This application claims the benefit of the Patent Korean Application No. 10-2007-0117174, filed in Korea on Nov. 16, 2007, the entirety of which is incorporated herein by reference.
1. Field
A fabric treating machine is provided, and, more particularly, a fabric treating machine is provided that removes odors, wrinkles, moisture and the like from fabric articles.
2. Background
Odors, wrinkles, moisture and the like that remain in fabric articles such as, for example, clothing articles, may cause a user to perform unnecessary washing functions, thus shortening an expected life span of the articles and increasing cost. Additionally, even after washing and drying, wrinkles may remain in the fabric articles, thus requiring separate ironing work. A fabric treatment apparatus that removes odors, wrinkles, moisture and the like from fabric articles without undue wear on the articles would be desirable.
The embodiments will be described in detail with reference to the following drawings in which like reference numerals refer to like elements wherein:
In order to remove odors, wrinkles, moisture and the like from fabric articles, a fabric treating machine may spray steam onto the fabric articles and use heated-air flow in order to dry the fabric articles that have been sprayed with steam. Although odors, wrinkles, moisture and the like may be significantly reduced by exposing the fabric articles to heated-air flow, moisture (for example, steam) may optimize the effects and provide for more complete elimination.
If steam is sprayed onto fabric articles in a fabric treating machine, fine water particles may be coupled to odor particles remaining in the depth of fibers of the fabric, and the water particles coupled to the odor particles may be, together, separated from the fabric during a drying process so as to remove odors from the fabric. The application of steam during the drying process may also lessen wrinkles remaining in the fabric articles.
Through the process described above, odors, wrinkles, moisture and the like may be removed from fabric articles, leaving the fabric articles in a more pleasant state. Such fabric articles may include, for example, clothing, bedding, table linens, draperies, and other such articles which may be subject to odors, wrinkles and the like, and which may benefit from the application of steam and/or heat. The steam supplied in order to remove odors, wrinkles, moisture and the like may be removed from the fabric articles during a drying process by supplying hot air or the like. However, a degree of dryness of each fabric may differ based on, for example, a type/weight of fabric, an amount of supplied steam, and the like.
Although a consistent amount of steam may be supplied to a receiving room in which the articles are treated, characteristics of the fabric will affect how moisture is absorbed, and the time and temperature required to dry the fabric. Thus, if there is difference in a degree of dryness, there may also be a difference in temperature, supply time and flow rate of hot air required to completely dry the fabric articles. However, if a drying process is unnecessarily performed, or excessive drying is performed, it may damage the fibers of the fabric.
A controller that allows a fabric treating machine to perform a drying process that actively sets and adjusts based on a dryness of the fabric articles, rather than performing a passive drying process, would improve performance and utility of the fabric treating machine.
A hanger 13 that holds fabric items and a horizontal bar 11 are configured to hold items to be treated so that, for example, several items may be hung simultaneously inside the receiving room 10. In alternative embodiments, the hanger 13 and/or horizontal bar 11 may be specifically configured to support various types of fabric articles, such as, for example, clothing, bedding, draperies and the like. For example, a rack 15, may be provided to receive articles which cannot be easily hung on the hanger 13.
The steam generator may spray steam into the receiving room 10 through a steam spraying device 50 provided at a lower portion of the receiving room 10, or other position as appropriate. The steam generator and the heated-air supplier may be controlled by a controller (not shown) that controls the supply of steam or hot air in order to perform a selected treating process.
In the embodiment shown in
The machine room 20 may house a steam generator 25 that generates and supplies steam to the receiving room 10 and a heated-air supplier that generates and supplies hot air to the receiving room 10. The heated air-supplier may be, for example, a heat pump or an electric heater that heats dehumidified air. In either instance, the heated-air supplier may include a condensing part 23b that condenses moisture of wet air drawn in through an inlet port 21, and a heating part 23a that heats air that has been dehumidified in the condensing part 23b. A heating part 23a may be included with a heat exchanger of the heat pump, or an electric heater. Even when a heat pump is used for dehumidifying and heating wet air, a separate electric heater may be provided, in addition to the heat pump, for sufficiently heating the dehumidified air.
