 with two sub-fields. In the illustrated embodiment, the profile field 1184 includes a profile Id sub-field 1192 that includes sixteen bits that corresponds to a vendor-specific identifier for the profile under which the value of the status code field 1186 is defined. The profile field 1184 may also includes a vendor Id sub-field 1194 that includes sixteen bits that identifies a vendor providing the profile identified in the profile Id sub-field 1192.


ii. Status Code


In certain embodiments, the status code field 1186 includes sixteen bits that encode the status that is being reported. The values in the status code field 1186 are interpreted in relation to values encoded in the vendor Id sub-field 1192 and the profile Id sub-field 1194 provided in the profile field 1184. Additionally, in some embodiments, the status code space may be divided into four groups, as indicated in Table 8 below.









TABLE 8







Status Code Range Table









Range
Name
Description





0x0000 . . . 0x0010
success
A request was successfully processed.


0x0011 . . . 0x0020
client
An error has or may have occurred on



error
the client-side of a client/server ex-




change. For example, the client has




made a badly-formed request.


0x0021 . . . 0x0030
server
An error has or may have occurred on



error
the server side of a client/server ex-




change. For example, the server has




failed to process a client request to




an operating system error.


0x0031 . . . 0x0040
continue/
Additional processing will be used,



redirect
such as redirection, to complete a




particular exchange, but no errors yet.










Although Table 8 identifies general status code ranges that may be used separately assigned and used for each specific profile Id, in some embodiments, some status codes may be common to each of the profiles. For example, these profiles may be identified using a common profile (e.g., core profile) identifier, such as 0x00000000.


iii. Next Status


In some embodiments, the next status code field 1188 includes eight bits. The next status code field 1188 indicates whether there is following status information after the currently reported status. If following status information is to be included, the next status code field 1188 indicates what type of status information is to be included. In some embodiments, the next status code field 1188 may always be included, thereby potentially increasing the size of the message. However, by providing an opportunity to chain status information together, the potential for overall reduction of data sent may be reduced. If the next status field 1186 is 0x00, no following status information field 1190 is included. However, non-zero values may indicate that data may be included and indicate the form in which the data is included (e.g., in a TLV packet).


iv. Additional Status Info


When the next status code field 1188 is non-zero, the additional status info field 1190 is included in the message. If present, the status item field may contain status in a form that may be determined by the value of the preceding status type field (e.g., TLV format)


B. Software Update


The software update profile or protocol is a set of schemas and a client/server protocol that enables clients to be made aware of or seek information about the presence of software that they may download and install. Using the software update protocol, a software image may be provided to the profile client in a format known to the client. The subsequent processing of the software image may be generic, device-specific, or vendor-specific and determined by the software update protocol and the devices.


i. General Application Headers for the Application Payload


In order to be recognized and handled properly, software update profile frames may be identified within the Application Payload field 1146 of the GMP 1128. In some embodiments, all software update profile frames may use a common Profile Id 1176, such as 0x0000000C. Additionally, software update profile frames may include a Message Type field 1172 that indicates additional information and may chosen according to Table 9 below and the type of message being sent.









TABLE 9







Software update profile message types










Type
Message







0x00
image announce



0x01
image query



0x02
image query response



0x03
download notify



0x04
notify response



0x05
update notify



0x06 . . . 0xff
reserved











Additionally, as described below, the software update sequence may be initiated by a server sending the update as an image announce or a client receiving the update as an image query. In either embodiment, an Exchange Id 1174 from the initiating event is used for all messages used in relation to the software update.


ii. Protocol Sequence



FIG. 18 illustrates an embodiment of a protocol sequence 1196 for a software update between a software update client 1198 and a software update server 1200. In certain embodiments, any device in the fabric may be the software update client 1198 or the software update server 1200. Certain embodiments of the protocol sequence 1196 may include additional steps, such as those illustrated as dashed lines that may be omitted in some software update transmissions.


1. Service Discovery


In some embodiments, the protocol sequence 1196 begins with a software update profile server announcing a presence of the update. However, in other embodiments, such as the illustrated embodiment, the protocol sequence 1196 begins with a service discovery 1202, as discussed above.


2. Image Announce


In some embodiments, an image announce message 1204 may be multicast or unicast by the software update server 1200. The image announce message 1204 informs devices in the fabric that the server 1200 has a software update to offer. If the update is applicable to the client 1198, upon receipt of the image announce message 1204, the software update client 1198 responds with an image query message 1206. In certain embodiments, the image announce message 1204 may not be included in the protocol sequence 1196. Instead, in such embodiments, the software update client 1198 may use a polling schedule to determine when to send the image query message 1206.


3. Image Query


In certain embodiments, the image query message 1206 may be unicast from the software update client 1198 either in response to an image announce message 1204 or according to a polling schedule, as discussed above. The image query message 1206 includes information from the client 1198 about itself. An embodiment of a frame of the image query message 1206 is illustrated in FIG. 19. As illustrated in FIG. 19, certain embodiments of the image query message 1206 may include a frame control field 1218, a product specification field 1220, a vendor specific data field 1222, a version specification field 1224, a locale specification field 1226, an integrity type supported field 1228, and an update schemes supported field 1230.


a. Frame Control


The frame control field 1218 includes 1 byte and indicates various information about the image query message 1204. An example of the frame control field 128 is illustrated in FIG. 20. As illustrated, the frame control field 1218 may include three sub-fields: vendor specific flag 1232, locale specification flag 1234, and a reserved field S3. The vendor specific flag 1232 indicates whether the vendor specific data field 1222 is included in the message image query message. For example, when the vendor specific flag 1232 is 0 no vendor specific data field 1222 may be present in the image query message, but when the vendor specific flag 1232 is 1 the vendor specific data field 1222 may be present in the image query message. Similarly, a 1 value in the locale specification flag 1234 indicates that a locale specification field 1226 is present in the image query message, and a 0 value indicates that the locale specification field 1226 in not present in the image query message.


b. Product Specification


The product specification field 1220 is a six byte field. An embodiment of the product specification field 1220 is illustrated in FIG. 21. As illustrated, the product specification field 1220 may include three sub-fields: a vendor Id field 1236, a product Id field 1238, and a product revision field 1240. The vendor Id field 1236 includes sixteen bits that indicate a vendor for the software update client 1198. The product Id field 1238 includes sixteen bits that indicate the device product that is sending the image query message 1206 as the software update client 1198. The product revision field 1240 includes sixteen bits that indicate a revision attribute of the software update client 1198.


c. Vendor Specific Data


The vendor specific data field 1222, when present in the image query message 1206, has a length of a variable number of bytes. The presence of the vendor specific data field 1222 may be determined from the vendor specific flag 1232 of the frame control field 1218. When present, the vendor specific data field 1222 encodes vendor specific information about the software update client 1198 in a TLV format, as described above.


d. Version Specification


An embodiment of the version specification field 1224 is illustrated in FIG. 22. The version specification field 1224 includes a variable number of bytes sub-divided into two sub-fields: a version length field 1242 and a version string field 1244. The version length field 1242 includes eight bits that indicate a length of the version string field 1244. The version string field 1244 is variable in length and determined by the version length field 1242. In some embodiments, the version string field 1244 may be capped at 255 UTF-8 characters in length. The value encoded in the version string field 1244 indicates a software version attribute for the software update client 1198.


e. Locale Specification


In certain embodiments, the locale specification field 1226 may be included in the image query message 1206 when the locale specification flag 1234 of the frame control 1218 is 1. An embodiment of the locale specification field 1226 is illustrated in FIG. 23. The illustrated embodiment of the locale specification field 1226 includes a variable number of bytes divided into two sub-fields: a locale string length field 1246 and a locale string field 1248. The locale string length field 1246 includes eight bits that indicate a length of the locale string field 1248. The locale string field 1248 of the locale specification field 1226 may be variable in length and contain a string of UTF-8 characters encoding a local description based on Portable Operating System Interface (POSIX) locale codes. The standard format for POSIX locale codes is [language[_territory][.codeset][@modifier]] For example, the POSIX representation for Australian English is en_AU.UTF8.


f. Integrity Types Supported


An embodiment of the integrity types field 1228 is illustrated in FIG. 24. The integrity types supported field 1228 includes two to four bytes of data divided into two sub-fields: a type list length field 1250 and an integrity type list field 1252. The type list length field 1250 includes eight bits that indicate the length in bytes of the integrity type list field 1252. The integrity type list field 1252 indicates the value of the software update integrity type attribute of the software update client 1198. In some embodiments, the integrity type may be derived from Table 10 below.









TABLE 10







Example integrity types










Value
Integrity Type







0x00
SHA-160



0x01
SHA-256



0x02
SHA-512











The integrity type list field 1252 may contain at least one element from Table 10 or other additional values not included.


g. Update Schemes Supported


An embodiment of the schemes supported field 1230 is illustrated in FIG. 25. The schemes supported field 1230 includes a variable number of bytes divided into two sub-fields: a scheme list length field 1254 and an update scheme list field 1256. The scheme list length field 1254 includes eight bits that indicate a length of the update scheme list field in bytes. The update scheme list field 1256 of the update schemes supported field 1222 is variable in length determined by the scheme list length field 1254. The update scheme list field 1256 represents an update schemes attributes of the software update profile of the software update client 1198. An embodiment of example values is shown in Table 11 below.









TABLE 11







Example update schemes










Value
Update Scheme







0x00
HTTP



0x01
HTTPS



0x02
SFTP



0x03
Fabric-specific File Transfer Protocol




(e.g., Bulk Data Transfer discussed




below)











Upon receiving the image query message 1206, the software update server 1200 uses the transmitted information to determine whether the software update server 1200 has an update for the software update client 1198 and how best to deliver the update to the software update client 1198.


4. Image Query Response


Returning to FIG. 18, after the software update server 1200 receives the image query message 1206 from the software update client 1198, the software update server 1200 responds with an image query response 1208. The image query response 1208 includes either information detailing why an update image is not available to the software update client 1198 or information about the available image update to enable to software update client 1198 to download and install the update.


