1. Field of the Invention
The invention relates to a fabric treatment appliance, such as a washing machine, with a steam generator.
2. Description of the Related Art
Some fabric treatment appliances, such as a washing machine, a clothes dryer, and a fabric refreshing or revitalizing machine, use steam generators for various reasons. The steam from the steam generator can be used to, for example, heat water, heat a load of fabric items and any water absorbed by the fabric items, dewrinkle fabric items, remove odors from fabric items, sanitize the fabric items, and sanitize components of the fabric treatment appliance.
Water from a water supply coupled to the steam generator typically provides water to the steam generator for conversion to steam. Steam generated in the steam generator commonly flows from the steam generator to a fabric treatment chamber via a steam supply conduit. If flow out of the steam generator or flow through the steam supply conduit becomes impaired, such as due to buildup of scale, steam from the steam generator can undesirably flow in a reverse direction to the water supply.
A fabric treatment appliance according to one embodiment of the invention comprises a receptacle defining a fabric treatment chamber for receiving laundry, a steam generator having an inlet for receiving water from a water supply and an outlet for supplying steam to the fabric treatment chamber, and a liquid trap upstream from the steam generation chamber blocking backflow of steam from the steam generation chamber to the water supply conduit.
In the drawings:
Referring now to the figures,
The tub 14 and/or the drum 16 may individually or collectively be considered a receptacle, and the receptacle may define a treatment chamber for receiving fabric items to be treated. While the illustrated washing machine 10 includes both the tub 14 and the drum 16, it is within the scope of the invention for the fabric treatment appliance to include only one receptacle, with the receptacle defining the treatment chamber for receiving the fabric items to be treated.
Washing machines are typically categorized as either a vertical axis washing machine or a horizontal axis washing machine. As used herein, the “vertical axis” washing machine refers to a washing machine having a rotatable drum that rotates about a generally vertical axis, relative to a surface that supports the washing machine. Typically the drum is perforate or imperforate, and holds fabric items and a fabric moving element, such as an agitator, impeller, nutator, and the like, that induces movement of the fabric items to impart mechanical energy to the fabric articles for cleaning action. However, the rotational axis need not be vertical. The drum can rotate about an axis inclined relative to the vertical axis. As used herein, the “horizontal axis” washing machine refers to a washing machine having a rotatable drum that rotates about a generally horizontal axis relative to a surface that supports the washing machine. The drum may be perforated or imperforate, and holds fabric items and typically washes the fabric items by the fabric items rubbing against one another and/or hitting the surface of the drum as the drum rotates. In horizontal axis washing machines, the clothes are lifted by the rotating drum and then fall in response to gravity to form a tumbling action that imparts the mechanical energy to the fabric articles. In some horizontal axis washing machines, the drum rotates about a horizontal axis generally parallel to a surface that supports the washing machine. However, the rotational axis need not be horizontal. The drum can rotate about an axis inclined relative to the horizontal axis, with fifteen degrees of inclination being one example of inclination.
Vertical axis and horizontal axis machines are best differentiated by the manner in which they impart mechanical energy to the fabric articles. In vertical axis machines, the fabric moving element moves within a drum to impart mechanical energy directly to the clothes or indirectly through wash liquid in the drum. The clothes mover is typically moved in a reciprocating rotational movement. In horizontal axis machines mechanical energy is imparted to the clothes by the tumbling action formed by the repeated lifting and dropping of the clothes, which is typically implemented by the rotating drum. The illustrated exemplary washing machine of
With continued reference to
The washing machine 10 of
The exemplary washing machine 10 may further include a steam generation system. The steam generation system may include a steam generator 60 that may receive liquid from the water supply 29 through a second supply conduit 62 via a reservoir 64. The inlet valve 34 may control flow of the liquid from the water supply 29 and through the second supply conduit 62 and the reservoir 64 to the steam generator 60. The inlet valve 34 may be positioned in any suitable location between the water supply 29 and the steam generator 60. A steam conduit 66 may fluidly couple the steam generator 60 to a steam inlet 68, which may introduce steam into the tub 14. The steam inlet 68 may couple with the tub 14 at any suitable location on the tub 14 and is shown as being coupled to a rear wall of the tub 14 in
An optional sump heater 52 may be located in the sump 38. The sump heater 52 may be any type of heater and is illustrated as a resistive heating element for exemplary purposes. The sump heater 52 may be used alone or in combination with the steam generator 60 to add heat to the chamber 15. Typically, the sump heater 52 adds heat to the chamber 15 by heating water in the sump 38.
The washing machine 10 may further include an exhaust conduit (not shown) that may direct steam that leaves the tub 14 externally of the washing machine 10. The exhaust conduit may be configured to exhaust the steam directly to the exterior of the washing machine 10. Alternatively, the exhaust conduit may be configured to direct the steam through a condenser prior to leaving the washing machine 10. Examples of exhaust systems are disclosed in the following patent applications, which are incorporated herein by reference in their entirety: U.S. patent application Ser. No. 11/464,506, titled “Fabric Treating Appliance Utilizing Steam,” U.S. patent application Ser. No. 11/464,501, titled “A Steam Fabric Treatment Appliance with Exhaust,” U.S. patent application Ser. No. 11/464,521, titled “Steam Fabric Treatment Appliance with Anti-Siphoning,” and U.S. patent application Ser. No. 11/464,520, titled “Determining Fabric Temperature in a Fabric Treating Appliance,” all filed Aug. 15, 2006.