In the embodiment shown in
Air drawn into the inlet port 21 may be dehumidified in the condensing part 23b of the heat exchanger 23, heated in the heating part 23a, and supplied again to the receiving room 10 through the blowing duct 24. Thereafter, the drying process inside the receiving room 10 and may be repeated and the moist air recirculated back into the inlet port 21.
Through repetition of the processes described above, the fabric articles received in the receiving room may be dried. The location of the inlet port 21 and the blowing duct 24 inside the receiving room 10 may be determined based on the location of the steam generator 25, the rod 11 and the hangers 13, the rack 15 and the like. In the embodiment of
A fabric treating machine as embodied and broadly described herein may include a drying function which dries fabric articles in the receiving room 10 using, for example, a condensing type system or an exhausting type system. The embodiment shown in
The heat exchanger 23 dehumidifies wet air which has been circulated through the receiving room 10 during an evaporation process using a refrigerant supplied from the compressor 22, and heats the dehumidified air through a condensation process of the refrigerant. Compression of refrigerant may be conducted between the evaporation process and condensation process in the compressor 22 provided inside the machine room 20.
A draining part 70 may be provided in the machine room 20. Fluid condensed in the heat exchanger 23 may be collected in a collecting box 29 located below the heat exchanger 23, and delivered to and stored in the draining part 70.
In alternative embodiments, the draining part 70 may be provided as part of an external sewer pipe or the like, instead of in detachable form as long as the fabric treating machine 100 is installed in a place having a sewer/drainage system or the like. Therefore, simply for ease of discussion, embodiments in which the draining part 70 is formed as a detachable water box will be described.
When so configured, the draining part 70 may be selectively separated from the machine room 20, taking size/shape/capacity and the like of the draining part 70 into consideration, making it possible to discharge waste/sewage products contained therein. The movement of the sewage from the collecting box 29 to the draining part 70 may be done by a drain pump 27 or the like.
To facilitate removal of the draining part 70 from the machine room 20, the draining part 70 may be located at an upper part of the machine room 20. When so configured, a difference in installation height/position between the collecting box 29, located below the heat exchanger 23, and the draining part 70 maybe compensated for by the pump 27. Thus, the collecting box 29 may be smaller than the draining part 70.
The steam generator 25 provided inside the machine room 20 may generate steam from fluid supplied by a fluid supplying part 90. In certain embodiments, such as in
In alternative embodiments, the fluid supplying part 90 may be directly connected to an external fluid supply when such an external supply is readily available. The fluid supplying part 90 supplies fluid to the steam generator 25, and the steam generator 25 sprays steam through the steam spraying device 50.
In certain embodiments, the steam generator generates steam by heating a predetermined amount of fluid contained in a tank having a predetermined size, with a built-in heater (not shown). However, any apparatus capable of generating steam may be used as the steam generator. For example, a heater may be directly installed on a circumferential surface of a supply hose, thus eliminating the need to store fluid in a predetermined space. Other means for generating steam may also be appropriate.
The steam spraying device 50 may be connected to the steam generator 25 and the draining part 70. Connection to the draining part 70 allows for recovery of condensed fluid generated while steam inside the steam spraying device 50 is sprayed.
However, considering that the temperature of condensed steam is relatively high, the condensed fluid may be allowed to remain in the steam spraying device 50 for a predetermined time so that it may be vaporized again, rather than allowing the condensate to be drained as soon as it is generated. Also, if the condensate remains inside the steam spraying device 50, an interior space of the spraying device 50 is reduced so that the supplied steam may be sprayed more easily. And, the high temperature condensate may help to keep the supplied steam warm. Therefore, the condensed steam accumulated in the steam spraying device 50 may remain in the steam spraying device 50 for a predetermined time.
In order to allow the condensate to remain inside the steam spraying device 50, a valve 80 may be provided between a condensate outlet 53 of the steam supplying device 50 and the draining part 70. The valve 80 may interrupt the flow of condensate from the outlet 53. The valve 80 may be, for example, an electronic valve controlled by a controller (not shown), or other type of valve as appropriate.