An embodiment of a frame of the image query response 1208 is illustrated in FIG. 26. As illustrated, the image query response 1208 includes five possible sub-fields: a query status field 1258, a uniform resource identifier (URI) field 1260, an integrity specification field 1262, an update scheme field 1264, and an update options field 1266.


a. Query Status


The query status field 1258 includes a variable number of bytes and contains status reporting formatted data, as discussed above in reference to status reporting. For example, the query status field 1258 may include image query response status codes, such as those illustrated below in Table 12.









TABLE 12







Example image query response status codes









Profile
Code
Description





0x00000000
0x0000
The server has processed the image query mes-




sage 1206 and has an update for the software




update client 1198.


0x0000000C
0x0001
The server has processed the image query mes-




sage 1206, but the server does not have an




update for the software update client 1198.


0x00000000
0x0010
The server could not process the request be-




cause of improper form for the request.


0x00000000
0x0020
The server could not process the request due




to an internal error









b. URI


The URI field 1260 includes a variable number of bytes. The presence of the URI field 1260 may be determined by the query status field 1258. If the query status field 1258 indicates that an update is available, the URI field 1260 may be included. An embodiment of the URI field 1260 is illustrated in FIG. 27. The URI field 1260 includes two sub-fields: a URI length field 1268 and a URI string field 1270. The URI length field 1268 includes sixteen bits that indicates the length of the URI string field 1270 in UTF-8 characters. The URI string field 1270 and indicates the URI attribute of the software image update being presented, such that the software update client 1198 may be able to locate, download, and install a software image update, when present.


c. Integrity Specification


The integrity specification field 1262 may variable in length and present when the query status field 1258 indicates that an update is available from the software update server 1198 to the software update client 1198. An embodiment of the integrity specification field 1262 is illustrated in FIG. 28. As illustrated, the integrity specification field 1262 includes two sub-fields: an integrity type field 1272 and an integrity value field 1274. The integrity type field 1272 includes eight bits that indicates an integrity type attribute for the software image update and may be populated using a list similar to that illustrated in Table 10 above. The integrity value field 1274 includes the integrity value that is used to verify that the image update message has maintained integrity during the transmission.


d. Update Scheme


The update scheme field 1264 includes eight bits and is present when the query status field 1258 indicates that an update is available from the software update server 1198 to the software update client 1198. If present, the update scheme field 1264 indicates a scheme attribute for the software update image being presented to the software update server 1198.


e. Update Options


The update options field 1266 includes eight bits and is present when the query status field 1258 indicates that an update is available from the software update server 1198 to the software update client 1198. The update options field 1266 may be sub-divided as illustrated in FIG. 29. As illustrated, the update options field 1266 includes four sub-fields: an update priority field 1276, an update condition field 1278, a report status flag 1280, and a reserved field 1282. In some embodiments, the update priority field 1276 includes two bits. The update priority field 1276 indicates a priority attribute of the update and may be determined using values such as those illustrated in Table 13 below.









TABLE 13







Example update priority values










Value
Description







00
Normal - update during a period of low network traffic



01
Critical - update as quickly as possible











The update condition field 1278 includes three bits that may be used to determine conditional factors to determine when or if to update. For example, values in the update condition field 1278 may be decoded using the Table 14 below.









TABLE 14







Example update conditions








Value
Decription





0
Update without conditions


1
Update if the version of the software running on the update



client software does not match the update version.


2
Update if the version of the software running on the update



client software is older than the update version.


3
Update if the user opts into an update with a user interface










The report status flag 1280 is a single bit that indicates whether the software update client 1198 should respond with a download notify message 1210. If the report status flag 1280 is set to 1 the software update server 1198 is requesting a download notify message 1210 to be sent after the software update is downloaded by the software update client 1200.


If the image query response 1208 indicates that an update is available. The software update client 1198 downloads 1210 the update using the information included in the image query response 1208 at a time indicated in the image query response 1208.


5. Download Notify


After the update download 1210 is successfully completed or failed and the report status flag 1280 value is 1, the software update client 1198 may respond with the download notify message 1212. The download notify message 1210 may be formatted in accordance with the status reporting format discussed above. An example of status codes used in the download notify message 1212 is illustrated in Table 15 below.









TABLE 15







Example download notify status codes











Profile
Code
Description







0x00000000
0x0000
The download has been completed,





and integrity verified



0x0000000C
0x0020
The download could not be





completed due to faulty download





instructions.



0x0000000C
0x0021
The image query response





message 1208 appears proper, but





the download or integrity





verification failed.



0x0000000C
0x0022
The integrity of the download could





not be verified.











In addition to the status reporting described above, the download notify message 1208 may include additional status information that may be relevant to the download and/or failure to download.


6. Notify Response


The software update server 1200 may respond with a notify response message 1214 in response to the download notify message 1212 or an update notify message 1216. The notify response message 1214 may include the status reporting format, as described above. For example, the notify response message 1214 may include status codes as enumerated in Table 16 below.









TABLE 16







Example notify response status codes









Profile
Code
Description





0x00000000
0x0030
Continue - the notification is acknowledged, but




the update has not completed, such as download




notify message 1214 received but update notify




message 1216 has not.


0x00000000
0x0000
Success- the notification is acknowledged, and




the update has completed.


0x0000000C
0x0023
Abort - the notification is acknowledged, but the




server cannot continue the update.


0x0000000C
0x0031
Retry query - the notification is acknowledged,




and the software update client 1198 is directed




to retry the update by submitting another image




query message 1206.










In addition to the status reporting described above, the notify response message 1214 may include additional status information that may be relevant to the download, update, and/or failure to download/update the software update.


7. Update Notify


After the update is successfully completed or failed and the report status flag 1280 value is 1, the software update client 1198 may respond with the update notify message 1216. The update notify message 1216 may use the status reporting format described above. For example, the update notify message 1216 may include status codes as enumerated in Table 17 below.









TABLE 17







Example update notify status codes









Profile
Code
Description





0x00000000
0x0000
Success - the update has been completed.


0x0000000C
0x0010
Client error - the update failed due to a




problem in the software update client 1198.










In addition to the status reporting described above, the update notify message 1216 may include additional status information that may be relevant to the update and/or failure to update.


C. Data Management Protocol


Data management may be included in a common profile (e.g., core profile) used in various electronic devices within the fabric or may be designated as a separate profile. In either situation, the device management protocol (DMP) may be used for nodes to browse, share, and/or update node-resident information. A sequence 1284 used in the DMP is illustrated in FIG. 30. The sequence 1284 illustrates a viewing node 1286 that requests to view and/or change resident data of a viewed node 1288. Additionally, the viewing node 1286 may request to view the resident data using one of several viewing options, such as a snapshot request, a watching request that the viewing persists over a period of time, or other suitable viewing type. Each message follows the format for the Application Payload 1146 described in reference to FIG. 15. For example, each message contains a profile Id 1176 that corresponds to the data management profile and/or the relevant core profile, such as 0x235A0000. Each message also contains a message type 1172. The message type 1172 may be used to determine various factors relating the conversation, such as viewing type for the view. For example, in some embodiments, the message type field 1172 may be encoded/decoded according to Table 18 below.









TABLE 18







Example software update profile message types










Type
Message







0x00
snapshot request



0x01
watch request



0x02
periodic update request



0x03
refresh update



0x04
cancel view update



0x05
view response



0x06
explicit update request



0x07
view update request



0x08
update response










i. View Request


Although a view request message 1290 requests to view node-resident data, the type of request may be determined by the message type field 1172, as discussed above. Accordingly each request type may include a different view request frame.


1. Snapshot Request


A snapshot request may be sent by the viewing node 1286 when the viewing node 1286 desires an instantaneous view into the node-resident data on the viewed node 1288 without requesting future updates. An embodiment of a snapshot request frame 1292 is illustrated in FIG. 31.


As illustrated in FIG. 31, the snapshot request frame 1292 may be variable in length and include three fields: a view handle field 1294, a path length list field 1296, and a path list field 1298. The view handle field 1294 may include two bits that provide a “handle” to identify the requested view. In some embodiments, the view handle field 1294 is populated using a random 16-bit number or a 16-bit sequence number along with a uniqueness check performed on the viewing node 1286 when the request is formed. The path list length field 1296 includes two bytes that indicate a length of the path list field 1298. The path list field 1298 is variable in length and indicated by the value of the path list length field 1296. The value of the path list field 1298 indicates a schema path for nodes.


A schema path is a compact description for a data item or container that is part of a schema resident on the nodes. For example, FIG. 32 provides an example of a profile schema 1300. In the illustrated profile schema 1300, a path to data item 1302 may be written as “Foo:bicycle:mountain” in a binary format. The binary format of the path may be represented as a profile binary format 1304, as depicted in FIG. 33. The profile binary format 1304 includes two sub-fields: a profile identifier field 1306 and a TLV data field 1308. The profile identifier field 1306 identifies which profile is being referenced (e.g., Foo profile). The TLV data field 1308 path information. As previously discussed TLV data includes a tag field that includes information about the enclosed data. Tag field values used to refer to the Foo profile of FIG. 32 may be similar to those values listed in Table 19.









TABLE 19







Example tag values for the Foo profile










Name
Tag







animal
0x4301



fish
0x4302



fowl
0x4303



medium
0x4304



size
0x4305



bicycle
0x4306



road
0x4307



mountain
0x4308



track
0x4309



# of gears
0x430A



weight
0x430B











Using Table 19 and the Foo profile of FIG. 32, a binary string in TLV format representing the path “Foo:bicycle:mountain” may be represented as shown in Table 20 below.









TABLE 20







Example binary tag list for a schema path










Profile ID
Tag and Length (TL)
“bicycle”
“mountain”





CD:AB:00:00
0D:02
06:43
08:43










If the viewing node 1286 desires to receive an entire data set defined in a profile schema (e.g. Foo profile schema of FIG. 33), the view request message 1290 may request a “nil” item (e.g., 0x0D00 TL and an empty length referring to the container.


