The present invention relates to fabric selection and performance matching.
In the manufacture of clothing, fabric selection for different end uses is often a trade off among competing factors and desires, depending on conditions and manner of final use.
The present invention provides methods and apparatus, including computer program products, for fabric selection and performance matching.
In general, in one aspect, the invention features a method directed to a selection of a fabric from a set of fabrics of different constructions and materials, the selection being made on a basis of predetermined characteristics of fabric performance and comfort required to meet specified parameters of conditions and manner of use. The predetermined characteristics of performance and comfort are defined as a proximity range of an energy neutral zone, where a comfort level is in proximity to a desire range. The specified parameters of conditions and use include, for example, comfort, heat, cold, breathability and dryness.
In general, in another aspect, the invention features a method including measuring physical data on individual fabric layers and in combination with other combinations of fabric layers to determine characteristics of fabric performance and manner of use and storing the measured physical data in conjunction with fabrics.
The method can include displaying the measured physical data in conjunction with fabrics. Storing can include storing technical data sheets with the fabrics and/or retail outlet information with the fabrics.
The fabric combination comprises a first layer. The first layer comprises a knit construction. The knit construction is raised on a first side. The knit construction is raised on a second side. The knit construction is raised on a first side and on a second side. The fabric combination comprises an outer layer. The fabric combination comprises a first layer. The first layer is a knit. The fabric combination further comprises a second layer. The second layer is an insulation layer. The insulation layer is raised on a first side. The insulation layer is raised on a second side. The fabric combination further comprises a third layer. The third layer is weather protection layer. The third layer is raised on a first side. The third layer is raised on a second side. The third layer is a knit, woven or laminate coat construction. The outer layer is a knit, woven, or laminate coat construction.
The details of one or more embodiments of the invention are set forth in the accompanying drawings and the description below. Other features, objects, and advantages of the invention will be apparent from the description and drawings, and from the claims.
Like reference symbols in the various drawings indicate like elements.
As shown in
As shown in
In process 100, a physiological evaluation of thermal insulation balance depends on a balance of a metabolic energy production (M) and a heat loss via convection, conduction evaporation and a given ambient environment condition, like, for example, temperature, relative humidity and wind speed. The closer to an energy neutral zone, i.e., a minimum heat loss/gain, the more comfortable a human subject is. An energy balance is graded as a comfort index that is compiled to a comfort zone. Physical data is measured or extrapolated and placed into a numerical model, considering garment make up, fitting (e.g., tight fit or loose fit), posture, closures, air gap between layers, and so forth.
The above physical properties are measured, for example, in units of cal/sq. m/hr, on individual fabric layers and in combination with other layers. This data is gathered from laboratory testing in conjunction with a thermal mannequin in a dynamic environment. An end user (e.g., garment purchaser) is then able to select an optimal layer in a layering for an intended physical activity in a projected ambient temperature. Example physical activities are running, walking, hiking, ° standing and skiing. Example projected ambient conditions include range of temperature, wind speed, altitude and rain.
As shown in
The invention can be implemented in digital electronic circuitry, or in computer hardware, firmware, software, or in combinations of them. The invention can be implemented as a computer program product, i.e., a computer program tangibly embodied in an information carrier, e.g., in a machine-readable storage device or in a propagated signal, for execution by, or to control the operation of, data processing apparatus, e.g., a programmable processor, a computer, or multiple computers. A computer program can be written in any form of programming language, including compiled or interpreted languages, and it can be deployed in any form, including as a stand-alone program or as a module, component, subroutine, or other unit suitable for use in a computing environment. A computer program can be deployed to be executed on one computer or on multiple computers at one site or distributed across multiple sites and interconnected by a communication network.
Method steps of the invention can be performed by one or more programmable processors executing a computer program to perform functions of the invention by operating on input data and generating output. Method steps can also be performed by, and apparatus of the invention can be implemented as, special purpose logic circuitry, e.g., an FPGA (field programmable gate array) or an ASIC (application-specific integrated circuit).
Processors suitable for the execution of a computer program include, by way of example, both general and special purpose microprocessors, and any one or more processors of any kind of digital computer. Generally, a processor will receive instructions and data from a read-only memory or a random access memory or both. The essential elements of a computer are a processor for executing instructions and one or more memory devices for storing instructions and data. Generally, a computer will also include, or be operatively coupled to receive data from or transfer data to, or both, one or more mass storage devices for storing data, e.g., magnetic, magneto-optical disks, or optical disks. Information carriers suitable for embodying computer program instructions and data include all forms of non-volatile memory, including by way of example semiconductor memory devices, e.g., EPROM, EEPROM, and flash memory devices; magnetic disks, e.g., internal hard disks or removable disks; magneto-optical disks; and CD-ROM and DVD-ROM disks. The processor and the memory can be supplemented by, or incorporated in special purpose logic circuitry.
The invention can be implemented in a computing system that includes a back-end component, e.g., as a data server, or that includes a middleware component, e.g., an application server, or that includes a front-end component, e.g., a client computer having a graphical user interface or a Web browser through which a user can interact with an implementation of the invention, or any combination of such back-end, middleware, or front-end components. The components of the system can be interconnected by any form or medium of digital data communication, e.g., a communication network. Examples of communication networks include a local area network (“LAN”) and a wide area network (“WAN”), e.g., the Internet.
The computing system can include clients and servers. A client and server are generally remote from each other and typically interact through a communication network. The relationship of client and server arises by virtue of computer programs running on the respective computers and having a client-server relationship to each other.
The invention has been described in terms of particular embodiments. Other embodiments are within the scope of the following claims.
This application claims priority based on U.S. Provisional Patent Application No. 60/466,360, for “Fabric Selection and Performance Matching,” filed Apr. 29, 2003, the disclosure of which is incorporated here by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
2263544 | Rosenstein | Nov 1941 | A |
2976539 | Brown, Jr. | Mar 1961 | A |
5050241 | Flowers et al. | Sep 1991 | A |
5299602 | Barbeau et al. | Apr 1994 | A |
5323815 | Barbeau et al. | Jun 1994 | A |
5466515 | Blauer et al. | Nov 1995 | A |
5499663 | Barbeau et al. | Mar 1996 | A |
5640718 | Aldridge | Jun 1997 | A |
5727401 | Statham | Mar 1998 | A |
5920905 | Aldridge | Jul 1999 | A |
5933865 | Aldridge | Aug 1999 | A |
6038700 | Aldridge et al. | Mar 2000 | A |
6336221 | Blauer et al. | Jan 2002 | B1 |
6341384 | Hayes | Jan 2002 | B1 |
6397401 | Belcher | Jun 2002 | B2 |
7149665 | Feld et al. | Dec 2006 | B2 |
20020025747 | Rock et al. | Feb 2002 | A1 |
20030033113 | Chen et al. | Feb 2003 | A1 |
Number | Date | Country | |
---|---|---|---|
60466360 | Apr 2003 | US |