In the embodiment shown in
In the embodiment shown in
The heated-air supplier and the steam supplier may be controlled by the controller based on a level of dryness of fabric articles received in the receiving room 10. A method of determining such a dryness level will now be described.
The hanger 13 shown in
The arm parts 13a may be electrically connected to the ring 13b by a conductor buried therein. The ring 13b may be connected to the controller through the horizontal bar 11. A conductor 13c that electrically connects the electrode parts 12 to the controller may be exposed on a lower surface of the ring 13b for selective contact with the bar 11. The conductor 13c may be, for example, a wire made of metal, or the like. The conductor 13c serves to connect each electrode part 12 to the controller via the horizontal bar 11. The horizontal bar 11 may also have a built-in conductor, to be described later. In certain embodiments, the exteriors of the arm parts 13a and ring 13b may be covered with a housing 13d made of an insulating material such as, for example, a plastic material. Thus, although electrode parts 12 are exposed at both ends of the arm parts 13a, parts other than the electrode parts 12 may be insulated. Likewise, an internal conductor part of the ring 13b, that contacts the horizontal bar 11, may be exposed to establish an electrical connection with the conductor provided in the horizontal bar 11.
The horizontal bar 11 shown in
Each conductor 11c may be exposed at the respective mounting grooves 11e, and conductors 13c provided inside the hanger 13 contact the conductors 11c provided in the horizontal bar 11 at the mounting grooves 11e, such that the electrode parts 12 can be connected electrically to the controller via the horizontal bar 11. The conductors 11c and 13c may be electrically connected using a method that safely seats the ring 13b of the hanger 13 in the mounting groove 11e, and the conductors 13c may be connected to the controller. Therefore, the electrode parts 12 provided at both ends of the arm parts 13a of the hanger 13 may be electrically connected to the controller.
In order to determine a level of dryness of the fabric articles hanging on the hangers 13 in the receiving room 10, the electrode parts 12 may calculate impedance associated with the fabric articles. The impedance associated with the fabric articles received in the receiving room 10 is related to the electrical conductivity of the fabric articles. In other words, the electrical conductivity of the fabric articles may vary based on the dryness of the fabric articles. Therefore, if the electrical conductivity is measured, the degree of dryness of the fabric articles may be determined.
The electrode parts 12 may be electrically connected to the controller, such that an impedance level of the fabric contacting the electrode parts 12 may be measured by applying current or voltage to the electrode parts 12. Since such values change with respect to time, root means square (RMS) values of current and voltage may be used. Therefore, if the RMS values of the alternating current (AC) voltage is Ve, the impedance Z of fabric contacting the electrode parts 12 may be determined, as Z=Ve/Ie. Therefore, the controller may apply a known current or voltage and then calculate an impedance level based on a measured, actual, value of voltage or current experienced at the electrode parts 12.
The impedance may refer to a degree of difficulty which current encounters when flowing in an AC circuit. Impedance is measured in ohms, Ω, and is generally represented by the symbol Z. Impedance may represent composite resistance of an AC circuit in which resisters, coils, and a storage battery are connected in series. A measured impedance level of the fabric may be used to determine the electrical conductivity of the fabric, and ultimately, a corresponding dryness level of the fabric.
Wet fabric, which has a relatively low dryness level, has a relatively high electrical conductivity level that allows current to flow relatively well, and thus a corresponding impedance level will be relatively low. In contrast, impedance will be relatively high in the opposite case, when the fabric is relatively dry and thus conductivity is relatively low.
Thus, when a measured impedance of the fabric is low, it means that the moisture content of the fabric is high. In contrast, when a measured impedance of the fabric is high, it means that the moisture content of the fabric is low. Therefore, the controller may select an appropriate operation condition of the heated-air supplier based on the measured impedance level to ensure that the fabric is appropriately, but not excessively, dried.
The operation condition of the heated-air supplier may include, for example, supply time, temperature, flow rate and the like associated with the hot air supplied by the heated-air supplier.