2. Watch Request


If the viewing node 1286 desires more than a snapshot, the viewing node 1286 may request a watch request. A watch request asks the viewed node 1288 to send updates when changes are made to the data of interest in viewed node 1288 so that viewing node 1286 can keep a synchronized list of the data. The watch request frame may have a different format than the snapshot request of FIG. 31. An embodiment of a watch request frame 1310 is illustrated in FIG. 34. The watch request frame 1310 includes four fields: a view handle field 1312, a path list length field 1314, a path list field 1316, and a change count field 1318. The view handle field 1312, the path list length field 1314, and the path list field may be respectively formatted similar to the view handle field 1294, the path list length field 1296, and the path list field 1298 of the snapshot request of FIG. 31. The additional field, the change count field 1318, indicates a threshold of a number of changes to the requested data at which an update is sent to the viewing node 1286. In some embodiments, if the value of the change count field 1318 is 0, the viewed node 1288 may determine when to send an update on its own. If the value of the change count field 1318 is nonzero then after a number of changes equal to the value, then an update is sent to the viewing node 1286.


3. Periodic Update Request


A third type of view may also be requested by the viewing node 1286. This third type of view is referred to as a periodic update. A periodic update includes a snapshot view as well as periodic updates. As can be understood, a periodic update request may be similar to the snapshot request with additional information determining the update period. For example, an embodiment of a periodic update request frame 1320 is depicted in FIG. 35. The periodic update request frame 1320 includes four fields: a view handle field 1322, a path list length field 1324, a path list field 1326, and an update period field 1328. The view handle field 1322, the path list length field 1324, and the path list field 1326 may be formatted similar to their respective fields in the snapshot request frame 1292. The update period field 1328 is four bytes in length and contains a value that corresponds to a period of time to lapse between updates in a relevant unit of time (e.g., seconds).


4. Refresh Request


When the viewing node 1286 desires to receive an updated snapshot, the viewing node 1286 may send a view request message 1290 in the form of a refresh request frame 1330 as illustrated in FIG. 36. The refresh request frame 1330 essentially resends a snapshot view handle field (e.g., view handle field 1294) from a previous snapshot request that the viewed node 1288 can recognize as a previous request using the view handle value in the refresh request frame 1330.


5. Cancel View Request


When the viewing node 1286 desires to cancel an ongoing view (e.g., periodic update or watch view), the viewing node 1286 may send a view request message 1290 in the form of a cancel view request frame 1332 as illustrated in FIG. 37. The cancel view request frame 1332 essentially resends a view handle field from a previous periodic update or watch view (e.g., view handle fields 1310, or 1322) from a previous request that the viewed node 1288 can recognize as a previous request using the view handle value in the refresh request frame 1330 and to cancel a currently periodic update or watch view.


ii. View Response


Returning to FIG. 30, after the viewed node 1288 receives a view request message 1290, the viewed node 1288 responds with a view response message 1334. An example of a view response message frame 1336 is illustrated in FIG. 38. The view response message frame 1336 includes three fields: a view handle field 1338, a view request status field 1240, and a data item list 1242. The view handle field 1338 may be formatted similar to any of the above referenced view handle fields 1338. Additionally, the view handle field 1338 contains a value that matches a respective view handle field from the view request message 1290 to which the view response message 1334 is responding. The view request status field 1340 is a variable length field that indicates a status of the view request and may be formatted according to the status updating format discussed above. The data item list field 1342 is a variable length field that is present when the view request status field 1340 indicates that the view request was successful. When present, the data item list field 1342 contains an ordered list of requested data corresponding to the path list of the view request message 1290. Moreover, the data in the data item list field 1342 may be encoded in a TLV format, as discussed above.


iii. Update Request


As discussed above, in some embodiments, the viewed node 1288 may send updates to the viewing node 1286. These updates may be sent as an update request message 1344. The update request message 1344 may include a specified format dependent upon a type of update request. For example, an update request may be an explicit update request or a view update request field that may be identified by the Message Id 1172.


1. Explicit Update Request


An explicit update request may be transmitted at any time as a result of a desire for information from another node in the fabric 1000. An explicit update request may be formatted in an update request frame 1346 illustrated in FIG. 39. The illustrated update request frame 1346 includes four fields: an update handle field 1348, a path list length field 1350, a path list field 1352, and a data item list field 1354.


The update handle field 1348 includes two bytes that may be populated with random or sequential numbers with uniqueness checks to identify an update request or responses to the request. The path list length field 1350 includes two bytes that indicate a length of the path list field 1352. The path list field 1352 is a variable length field that indicates a sequence of paths, as described above. The data item list field 1354 may be formatted similar to the data item list field 1242.


2. View Update Request


A view update request message may be transmitted by a node that has previously requested a view into a schema of another node or a node that has established a view into its own data on behalf of another node. An embodiment of a view update request frame 1356 illustrated in FIG. 40. The view update request frame 1356 includes four fields: an update handle field 1358, a view handle field 1360, an update item list length field 1362, and an update item list field 1364. The update handle field 1358 may be composed using the format discussed above in reference to the update handle field 1348. The view handle field 1360 includes two bytes that identify the view created by a relevant view request message 1290 having the same view handle. The update item list length field 1362 includes two bytes and indicates the number of update items that are included in the update item list field 1364.


The update item list field 1364 includes a variable number of bytes and lists the data items constituting the updated values. Each updated item list may include multiple update items. The individual update items are formatted accordingly to the update item frame 1366 illustrated in FIG. 41. Each update item frame 1366 includes three sub-fields: an item index field 1368, an item timestamp field 1370, and a data item field 1372. The item index field 1368 includes two bytes that indicate the view under which the update is being requested and the index in the path list of that view for the data item field 1372.


The item timestamp field 1370 includes four bytes and indicates the elapsed time (e.g., in seconds) from the change until the update being communicated was made. If more than one change has been made to the data item, the item timestamp field 1370 may indicate the most recent or the earliest change. The data item field 1372 is a variable length field encoded in TLV format that is to be received as the updated information.


iv. Update Response


After an update is received, a node (e.g., viewing node 1286) may send an update response message 1374. The update response message 1374 may be encoded using an update response frame 1376 illustrated in FIG. 42. The update response frame 1376 includes two fields: an update handle field 1378 and an update request status field 1380. The update handle field 1378 corresponds to an update handle field value of the update request message 1344 to which the update response message 1374 is responding. The update request status field 1380 reports a status of the update in accordance with the status reporting format discussed above. Additionally, a profile using the DM′ (e.g., a core profile or a data management profile) may include profile-specific codes, such as those enumerated in Table 21 below.









TABLE 21







Example of status codes for a profile including the DMP









Name
Value
Description





success
0x0000
Request successfully processed


ill-formed request
0x0010
Received request was unparseable (e.g.,




missing fields, extra fields, etc.)


invalid path
0x0011
A path from the path list of the view or




update request did not match a node-




resident schema of the responding device.


unknown view
0x0012
The view handle in the update request did


handle

not match a view on the receiving node.


illegal read
0x0013
The node making a request to read a


request

particular data item does not have




permission to do so.


illegal write
0x0014
The node making the request to write a


request

particular data item does not have




permission to do so.


internal server
0x0020
The server could not process the request


error

because of an internal error.


out of memory
0x0021
The update request could not executed




because it would overrun the available




memory in the receiving device.


continue
0x0030
The request was successfully handled but




more action by the requesting device may




occur.









D. Bulk Transfer


In some embodiments, it may be desirable to transfer bulk data files (e.g., sensor data, logs, or update images) between nodes/services in the fabric 1000. To enable transfer of bulk data, a separate profile or protocol may be incorporated into one or more profiles and made available to the nodes/services in the nodes. The bulk data transfer protocol may model data files as collections of data with metadata attachments. In certain embodiments, the data may be opaque, but the metadata may be used to determine whether to proceed with a requested file transfer.


Devices participating in a bulk transfer may be generally divided according to the bulk transfer communication and event creation. As illustrated in FIG. 43, each communication 1400 in a bulk transfer includes a sender 1402 that is a node/service that sends the bulk data 1404 to a receiver 1406 that is a node/service that receives the bulk data 1404. In some embodiments, the receiver may send status information 1408 to the sender 1402 indicating a status of the bulk transfer. Additionally, a bulk transfer event may be initiated by either the sender 1402 (e.g., upload) or the receiver 1406 (e.g., download) as the initiator. A node/service that responds to the initiator may be referred to as the responder in the bulk data transfer.


Bulk data transfer may occur using either synchronous or asynchronous modes. The mode in which the data is transferred may be determined using a variety of factors, such as the underlying protocol (e.g., UDP or TCP) on which the bulk data is sent. In connectionless protocols (e.g., UDP), bulk data may be transferred using a synchronous mode that allows one of the nodes/services (“the driver”) to control a rate at which the transfer proceeds. In certain embodiments, after each message in a synchronous mode bulk data transfer, an acknowledgment may be sent before sending the next message in the bulk data transfer. The driver may be the sender 1402 or the receiver 1406. In some embodiments, the driver may toggle between an online state and an offline mode while sending messages to advance the transfer when in the online state. In bulk data transfers using connection-oriented protocols (e.g., TCP), bulk data may be transferred using an asynchronous mode that does not use an acknowledgment before sending successive messages or a single driver.


Regardless of whether the bulk data transfer is performed using a synchronous or asynchronous mode, a type of message may be determined using a Message Type 1172 in the Application Payload 1146 according the Profile Id 1176 in the Application Payload. Table 22 includes an example of message types that may be used in relation to a bulk data transfer profile value in the Profile Id 1176.









TABLE 22







Examples of message types for bulk data transfer profiles










Message Type
Message







0x01
SendInit



0x02
SendAccept



0x03
SendReject



0x04
ReceiveInit



0x05
ReceiveAccept



0x06
ReceiveReject



0x07
BlockQuery



0x08
Block



0x09
BlockEOF



0x0A
Ack



0x0B
Block EOF



0x0C
Error










i. SendInit


An embodiment of a SendInit message 1420 is illustrated in FIG. 44. The SendInit message 1420 may include seven fields: a transfer control field 1422, a range control field 1424, a file designator length field 1426, a proposed max block size field 1428, a start offset field 1430, length field 1432, and a file designator field 1434.