The controller may also control the steam supplied by the steam generator 25 based on the dryness level determined by the electrode part 12. This may be used as a means to determine whether or not an appropriate amount of steam has been supplied to the receiving room 10 to remove odors and wrinkles from the fabric articles.
The fabric treating machine as embodied and broadly described herein may include other hanging means having a different shape/size/configuration. The hanging means may be, for example, a rack having a plurality of horizontal bars capable of hanging fabric articles therefrom.
The rack 15 shown in
The outlet may be formed in the receiving room 10 at a position corresponding to the blowing duct 24 shown in
The plurality of flappers 16 shown in
Rotation of the flappers 16 allows the supply of hot air to be concentrated on fabric articles having relatively low dryness levels. When comparing the dryness levels of fabric articles received in the receiving room 10, if the dryness level of a fabric article received in a certain direction is lower than that of a fabric article located in another location, the controller changes the rotation angle of the flappers 16 to supply hot air in the direction of the fabric articles having low dryness, making it possible to dry the received fabric articles more evenly. The flappers 16 may rotate so as to supply hot air to the fabric articles low dryness from amongst the fabric articles received in the receiving room 10 making it possible to optimize efficiency of the drying process.
Through the method described above, the dryness of the fabric articles received in the receiving room 10 is determined, making it possible to apply hot air supplied from the heated-air supplier more efficiently.
The indirect information related to the dryness level measured by the electrode parts may be used not only in the airing process, but also in the process of supplying steam to the receiving room.
A fabric treating machine as embodied and broadly described herein supplies steam to the fabric articles in order to remove odors or wrinkles remaining in the received fabric articles. However it may also be used to control an appropriate amount of steam supplied to the received fabric articles.
In other words, whether an appropriate amount of steam has been supplied may also be determined by the electrode parts contacting the fabric articles. In other words, the electrical conductivity or impedance of the fabric articles is measured and when the requested amount of steam is supplied, the supply of steam is discontinued.
The steam supplier supplying steam to the receiving room or the heated-air supplier dehumidifying and heating air inside the receiving room is controlled by the controller, such that the information related to the dryness level of the fabric articles measured by the electrodes parts provided with the hanger and the rack and contacting the fabric articles can be utilized diversely.
In a fabric treating machine as embodied and broadly described herein, in order to remove odors, wrinkles, moisture and the like remaining in received fabric articles, steam is sprayed, and hot wind is supplied or blown in order to dry fabric articles that contain moisture due to the sprayed steam, making it possible to remove the odors, wrinkles, moisture and the like. Also, the heated-air supplier is controlled by measuring the dryness level of received fabric articles making it possible to dry the received fabric articles efficiently.
Also, hot air supply may be concentrated to a region where the dryness level of a portion of received fabric articles is low, making it possible to dry the fabric articles evenly.
A laundry treating machine is provided capable of determining an operation condition of a heated-air supplier provided inside a machine room or determining the direction of hot air supplied from the heated-air supplier by measuring the dryness of laundry received in a receiving room.
A laundry treating machine as embodied and broadly described herein may include a cabinet having a receiving room receiving laundry; a heated-air supplier provided in a space inside the cabinet partitioned from the receiving room, dehumidifying or heating air of the receiving room and re-supplying it to the receiving room; at least one hanging means provided in the receiving room for hanging the received laundry; at least two electrode parts mounted to the hanger and spaced each other; and a controller controlling the heated-air supplier and electrically connected to the electrode parts.
The hanging means may be a hanger and a horizontal bar capable of detachable mounting the hanger.
The hanger may have a pair of arm parts and a ring provided on a center portion of the arm parts and each electrode part may be mounted to be exposed on the arm parts respectively.
The electrode part may be connected to the controller by a conductor buried in the hanger and the horizontal bar.
The horizontal bars may have a plurality of mounting grooves capable of mounting the hangers, the conductor of the hanger and the horizontal bar contacting each other at the mounting groove.
The controller may determine an operation condition of the heated-air supplier according to an impedance value of laundry contacting the electrode part of the hanger.