The transfer control field 1422 includes a byte of data illustrated in FIG. 45. The transfer control field includes at least four fields: an Asynch flag 1450, an RDrive flag 1452, an SDrive flag 1454, and a version field 1456. The Asynch flag 1450 indicates whether the proposed transfer may be performed using a synchronous or an asynchronous mode. The RDrive flag 1452 and the SDrive flag 1454 each respectively indicates whether the receiver 1406 is capable of transferring data with the receiver 1402 or the sender 1408 driving a synchronous mode transfer.


The range control field 1424 includes a byte of data such as the range control field 1424 illustrated in FIG. 46. In the illustrated embodiment, the range control field 1424 includes at least three fields: a BigExtent flag 1470, a start offset flag 1472, and a definite length flag 1474. The definite length flag 1474 indicates whether the transfer has a definite length. The definite length flag 1474 indicates whether the length field 1432 is present in the SendInit message 1420, and the BigExtent flag 1470 indicates a size for the length field 1432. For example, in some embodiments, a value of 1 in the BigExtent flag 1470 indicates that the length field 1432 is eight bytes. Otherwise, the length field 1432 is four bytes, when present. If the transfer has a definite length, the start offset flag 1472 indicates whether a start offset is present. If a start offset is present, the BigExtent flag 1470 indicates a length for the start offset field 1430. For example, in some embodiments, a value of 1 in the BigExtent flag 1470 indicates that the start offset field 1430 is eight bytes. Otherwise, the start offset field 1430 is four bytes, when present.


Returning to FIG. 44, the file designator length field 1426 includes two bytes that indicate a length of the file designator field 1434. The file designator field 1434 which is a variable length field dependent upon the file designator length field 1426. The max block size field 1428 proposes a maximum size of block that may be transferred in a single transfer.


The start offset field 1430, when present, has a length indicated by the BigExtent flag 1470. The value of the start offset field 1430 indicates a location within the file to be transferred from which the sender 1402 may start the transfer, essentially allowing large file transfers to be segmented into multiple bulk transfer sessions.


The length field 1432, when present, indicates a length of the file to be transferred if the definite length field 1474 indicates that the file has a definite length. In some embodiments, if the receiver 1402 receives a final block before the length is achieved, the receiver may consider the transfer failed and report an error as discussed below.


The file designator field 1434 is a variable length identifier chosen by the sender 1402 to identify the file to be sent. In some embodiments, the sender 1402 and the receiver 1406 may negotiate the identifier for the file prior to transmittal. In other embodiments, the receiver 1406 may use metadata along with the file designator field 1434 to determine whether to accept the transfer and how to handle the data. The length of the file designator field 1434 may be determined from the file designator length field 1426. In some embodiments, the SendInit message 1420 may also include a metadata field 1480 of a variable length encoded in a TLV format. The metadata field 1480 enables the initiator to send additional information, such as application-specific information about the file to be transferred. In some embodiments, the metadata field 1480 may be used to avoid negotiating the file designator field 1434 prior to the bulk data transfer.


ii. SendAccept


A send accept message is transmitted from the responder to indicate the transfer mode chosen for the transfer. An embodiment of a SendAccept message 1500 is presented in FIG. 47. The SendAccept message 1500 includes a transfer control field 1502 similar to the transfer control field 1422 of the SendInit message 1420. However, in some embodiments, only the RDrive flag 1452 or the SDrive 1454 may have a nonzero value in the transfer control field 1502 to identify the sender 1402 or the receiver 1406 as the driver of a synchronous mode transfer. The SendAccept message 1500 also includes a max block size field 1504 that indicates a maximum block size for the transfer. The block size field 1504 may be equal to the value of the max block field 1428 of the SendInit message 1420, but the value of the max block size field 1504 may be smaller than the value proposed in the max block field 1428. Finally, the SendAccept message 1500 may include a metadata field 1506 that indicates information that the receiver 1506 may pass to the sender 1402 about the transfer.


iii. SendReject


When the receiver 1206 rejects a transfer after a SendInit message, the receiver 1206 may send a SendReject message that indicates that one or more issues exist regarding the bulk data transfer between the sender 1202 and the receiver 1206. The send reject message may be formatted according to the status reporting format described above and illustrated in FIG. 48. A send reject frame 1520 may include a status code field 1522 that includes two bytes that indicate a reason for rejecting the transfer. The status code field 1522 may be decoded using values similar to those enumerated as indicated in the Table 23 below.









TABLE 23







Example status codes for send reject message










Status Code
Description







0x0020
Transfer method not supported



0x0021
File designator unknown



0x0022
Start offset not supported



0x0011
Length required



0x0012
Length too large



0x002F
Unknown error











In some embodiments, the send reject message 1520 may include a next status field 1524. The next status field 1524, when present, may be formatted and encoded as discussed above in regard to the next status field 1188 of a status report frame. In certain embodiments, the send reject message 1520 may include an additional information field 1526. The additional information field 1526, when present, may store information about an additional status and may be encoded using the TLV format discussed above.


iv. ReceiveInit


A ReceiveInit message may be transmitted by the receiver 1206 as the initiator. The ReceiveInit message may be formatted and encoded similar to the SendInit message 1480 illustrated in FIG. 44, but the BigExtent field 1470 may be referred to as a maximum length field that specifies the maximum file size that the receiver 1206 can handle.


v. ReceiveAccept


When the sender 1202 receives a ReceiveInit message, the sender 1202 may respond with a ReceiveAccept message. The ReceiveAccept message may be formatted and encoded as the ReceiveAccept message 1540 illustrated in FIG. 49. The ReceiveAccept message 1540 may include four fields: a transfer control field 1542, a range control field 1544, a max block size field 1546, and sometimes a length field 1548. The ReceiveAccept message 1540 may be formatted similar to the SendAccept message 1502 of FIG. 47 with the second byte indicating the range control field 1544. Furthermore, the range control field 1544 may be formatted and encoded using the same methods discussed above regarding the range control field 1424 of FIG. 46.


vi. ReceiveReject


If the sender 1202 encounters an issue with transferring the file to the receiver 1206, the sender 1202 may send a ReceiveReject message formatted and encoded similar to a SendReject message 48 using the status reporting format, both discussed above. However, the status code field 1522 may be encoded/decoded using values similar to those enumerated as indicated in the Table 24 below.









TABLE 24







Example status codes for receive reject message










Status Code
Description







0x0020
Transfer method not supported



0x0021
File designator unknown



0x0022
Start offset not supported



0x0013
Length too short



0x002F
Unknown error










vii. BlockQuery


A BlockQuery message may be sent by a driving receiver 1202 in a synchronous mode bulk data transfer to request the next block of data. A BlockQuery impliedly acknowledges receipt of a previous block of data if not explicit Acknowledgement has been sent. In embodiments using asynchronous transfers, a BlockQuery message may be omitted from the transmission process.


viii. Block


Blocks of data transmitted in a bulk data transfer may include any length greater than 0 and less than a max block size agreed upon by the sender 1202 and the receiver 1206.


ix. BlockEOF


A final block in a data transfer may be presented as a Block end of file (BlockEOF). The BlockEOF may have a length between 0 and the max block size. If the receiver 1206 finds a discrepancy between a pre-negotiated file size (e.g., length field 1432) and the amount of data actually transferred, the receiver 1206 may send an Error message indicating the failure, as discussed below.


x. Ack


If the sender 1202 is driving a synchronous mode transfer, the sender 1202 may wait until receiving an acknowledgment (Ack) after sending a Block before sending the next Block. If the receiver is driving a synchronous mode transfer, the receiver 1206 may send either an explicit Ack or a BlockQuery to acknowledge receipt of the previous block. Furthermore, in asynchronous mode bulk transfers, the Ack message may be omitted from the transmission process altogether.


xi. AckEOF


An acknowledgement of an end of file (AckEOF) may be sent in bulk transfers sent in synchronous mode or asynchronous mode. Using the AckEOF the receiver 1206 indicates that all data in the transfer has been received and signals the end of the bulk data transfer session.


xii. Error


In the occurrence of certain issues in the communication, the sender 1202 or the receiver 1206 may send an error message to prematurely end the bulk data transfer session. Error messages may be formatted and encoded according to the status reporting format discussed above. For example, an error message may be formatted similar to the SendReject frame 1520 of FIG. 48. However, the status codes may be encoded/decoded with values including and/or similar to those enumerated in Table 25 below.









TABLE 25







Example status codes for an error message


in a bulk data transfer profile










Status code
Description







0x001F
Transfer failed unknown error



0x0011
Overflow error










The specific embodiments described above have been shown by way of example, and it should be understood that these embodiments may be susceptible to various modifications and alternative forms. It should be further understood that the claims are not intended to be limited to the particular forms disclosed, but rather to cover all modifications, equivalents, and alternatives falling within the spirit and scope of this disclosure.

Claims
  • 1. An electronic device configured to communicate on a fabric network comprising multiple devices in a home environment, the fabric network comprising multiple logical networks, the electronic device configured to: generate a message for transmission to another device of the multiple devices in the fabric network, the message including an address of the other device; andtransmit the generated message to a cloud service over a platform layer in the fabric network, the transmission being effective to cause the cloud service to use the address to forward the message to the other device, the electronic device being configured to communicate in a first network of the fabric network using a first communication protocol and the other device being configured to communicate in a second network of the fabric network using a second communication protocol.
  • 2. The electronic device of claim 1, wherein the first network is a Wi-Fi network and the second network is an IEEE 802.15.4 network.
  • 3. The electronic device of claim 2, wherein the message is transmitted via a Wi-Fi router in the first network.
  • 4. The electronic device of claim 1, wherein the other device is one of: a consumer device, a cloud server, a hazard detector, a security device, a thermostat, or a camera.
  • 5. The electronic device of claim 1, wherein the generated message includes a fabric identifier (ID), the fabric ID comprising a global identifier and a subnet identifier.
  • 6. The electronic device of claim 1, wherein the message is transmitted as one or more Internet Protocol version 6 (IPv6) packets.
  • 7. The electronic device of claim 1, wherein the message is transmitted across multiple networks using a Transmission Control Protocol (TCP) or a User Datagram Protocol (UDP).
  • 8. The electronic device of claim 1, wherein the communication between the electronic device and the other device is unidirectional or bidirectional.
  • 9. The electronic device of claim 1, wherein the electronic device is further configured to receive a response to the transmitted message from the other device.
  • 10. A method of communicating by an electronic device on a fabric network comprising multiple devices in a home environment, the fabric network comprising multiple logical networks, the method comprising: generating, by the electronic device, a message for transmission to another device of the multiple devices in the fabric network, the message including an address of the other device; andtransmitting the generated message to a cloud service over a platform layer in the fabric network, the transmitting being effective to cause the cloud service to use the address to forward the message to the other device, the electronic device being configured to communicate in a first network of the fabric network using a first communication protocol and the other device being configured to communicate in a second network of the fabric network using a second communication protocol.
  • 11. The method of claim 10, wherein the first network is a Wi-Fi network and the second network is an IEEE 802.15.4 network, and wherein the transmitting the message is via a Wi-Fi router in the first network.
  • 12. The method of claim 10, wherein the generated message includes a fabric identifier (ID), the fabric ID comprising a global identifier and a subnet identifier.
  • 13. The method of claim 10, wherein the message is transmitted as one or more Internet Protocol version 6 (IPv6) packets, and wherein the message is transmitted across multiple networks using a Transmission Control Protocol (TCP) or a User Datagram Protocol (UDP).
  • 14. The method of claim 10, further comprising: in response to the transmitting the generated message, receiving a response to the transmitted message from the other device.
  • 15. The method of claim 10, wherein the other device is one of: a consumer device, a cloud server, a hazard detector, a security device, a thermostat, or a camera.
  • 16. The method of claim 10, wherein the communication between the electronic device and the other device is unidirectional or bidirectional.
  • 17. A system comprising: an electronic device configured to communicate on a fabric network comprising multiple devices in a home environment, the fabric network comprising multiple logical networks, the electronic device configured to: generate a message for transmission to another device of the multiple devices in the fabric network, the message including an address of the other device;transmit the generated message to a cloud service over a platform layer in the fabric network, the transmission being effective to cause the cloud service to use the address to forward the message to the other device, the electronic device being configured to communicate in a first network of the fabric network using a first communication protocol;the other device configured to: receive the generated message; andin response to the reception of the message, transmit a response to the electronic device, the other device being configured to communicate in a second network of the fabric network using a second communication protocol.
  • 18. The system of claim 17, wherein the generated message includes a fabric identifier (ID), the fabric ID comprising a global identifier and a subnet identifier, wherein the message is transmitted as one or more Internet Protocol version 6 (IPv6) packets, and wherein the message is transmitted across multiple networks using a Transmission Control Protocol (TCP) or a User Datagram Protocol (UDP).
  • 19. The system of claim 17, wherein the other device is one of: a consumer device, a cloud server, a hazard detector, a security device, a thermostat, or a camera.
  • 20. The system of claim 17, wherein the first network is a Wi-Fi network and the second network is an IEEE 802.15.4 network.
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a continuation of and claims priority to U.S. patent application Ser. No. 15/074,547, filed Mar. 18, 2016, entitled “Fabric Network”, which, in turn, is a continuation of and claims priority to U.S. patent application Ser. No. 14/520,119, filed Oct. 21, 2014, now U.S. Pat. No. 9,313,280, granted Apr. 12, 2016, entitled “Fabric Network”, which is a continuation of and claims priority to U.S. patent application Ser. No. 13/926,302, filed Jun. 25, 2013, now U.S. Pat. No. 9,112,790, granted Aug. 18, 2015, entitled “Fabric Network”. Each of the foregoing applications is herein incorporated by reference in its entirety.