The hanger may be a rack comprising at least one horizontal standing bar and the electrode parts may be provided to at least one of the horizontal bars.
The rack may be mounted on an inner wall surface of the receiving room to be able to be folded by a hinge.
The controller may determine the operation condition of the heated-air supplier according to the impedance value of laundry contacting the electrode part of the rack.
The laundry treating machine may also include at least one flapper in a plate shape, which is rotatably mounted on an outlet side of hot air supplied from the heated-air supplier and is controlled by the controller, the controller controlling a rotation angle of the flapper.
The controller may determine the rotation angle of the flapper according to the impedance value of laundry contacting the electrode part.
The operation condition of the heated-air supplier may include at least one of supply time, temperature, and flow rate of hot air.
The laundry treating machine may also include a steam generator controlled by the controller and generating steam supplied to the receiving room.
The controller may determine the operation condition of the steam generator according to the impedance value of laundry contacting the electrode part.
The operation condition of the steam generator may also include a supply time of the steam.
A laundry treating machine as embodied and broadly described herein may include a receiving room receiving laundry; a steam generator supplying steam to the receiving room; a heated-air supplier drying the laundry received in the receiving room; and a controller connected to the steam generator and the heated-air supplier; and a hanger or a rack connected to the controller electrically for judging the dryness of laundry received in the receiving room; capable of judging dryness of laundry received in the receiving room based on a degree of electric conduction.
The laundry treating machine may also include a plurality of flappers mounted rotatably on an inner wall surface of the receiving room for guiding the direction of heated-air supplied from the hot air supplier.
Any reference in this specification to “one embodiment,” “an embodiment,” “example embodiment,” “certain embodiments,” “alternative embodiments,” etc., means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment as broadly described herein. The appearances of such phrases in various places in the specification are not necessarily all referring to the same embodiment. Further, when a particular feature, structure, or characteristic is described in connection with any embodiment, it is submitted that it is within the purview of one skilled in the art to effect such feature, structure, or characteristic in connection with other ones of the embodiments.
Although embodiments have been described with reference to a number of illustrative embodiments thereof, it should be understood that numerous other modifications and embodiments can be devised by those skilled in the art that will fall within the spirit and scope of the principles of this disclosure. More particularly, numerous variations and modifications are possible in the component parts and/or arrangements of the subject combination arrangement within the scope of the disclosure, the drawings and the appended claims. In addition to variations and modifications in the component parts and/or arrangements, alternative uses will also be apparent to those skilled in the art.
Number | Date | Country | Kind |
---|---|---|---|
10-2007-0117174 | Nov 2007 | KR | national |
Number | Name | Date | Kind |
---|---|---|---|
3702030 | Janke | Nov 1972 | A |
4385452 | Deschaaf et al. | May 1983 | A |
4477982 | Cotton | Oct 1984 | A |
4738034 | Muramatsu et al. | Apr 1988 | A |
5345694 | Hayashi | Sep 1994 | A |
5940986 | Jelinek et al. | Aug 1999 | A |
7975400 | Dittmer et al. | Jul 2011 | B2 |
20020133969 | Cassella | Sep 2002 | A1 |
20040168344 | Park | Sep 2004 | A1 |
20040200093 | Wunderlin et al. | Oct 2004 | A1 |
20050155393 | Wright et al. | Jul 2005 | A1 |
20050278972 | Maruca | Dec 2005 | A1 |
20060191161 | Wunderlin et al. | Aug 2006 | A1 |
20060248746 | Dittmer et al. | Nov 2006 | A1 |
Number | Date | Country |
---|---|---|
1 736 761 | Dec 2006 | EP |
1 865 104 | Dec 2007 | EP |
1 988 209 | Nov 2008 | EP |
2003-181196 | Jul 2003 | JP |
2007-037917 | Feb 2007 | JP |
WO 2004091359 | Oct 2004 | WO |
WO 2006100332 | Sep 2006 | WO |
Number | Date | Country | |
---|---|---|---|
20090126422 A1 | May 2009 | US |