US Referenced Citations (450)
Number Name Date Kind
3693155 Crafton et al. Sep 1972 A
3805265 Lester Apr 1974 A
4165024 Oswalt et al. Aug 1979 A
4275385 White Jun 1981 A
4446454 Pyle May 1984 A
4613990 Halpem Sep 1986 A
4680583 Grover Jul 1987 A
4688244 Hannon et al. Aug 1987 A
4750197 Denekamp et al. Jun 1988 A
4775999 Williams Oct 1988 A
4794368 Grossheim et al. Dec 1988 A
4817537 Cripe et al. Apr 1989 A
5025254 Hess Jun 1991 A
5040238 Comroe et al. Aug 1991 A
5054052 Nonami Oct 1991 A
5117501 Childress et al. May 1992 A
5129096 Burns Jul 1992 A
5206903 Kohler et al. Apr 1993 A
5210540 Masumoto May 1993 A
5265025 Hirata Nov 1993 A
5295154 Meier et al. Mar 1994 A
5331637 Francis et al. Jul 1994 A
5369784 Nelson Nov 1994 A
5400254 Fujita Mar 1995 A
5425051 Mahany Jun 1995 A
5442758 Slingwine et al. Aug 1995 A
5461390 Hoshen Oct 1995 A
5511232 O'Dea et al. Apr 1996 A
5515270 Weinblatt May 1996 A
5525992 Froshermeier Jun 1996 A
5530702 Palmer et al. Jun 1996 A
5543778 Stouffer Aug 1996 A
5550547 Chan et al. Aug 1996 A
5552641 Fischer et al. Sep 1996 A
5555376 Theimer et al. Sep 1996 A
5558013 Blackstone Sep 1996 A
5565858 Guthrie Oct 1996 A
5579306 Dent Nov 1996 A
5590409 Sawahashi et al. Dec 1996 A
5592533 Sawahashi et al. Jan 1997 A
5596625 LeBlanc Jan 1997 A
5596652 Piatek et al. Jan 1997 A
5604892 Nuttall et al. Feb 1997 A
5606313 Allen et al. Feb 1997 A
5640151 Reis et al. Jun 1997 A
5649286 Frerking Jul 1997 A
5652751 Sharony Jul 1997 A
5682379 Mahany et al. Oct 1997 A
5686902 Reis et al. Nov 1997 A
5732007 Grushin et al. Mar 1998 A
5761195 Lu et al. Jun 1998 A
5771459 Demery et al. Jun 1998 A
5790946 Rotzoll Aug 1998 A
5793882 Piatek et al. Aug 1998 A
5812049 Uzi Sep 1998 A
5833910 Teixido Nov 1998 A
5850187 Carrender et al. Dec 1998 A
5862803 Besson Jan 1999 A
5873040 Dunn et al. Feb 1999 A
5887176 Griffith et al. Mar 1999 A
5890054 Lodgson et al. Mar 1999 A
5892441 Woolley et al. Apr 1999 A
5907491 Canada et al. May 1999 A
5917423 Duvall Jun 1999 A
5917433 Keillor et al. Jun 1999 A
5939982 Gagnon et al. Aug 1999 A
5943610 Endo Aug 1999 A
5950124 Trompower et al. Sep 1999 A
5950133 Bledsoe Sep 1999 A
5959568 Woolley Sep 1999 A
5974236 Sherman Oct 1999 A
5977913 Christ Nov 1999 A
5999091 Wortham Dec 1999 A
6005884 Cook et al. Dec 1999 A
6006100 Koenck et al. Dec 1999 A
6052695 Abe et al. Apr 2000 A
6058374 Guthrie et al. May 2000 A
6072784 Agrawal et al. Jun 2000 A
6078789 Bodenmann et al. Jun 2000 A
6084512 Elberty et al. Jul 2000 A
6091724 Chandra et al. Jul 2000 A
6097707 Hodzic et al. Aug 2000 A
6104512 Batey et al. Aug 2000 A
6118988 Choi Sep 2000 A
6125306 Shimada et al. Sep 2000 A
6127928 Issacman Oct 2000 A
6127976 Boyd et al. Oct 2000 A
6130602 O'Toole et al. Oct 2000 A
6134587 Okanoue Oct 2000 A
6154658 Caci Nov 2000 A
6192232 Iseyama Feb 2001 B1
6192400 Hanson et al. Feb 2001 B1
6198913 Sung et al. Mar 2001 B1
6201974 Lietsalmi et al. Mar 2001 B1
6246882 Lachance Jun 2001 B1
6256303 Drakoulis et al. Jul 2001 B1
6262662 Back et al. Jul 2001 B1
6282407 Vega et al. Aug 2001 B1
6285295 Casden Sep 2001 B1
6313745 Suzuki Nov 2001 B1
6343073 Mashinsky Jan 2002 B1
6354493 Mon Mar 2002 B1
6360169 Dudaney Mar 2002 B1
6381467 Hill et al. Apr 2002 B1
6404082 Rasinski et al. Jun 2002 B1
6405102 Swartz et al. Jun 2002 B1
6409082 Davis et al. Jun 2002 B1
6418299 Ramanathan Jul 2002 B1
6424260 Maloney Jul 2002 B2
6424264 Giraldin et al. Jul 2002 B1
6427913 Maloney Aug 2002 B1
6437692 Petite et al. Aug 2002 B1
6473607 Shohara et al. Oct 2002 B1
6476708 Johnson Nov 2002 B1
6493649 Jones et al. Dec 2002 B1
6512455 Finn et al. Jan 2003 B2
6512478 Chien Jan 2003 B1
6529142 Yeh et al. Mar 2003 B2
6542114 Eagleson et al. Apr 2003 B1
6547137 Begelfer et al. Apr 2003 B1
6559620 Zhou et al. May 2003 B2
6587755 Smith et al. Jul 2003 B1
6593845 Friedman et al. Jul 2003 B1
6594468 Ramanathan Jul 2003 B1
6600418 Francis et al. Jul 2003 B2
6611556 Koener et al. Aug 2003 B1
6614349 Proctor et al. Sep 2003 B1
6617962 Horwitz et al. Sep 2003 B1
6630885 Hardman et al. Oct 2003 B2
6647428 Bannai et al. Nov 2003 B1
6665585 Kawase Dec 2003 B2
6674364 Holbrook et al. Jan 2004 B1
6677852 Landt Jan 2004 B1
6680920 Wan Jan 2004 B1
6700493 Robinson Mar 2004 B1
6700533 Werb et al. Mar 2004 B1
6701215 Stademan Mar 2004 B1
6800533 Werb Mar 2004 B1
6720888 Eagleson et al. Apr 2004 B2
6735630 Gelvin et al. May 2004 B1
6737974 Dickinson May 2004 B2
6745027 Twitchell et al. Jun 2004 B2
6747562 Giraldin et al. Jun 2004 B2
6751200 Larsson et al. Jun 2004 B1
6753775 Auerbach et al. Jun 2004 B2
6760578 Rotzoll Jul 2004 B2
6761312 Piatek et al. Jul 2004 B2
6765484 Eagleson et al. Jul 2004 B2
6816063 Kubler et al. Nov 2004 B2
6826625 Kubler et al. Nov 2004 B1
6847892 Zhou Jan 2005 B2
6914896 Tomalewicz Jul 2005 B1
6919803 Breed Jul 2005 B2
6927688 Tice Aug 2005 B2
6934540 Twitchell et al. Aug 2005 B2
6940392 Chan et al. Sep 2005 B2
6972682 Lareau et al. Dec 2005 B2
6975614 Kennedy Dec 2005 B2
6975941 Lau et al. Dec 2005 B1
6988667 Stewart et al. Jan 2006 B2
7137003 Krishnan et al. Jan 2006 B2
7005968 Bridgelall Feb 2006 B1
7012529 Sajkowsky Mar 2006 B2
7027773 McMillin Apr 2006 B1
7072668 Chou Jul 2006 B2
7084740 Bridgelall Aug 2006 B2
7088229 Johnson Aug 2006 B2
7095738 Desanti Aug 2006 B1
7098784 Easley et al. Aug 2006 B2
7103344 Menard Sep 2006 B2
7126470 Clift et al. Oct 2006 B2
7130638 Chen et al. Oct 2006 B2
7133704 Twitchell Nov 2006 B2
7142121 Chan et al. Nov 2006 B2
7155264 Twitchell et al. Dec 2006 B2
7158803 Elliot Jan 2007 B1
7171476 Maeda et al. Jan 2007 B2
7191934 Miller et al. Mar 2007 B2
7196622 Lambright Mar 2007 B2
7200132 Twitchell et al. Apr 2007 B2
7209468 Twitchell et al. Apr 2007 B2
7209771 Twitchell et al. Apr 2007 B2
7212122 Gloekler May 2007 B2
7218619 Koo May 2007 B2
7221668 Twitchell et al. May 2007 B2
7230933 Bahl et al. Jun 2007 B2
7233958 Weng Jun 2007 B2
7251233 Wood Jul 2007 B2
7253731 Joao Aug 2007 B2
7260648 Tingley et al. Aug 2007 B2
7274295 Koch Sep 2007 B2
7282944 Gunn et al. Oct 2007 B2
7317382 Pratt Jan 2008 B2
7319397 Chung Jan 2008 B2
7323981 Peel Jan 2008 B2
7327280 Bachelder et al. Feb 2008 B2
7330736 Redi Feb 2008 B2
7340260 McAlexander Mar 2008 B2
7348875 Hughes et al. Mar 2008 B2
7349803 Belenkii et al. Mar 2008 B2
7349804 Belenkii Mar 2008 B2
7369047 Broad May 2008 B2
7369074 Miyata et al. May 2008 B2
7376507 Daily et al. May 2008 B1
7394372 Gloekler Jul 2008 B2
7397363 Joao Jul 2008 B2
7419101 Kawai Sep 2008 B2
7430437 Twitchell et al. Sep 2008 B2
7440781 Beach et al. Oct 2008 B2
7443865 Zhang et al. Oct 2008 B1
7482920 Joao Jan 2009 B2
7489244 August et al. Feb 2009 B2
7489245 August et al. Feb 2009 B2
7518803 Sawai et al. Apr 2009 B2
7522568 Twitchell et al. Apr 2009 B2
7536188 Fegan et al. May 2009 B1
7538656 Twitchell et al. May 2009 B2
7538657 Twitchell et al. May 2009 B2
7552169 Huang et al. Jun 2009 B2
7561533 Aklepi et al. Jul 2009 B2
7589616 Klatsmanyi et al. Sep 2009 B2
7613484 Lappetelainen et al. Nov 2009 B2
7626488 Armstrong et al. Dec 2009 B2
7657659 Lambeth et al. Feb 2010 B1
7733818 Twitchell Jun 2010 B2
7742744 Twitchell Jun 2010 B2
7742745 Twitchell Jun 2010 B2
7746838 Twitchell Jun 2010 B2
7765307 Kritov et al. Jul 2010 B1
7830850 Twitchell Nov 2010 B2
7830852 Twitchell et al. Nov 2010 B2
7904071 Twitchell Mar 2011 B2
7907941 Twitchell Mar 2011 B2
7937068 Hogberg et al. May 2011 B2
7940717 Twitchell May 2011 B2
7940719 Twitchell May 2011 B2
7940736 Cantwell May 2011 B2
7941095 Twitchell May 2011 B2
8045929 Twitchell Nov 2011 B2
8050625 Twitchell Nov 2011 B2
8050668 Twitchell Nov 2011 B2
8055286 Reeves Nov 2011 B1
8078139 Twitchell Dec 2011 B2
8131300 Sartori et al. Mar 2012 B2
8275404 Berger et al. Sep 2012 B2
8315237 Berger et al. Nov 2012 B2
8369343 Gefflaut et al. Feb 2013 B2
8462662 Robins et al. Jun 2013 B2
8539567 Logue et al. Sep 2013 B1
8699381 Koop et al. Apr 2014 B2
8705523 Koop et al. Apr 2014 B2
8713128 Teener et al. Apr 2014 B2
9002967 Logue et al. Apr 2015 B2
9002968 Logue et al. Apr 2015 B2
9015266 Logue et al. Apr 2015 B2
9021133 Logue et al. Apr 2015 B1
9112790 Logue Aug 2015 B2
9172759 Logue et al. Oct 2015 B2
9191209 Erickson et al. Nov 2015 B2
9313280 Logue et al. Apr 2016 B2
9907115 Koop et al. Feb 2018 B2
9923801 Logue et al. Mar 2018 B2
10194486 Koop et al. Jan 2019 B2
20010000019 Bowers et al. Mar 2001 A1
20010050550 Yoshida et al. Dec 2001 A1
20020002627 Stead et al. Jan 2002 A1
20020026284 Brown Feb 2002 A1
20020030596 Finn et al. Mar 2002 A1
20020039896 Brown Apr 2002 A1
20020050932 Rhoades et al. May 2002 A1
20020073646 Von Gutfeld et al. Jun 2002 A1
20020073648 Sevcik et al. Jun 2002 A1
20020085589 Dravida et al. Jul 2002 A1
20020089421 Farrington et al. Jul 2002 A1
20020089434 Ghazarian Jul 2002 A1
20020098861 Doney et al. Jul 2002 A1
20020099567 Joao Jul 2002 A1
20020119770 Twitchell Aug 2002 A1
20020146985 Naden Oct 2002 A1
20020149483 Shanks et al. Oct 2002 A1
20020170961 Dickson et al. Nov 2002 A1
20030001743 Menard Jan 2003 A1
20030008692 Phelan Jan 2003 A1
20030012168 Elson et al. Jan 2003 A1
20030019929 Stewart et al. Jan 2003 A1
20030083064 Cooper May 2003 A1
20030088697 Matsuhira May 2003 A1
20030103455 Pinto Jun 2003 A1
20030137968 Lareau et al. Jul 2003 A1
20030141973 Yeh et al. Jul 2003 A1
20030144020 Challa et al. Jul 2003 A1
20030179073 Ghazarian Sep 2003 A1
20030182077 Emord Sep 2003 A1
20030185207 Nakahara Oct 2003 A1
20030209601 Chung Nov 2003 A1
20030225724 Weber Dec 2003 A1
20030236077 Sivard Dec 2003 A1
20040021572 Schoen et al. Feb 2004 A1
20040022257 Green et al. Feb 2004 A1
20040024903 Costatino et al. Feb 2004 A1
20040041706 Stratmoen et al. Mar 2004 A1
20040041731 Hisano Mar 2004 A1
20040100394 Hitt May 2004 A1
20040100415 Veitch et al. May 2004 A1
20040109429 Carter et al. Jun 2004 A1
20040119588 Marks Jun 2004 A1
20040121793 Weigele et al. Jun 2004 A1
20040135691 Duron et al. Jul 2004 A1
20040183673 Nageli Sep 2004 A1
20040232924 Hilleary et al. Nov 2004 A1
20040233041 Bohman et al. Nov 2004 A1
20040233054 Neff et al. Nov 2004 A1
20040246463 Milinusic Dec 2004 A1
20050003797 Baldwin Jan 2005 A1
20050043068 Shohara et al. Feb 2005 A1
20050068169 Copley et al. Mar 2005 A1
20050073406 Easley et al. Apr 2005 A1
20050087235 Skorpik Apr 2005 A1
20050088299 Bandy Apr 2005 A1
20050090211 Lilja et al. Apr 2005 A1
20050114326 Smith et al. May 2005 A1
20050128080 Hall et al. Jun 2005 A1
20050145018 Sabata et al. Jul 2005 A1
20050146445 Sieboda et al. Jul 2005 A1
20050159187 Mendolia et al. Jul 2005 A1
20050190759 Lee et al. Sep 2005 A1
20050199716 Shafer et al. Sep 2005 A1
20050226201 McMillin Oct 2005 A1
20050246186 Nikolov Nov 2005 A1
20050249185 Poor et al. Nov 2005 A1
20050249215 Kelsey et al. Nov 2005 A1
20050261037 Raghunath et al. Nov 2005 A1
20050270160 Chan et al. Dec 2005 A1
20060104301 Beyer et al. May 2006 A1
20060109106 Braun May 2006 A1
20060114102 Chang et al. Jun 2006 A1
20060135145 Redi Jun 2006 A1
20060163422 Krikorian et al. Jul 2006 A1
20060164232 Waterhouse et al. Jul 2006 A1
20060164239 Loda Jul 2006 A1
20060202817 Mackenzie et al. Sep 2006 A1
20060231611 Chakiris et al. Oct 2006 A1
20060244568 Tong et al. Nov 2006 A1
20060247986 Joao Nov 2006 A1
20060270382 Lappetelainen et al. Nov 2006 A1
20060271682 Choo et al. Nov 2006 A1
20070002792 Twitchell et al. Jan 2007 A1
20070008408 Zehavi Jan 2007 A1
20070032951 Tanenhaus et al. Feb 2007 A1
20070043807 Twitchell et al. Feb 2007 A1
20070127429 Bryan et al. Jun 2007 A1
20070135179 Hardman et al. Jun 2007 A1
20070152826 August et al. Jul 2007 A1
20070155327 Twitchell et al. Jul 2007 A1
20070165625 Eisner et al. Jul 2007 A1
20070171924 Eisner et al. Jul 2007 A1
20070185754 Schmidt Aug 2007 A1
20070237082 Han Oct 2007 A1
20070253431 Park et al. Nov 2007 A1
20070258508 Werb et al. Nov 2007 A1
20070291789 Kutt et al. Dec 2007 A1
20080098122 Metzger Apr 2008 A1
20080188963 McCoy Aug 2008 A1
20080201403 Andersson et al. Aug 2008 A1
20080234878 Joao Sep 2008 A1
20080253327 Kohvakka et al. Oct 2008 A1
20080255947 Freidman Oct 2008 A1
20080264888 Zakula et al. Oct 2008 A1
20090008450 Ebert et al. Jan 2009 A1
20090052409 Chen et al. Feb 2009 A1
20090083390 Abu-Ghazaleh et al. Mar 2009 A1
20090100167 Huang et al. Apr 2009 A1
20090103462 Twitchell et al. Apr 2009 A1
20090104902 Twitchell et al. Apr 2009 A1
20090111484 Koch et al. Apr 2009 A1
20090117950 Twitchell May 2009 A1
20090123134 Shinkai et al. May 2009 A1
20090124302 Twitchell May 2009 A1
20090135000 Twitchell et al. May 2009 A1
20090146805 Joao Jun 2009 A1
20090161642 Twitchell et al. Jun 2009 A1
20090181623 Twitchell et al. Jul 2009 A1
20090215407 Twitchell Aug 2009 A1
20090237216 Twitchell Sep 2009 A1
20090252060 Twitchell Oct 2009 A1
20090264079 Twitchell Oct 2009 A1
20090267770 Twitchell Oct 2009 A1
20090290512 Twitchell Nov 2009 A1
20090322510 Berger et al. Dec 2009 A1
20090323688 Torii Dec 2009 A1
20100007470 Twitchell Jan 2010 A1
20100042608 Kane Feb 2010 A1
20100061264 Campbell et al. Mar 2010 A1
20100067420 Twitchell Mar 2010 A1
20100121862 Twitchell May 2010 A1
20100141401 Twitchell Jun 2010 A1
20100141449 Twitchell Jun 2010 A1
20100144383 Berger et al. Jun 2010 A1
20100150026 Robins Jun 2010 A1
20100150122 Berger et al. Jun 2010 A1
20100191624 Sharir et al. Jul 2010 A1
20100214074 Twitchell Aug 2010 A1
20100219939 Twitchell Sep 2010 A1
20100231381 Twitchell Sep 2010 A1
20100232317 Jing et al. Sep 2010 A1
20100232320 Twitchell Sep 2010 A1
20100238940 Koop Sep 2010 A1
20100250460 Twitchell Sep 2010 A1
20100265042 Koop et al. Oct 2010 A1
20100330930 Twitchell Dec 2010 A1
20110006882 Twitchell Jan 2011 A1
20110231546 Nathanson Sep 2011 A1
20110270895 Shelby Nov 2011 A1
20110289320 Twitchell et al. Nov 2011 A1
20110295938 Vanderpohl Dec 2011 A1
20110320427 Ko et al. Dec 2011 A1
20120036241 Jennings et al. Feb 2012 A1
20120053967 Roberts et al. Mar 2012 A1
20120066064 Yoder et al. Mar 2012 A1
20120179837 Bender et al. Jul 2012 A1
20120213216 Chen et al. Aug 2012 A1
20120310838 Harris et al. Dec 2012 A1
20130012122 Koop et al. Jan 2013 A1
20130041808 Pham et al. Feb 2013 A1
20130044749 Eisner et al. Feb 2013 A1
20130046864 Behringer et al. Feb 2013 A1
20130072144 Berger et al. Mar 2013 A1
20130073681 Jiang Mar 2013 A1
20130083805 Lu et al. Apr 2013 A1
20130204703 Carlson et al. Aug 2013 A1
20130272313 Hathorn Oct 2013 A1
20130318314 Markus et al. Nov 2013 A1
20140003357 Ejzak et al. Jan 2014 A1
20140047106 Leung Feb 2014 A1
20140089671 Logue et al. Mar 2014 A1
20140129876 Addepalli May 2014 A1
20140282923 Narayan et al. Sep 2014 A1
20140376405 Erickson Dec 2014 A1
20140379817 Logue et al. Dec 2014 A1
20150019650 Logue et al. Jan 2015 A1
20150019669 Logue et al. Jan 2015 A1
20150039670 Logue et al. Feb 2015 A1
20150046509 Logue et al. Feb 2015 A1
20150046584 Logue et al. Feb 2015 A1
20150127735 Logue et al. May 2015 A1
20160210578 Raleigh et al. Jul 2016 A1
20160218955 Logue et al. Jul 2016 A1
20180167998 Koop et al. Jun 2018 A1
20180234905 Twitchell Aug 2018 A1
20190141781 Koop et al. May 2019 A1
Foreign Referenced Citations (30)
Number Date Country
102281180 Dec 2011 CN
0467036 Jan 1992 EP
0748083 Dec 1996 EP
0748085 Dec 1996 EP
0829995 Mar 1998 EP
0944014 Sep 1999 EP
1298853 Apr 2003 EP
1580678 Sep 2005 EP
1692668 Aug 2006 EP
1850561 Oct 2007 EP
0935200 Aug 2009 EP
1317733 Apr 2010 EP
2213041 Aug 2010 EP
1692599 Jul 2013 EP
2308947 Jul 1997 GB
2005332365 Dec 2005 JP
2006075274 Mar 2006 JP
2007300608 Nov 2007 JP
2011228174 Nov 2011 JP
2016529743 Sep 2016 JP
20050102419 Oct 2005 KR
20070005515 Jan 2007 KR
2372721 Nov 2009 RU
2008135964 Mar 2010 RU
0068907 Nov 2000 WO
0069186 Nov 2000 WO
2003098175 Nov 2003 WO
2006135758 Dec 2006 WO
2010096127 Aug 2010 WO
20060135758 Dec 2016 WO
Non-Patent Literature Citations (90)
Entry
“Foreign Office Action”, Japanese Application No. 2017-131818, dated Dec. 12, 2017, 2 pages.
Hinden, et al., “Unique Local IPv6 Unicast Addresses”, Network Working Group Request for Comments: 4193, Oct. 2005, pp. 1-16, Oct. 2005, 16 pages.
“Foreign Office Action”, Japanese Application No. 2018-076154, dated Jun. 26, 2018, 5 pages.
“Foreign Office Action”, Chinese Application No. 201480045696.8, dated Jul. 3, 2018, 12 pages.
“Protocol Buffers—Developer Guide”, Online, Apr. 2, 2012, [Searched on Jun. 11, 2018], Internet: <http://web.archive.org/web/20130408091316/http://web.archive.org/web/20130402192120/https://developers.google.com/protocol-buffers/docs/overview>, 6 pages.
Shelby, et al., “Constrained Application Protocol (CoAP) draff-ietf-core-coap-16”, Internet-Draft, IETF, May 1, 2013, pp. 1, 15-17, 34-36, 53, May 1, 2013, 9 pages.
“Foreign Office Action”, Japanese Application No. 2018076154, dated Apr. 24, 2019, 3 pages.
“Foreign Office Action”, Russian Application No. 2018110075, dated Nov. 26, 2018, 4 pages.
“Foreign Office Action”, Japanese Application No. 2018076154, dated Feb. 4, 2018, 4 pages.
“Foreign Office Action”, Australian Application No. 2017261508, dated Aug. 31, 2018, 2 pages.
“Foreign Office Action”, European Application No. 18167942.4, dated Sep. 3, 2018, 2 pages.
“Foreign Office Action”, JP Application No. 2017-131818, dated Aug. 29, 2017, 3 pages.
“Foreign Office Action”, RU Application No. 2016102034/08, dated Oct. 3, 2017, 4 pages.
“Foreign Office Action”, KR Application No. 10-2017-7022419, dated Nov. 9, 2017, 2 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2014/043695, dated Sep. 11, 2014, 14 pages.
“Non-Final Office Action”, U.S. Appl. No. 15/074,547, dated Aug. 3, 2017, 13 pages.
“Notice of Allowance”, U.S. Appl. No. 15/074,547, dated Nov. 20, 2017, 5 pages.
“Notice of Allowance”, U.S. Appl. No. 14/521,004, dated Nov. 28, 2014, 7 pages.
“Notice of Allowance”, U.S. Appl. No. 14/520,988, dated Dec. 11, 2014, 8 pages.
“Notice of Allowance”, U.S. Appl. No. 14/504,296, dated Dec. 18, 2014, 9 pages.
“Notice of Allowance”, U.S. Appl. No. 14/504,290, dated Dec. 19, 2014, 10 pages.
“Notice of Allowance”, U.S. Appl. No. 14/520,119, dated Dec. 31, 2014, 16 pages.
“Notice of Allowance”, U.S. Appl. No. 14/520,969, dated Feb. 24, 2015, 8 pages.
“Notice of Allowance”, U.S. Appl. No. 13/926,302, dated Apr. 2, 2015, 14 pages.
“Notice of Allowance”, U.S. Appl. No. 14/504,296, dated Jun. 29, 2015, 5 pages.
“Notice of Allowance”, U.S. Appl. No. 14/520,119, dated Jul. 8, 2015, 5 pages.
“Notice of Allowance”, U.S. Appl. No. 14/520,119, dated Dec. 4, 2015, 5 pages.
“Restriction Requirement”, U.S. Appl. No. 13/926,302, dated Dec. 2, 2014, 10 pages.
Hinden, et al., “Unique Local IPv6 Unicast Addresses”, Network Working Group, Oct. 2005, 16 pages.
“Foreign Office Action”, Mexican Application No. MX/a/2017/015863, dated Jan. 24, 2019, 3 pages.
“Foreign Office Action”, Japanese Application No. 2017-131818, dated Mar. 5, 2019, 12 pages.
Hinden, et al., “Internet Protocol Version 6 (IPv6) Addressing Architecture”, Network Working Group Request for Comments: 3513, Apr. 2003, pp. 8., Apr. 2003, 26 pages.
“Foreign Office Action”, JP Application No. 2019-071200, dated Aug. 20, 2019, 10 pages.
“Foreign Office Action”, Japanese Application No. 2017-131818, dated Sep. 17, 2019, 4 pages.
“Foreign Office Action”, Indian Application No. 201647002524, dated Oct. 29, 2019, 7 pages.
“Foreign Office Action”, Russian Application No. 2019117595, dated Nov. 5, 2019, 4 pages.
“Extended European Search Report”, European Application No. 19194377.8, dated Jan. 22, 2020, 10 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2009/062655, dated Jun. 14, 2010, 9 pages.
“Network Topology—Wkipedia”, http://en.wikipedia.org/wiki/Network_topology—Jun. 26, 2010, 8 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/620,344, dated Nov. 13, 2014, 10 pages.
“Non-Final Office Action”, U.S. Appl. No. 12/608,837, dated Jul. 30, 2012, 21 pages.
“Non-Final Office Action”, U.S. Appl. No. 15/870,265, dated Mar. 5, 2018, 6 pages.
“Non-Final Office Action”, U.S. Appl. No. 12/609,009, dated Dec. 28, 2011, 7 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/620,344, dated Apr. 24, 2017, 8 pages.
“Non-Final Office Action”, U.S. Appl. No. 16/238,471, dated Jul. 31, 2019, 8 pages.
“Non-Final Office Action”, U.S. Appl. No. 12/767,561, dated May 30, 2013, 9 pages.
“Notice of Allowance”, U.S. Appl. No. 16/238,471, dated Jan. 6, 2020, 10 Pages.
“Notice of Allowance”, U.S. Appl. No. 15/870,265, dated Sep. 7, 2018, 10 pages.
“Notice of Allowance”, U.S. Appl. No. 13/620,344, dated Oct. 18, 2017, 10 pages.
“Notice of Allowance”, U.S. Appl. No. 12/767,561, dated Dec. 2, 2013, 13 pages.
“Notice of Allowance”, U.S. Appl. No. 12/609,009, dated May 4, 2012, 7 pages.
“Notice of Allowance”, U.S. Appl. No. 12/607,040, dated Jul. 13, 2012, 7 pages.
“Notice of Allowance”, U.S. Appl. No. 12/608,837, dated Feb. 14, 2013, 8 pages.
“Personal are network—Wikipedia”, https://web.archive.org/web/20110410181452/http://en.wikipedia.org/wiki/ Personal_area_network, Apr. 10, 2011, 2 pages.
“Response to the Department of Homeland Security and Border Protection Conveyance Security Device Requirements, Version 1.2”, TeraHop Networks, Inc, Dec. 10, 2007, 62 pages.
“Restriction Requirement”, U.S. Appl. No. 12/607,040, dated Apr. 19, 2012, 6 pages.
“TeraHop Networks—Tradeshow Handouts”, MERIT-2030-2040 Gateway Controllers; MERIT-300 Incident Node; MERIT-TL TeraLink System Software, Jan. 1, 2006, 6 pages.
“TeraHop Networks Atlanta Airport Fire-Recuse Project Description of Project Components”, TeraHop Networks, Feb. 7, 2008, 11 pages.
“TeraHop Networks- Documents A Through I, Including Brief Description”, 121 pages.
“Ultra-wideband—Wkipedia”, http://web.archive.org/web/20110110032109/http://en.wikipedia.org/wiki/ Ultra-wideband, Mar. 3, 2011, 4 pages.
“UPnP Device Architecture V1.0 Annex A—IP Version 6 Support”, UPnP Forum, 1999-2002 Microsoft Corporation, 1999-2002, 10 pages.
“Wireless Mesh Network—Tree Topology”, Retrieved at: http://www.afar.net/technology/wireless-mesh/, 2 pages.
“Written Opinion”, Application No. PCT/US2006/026158, dated Nov. 21, 2006, 7 pages.
Easley, Linda et al., “Global Container Security System”, U.S. Appl. No. 60/499,338—filed Sep. 3, 2003, 27 pages.
Garcia-Luna-Aceves, J J. “Source-Tree Routing in Wireless Networks”, Proceedings of Seventh International Conference on Network Protocols, 10 pages.
Gu, Daniel L. et al., “C-ICAMA, A Centralized Intelligent Channel Assigned Multiple Access for Multi-Layer Ad-Hoc Wireless Networks with UAVs”, Conference: Wireless Communications and Networking Conference, 2000, pp. 879-884.
Gu, Daniel L. “Hierarchical Routing for Multi-Layer Ad-Hoc Wireless Networks with UAVs”, 21st Century Military Communications Conference Proceedings, 5 pages.
Haartsen, Jaap “Bluetooth—The Universal Radio Interface for Ad Hoc, Wireless Connectivity”, Ericsson Review No. 3, 8 pages.
Haartsen, Jaap “Bluetooth: Vision, Goals, and Architecture”, Mobile Computing & Communications Review, vol. 1, No. 2, 8 pages.
Hubaux, Jean-Pierre et al., “Toward Self-Organized Mobile Ad Hoc Wireless Networks: The Terminodes Project”, IEEE Communications Magazine (vol. 39, Issue: 1, Jan. 2001 ), 7 pages.
Iwata, Atsushi et al., “Scalable Routing Strategies for Ad hoc Wireless Networks”, IEEE Journal on Selected Areas in Communications, 26 pages.
Keshavarzian, “Energy-Efficient Link Assessment in Wireless Sensor Networks”, Conference on the IEEE computer and Communications Societies, vol. 3, 14 pages.
Lee, Sung-Ju “On-Demand Multicast Routing Protocol (ODMRP) for Ad Hoc Networks”, Retrieved at: https://tools.ietf.org/html/draft-ietf-manet- odmrp-02, 29 pages.
Melodia, Tommaso et al., “On the Interdependence of Distributed Topology Control and Geographical Routing in Ad Hoc and Sensor Networks”, IEEE Journal on Selected Areas in Communications, vol. 23, No. 3, pp. 520-532.
Mingliang, Jiang et al., “Cluster Based Routing Protocol (CBRP)”, Internet-Draft, National University of Singapore, 27 pages.
Morgan, Gary “Miniature Tags Provide Visibility & Cohesion for an LIA Battalion Level ‘Proof of Principle’”, Pacific NW National Laboratory, 11 pages.
Nageli, “Portable Detachable Self-Contained Tracking Unit for Two-Way Satellite Communication with a Central Server”, U.S. Appl. No. 60/444,029—filed Jan. 31, 2003, 38 pages.
Pei, Guangyu et al., “A Wireless Hierarchical Routing Protocol with Group Mobility”, Wireless Communications and Networking Conference, Jan. 21, 1999, 18 pages.
Pei, Guangyu et al., “Mobility Management in Hierarchical Multi-Hop Mobile Wireless Networks”, Eight International Conference on Computer Communications and Networks Proceedings., 6 pages.
Perkins, C E. “Mobile Ad Hoc Networking Terminology”, draft-ietf-manet-term-01.txt—Internet Draft, Nov. 17, 1998, 10 pages.
Perkins, Charles E. “Ad Hoc Networks”, Table of Contents, Chapters 1, 4, and 11, 112 pages.
Ramanathan, Ram et al., “Hierarchically-Organized, Multihop Mobile Wireless Networks for Quality-of-Service Support”, Mobile Networks and Applications, 36 pages.
Sharp, Kevin “Physical Reality: A Second Look, Supply Chain Systems”, http://www.idsystems.com/reader/1999_03/phys0399_pt2/index.htm, 5 pages.
Sommer, Ben “Group 4, Passive RF Tags”, 4 pages.
Stojmenovic, Ivan et al., “Design Guidelines for Routing Protocols in Ad Hoc and Sensor Networks with a Realistic Physical Layer”, IEEE Communications Magazine (vol. 43, Issue: 3, Mar. 2005 ), 6 pages.
Troan, O et al., “IPv6 Prefix Option for Dynamic Host Configuration Protocol (DHCP) Version 6”, Network Working Group Request for Comments: 3633, Category: Standards Track, Dec. 2003, 20 pages.
Valdevit, Evio “Cascading in Fibre Channel: how to build a multi-switch fabric”, Brocade Communications Systems, available at http://www.brocade.com/SAN/white_papers/pdf/Cascading.pdf, Jan. 1, 1999, 13 pages.
Wen, Chih-Yu et al., “Decentralized anchor-free localization for wireless ad-hoc sensor networks”, 2008 IEEE International Conference of Systems, Man and Cybernetics (SMC 2008), pp. 2777-2784.
Woo, Alec et al., “Taming the Underlying Challenges of Reliable Multihop Routing in Sensor Networks”, Proceedings of the 1st international conference on Embedded networked sensor systems, SenSys 2003, Nov. 5, 2003, 14 pages.
“Foreign Office Action”, Russian Application No, 2019117595, dated Mar. 18, 2020, 2 pages.
Related Publications (1)
Number Date Country
20180152373 A1 May 2018 US
Continuations (3)
Number Date Country
Parent 15074547 Mar 2016 US
Child 15882212 US
Parent 14520119 Oct 2014 US
Child 15074547 US
Parent 13926302 Jun 2013 US
Child 14520119 US