The steam generator 60 may be any type of device that converts the liquid to steam. For example, the steam generator 60 may be a tank-type steam generator that stores a volume of liquid and heats the volume of liquid to convert the liquid to steam. Alternatively, the steam generator 60 may be an in-line steam generator that converts the liquid to steam as the liquid flows through the steam generator 60. As another alternative, the steam generator 60 may utilize the sump heater 52 or other heating device located in the sump 38 to heat liquid in the sump 38. The steam generator 60 may produce pressurized or non-pressurized steam.
Exemplary steam generators are disclosed in U.S. patent application Ser. No. 11/464,528, titled “Removal of Scale and Sludge in a Steam Generator of a Fabric Treatment Appliance,” U.S. patent application Ser. No. 11/450,836, titled “Prevention of Scale and Sludge in a Steam Generator of a Fabric Treatment Appliance,” and U.S. patent application Ser. No. 11/450,714, titled “Draining Liquid From a Steam Generator of a Fabric Treatment Appliance,” all filed Jun. 9, 2006, in addition to U.S. patent application Ser. No. 11/464,509, titled “Water Supply Control for a Steam Generator of a Fabric Treatment Appliance,” U.S. patent application Ser. No. 11/464,514, titled “Water Supply Control for a Steam Generator of a Fabric Treatment Appliance Using a Weight Sensor,” and U.S. patent application Ser. No. 11/464,513, titled “Water Supply Control for a Steam Generator of a Fabric Treatment Appliance Using a Temperature Sensor,” all filed Aug. 15, 2006, which are incorporated herein by reference in their entirety.
In addition to producing steam, the steam generator 60, whether an in-line steam generator, a tank-type steam generator, or any other type of steam generator, may heat water to a temperature below a steam transformation temperature, whereby the steam generator 60 produces hot water. The hot water may be delivered to the tub 14 and/or drum 16 from the steam generator 60. The hot water may be used alone or may optionally mix with cold or warm water in the tub 14 and/or drum 16. Using the steam generator 60 to produce hot water may be useful when the steam generator 60 couples only with a cold water source of the water supply 29. Optionally, the steam generator 60 may be employed to simultaneously supply steam and hot or warm water to the tub 14 and/or drum 16.
The liquid supply and recirculation system and the steam generation system may differ from the configuration shown in
Other alternatives for the liquid supply and recirculation system are disclosed in U.S. patent application Ser. No. 11/450,636, titled “Method of Operating a Washing Machine Using Steam;” U.S. patent application Ser. No. 11/450,529, titled “Steam Washing Machine Operation Method Having Dual Speed Spin Pre-Wash;” and U.S. patent application Ser. No. 11/450,620, titled “Steam Washing Machine Operation Method Having Dry Spin Pre-Wash,” all filed Jun. 9, 2006, which are incorporated herein by reference in their entirety.
Referring now to
Many known types of controllers may be used for the controller 70. The specific type of controller is not germane to the invention. It is contemplated that the controller is a microprocessor-based controller that implements control software and sends/receives one or more electrical signals to/from each of the various components (inlet valve 34, detergent dispenser 32, steam generator 60, pump 44, motor 22, and control panel 80) to effect the control software.
The reservoir 64 may include a water supply conduit 104 for supplying water from the water supply 29 to the tank 90. In the illustrated embodiment, the water supply conduit 104 may extend through the cap 98 such that an upper portion 106 resides above the cap 98 and a lower portion 108 resides below the cap 98 and extends through and below the cylindrical body 100. The lower portion 108 of the water supply conduit 104 may terminate at an outlet 110 positioned below the cylindrical body 100. The upper portion 106, which, as shown in the illustrated embodiment, may have a triangular configuration, a water supply inlet connector 112 disposed near the cap 98, and a siphon break connector 114 located at an upper end of the upper portion 106. The illustrated locations of the water supply inlet connector 112 and the siphon break connector 114 are provided for exemplary purposes; the water supply inlet connector 112 and the siphon break connector 114 can have any suitable location. The water supply inlet connector 112 may be coupled to the second water supply conduit 62 to receive water from the water supply 29 and provide the water to the water supply conduit 104. The siphon break connector 114 may be coupled to a siphon break conduit 116 (
With continued reference to
With continued reference to
The first end 132 of the steam generator tube 130 may be coupled to the reservoir 64 via the steam generator connector 122 for receiving water from the water supply conduit 104. In general, the outlet 110 of the water supply conduit 104 will be lower than the inlet to the steam generator 60, which may correspond to the actual inlet to the steam generator 60 or an effective inlet to the steam generator 60. For example, the actual inlet to the steam generator may be formed by the first end 132 of the steam generator tube 130, while the lip 126 and the first end 132 may form an effective inlet to the steam generator 60 as the lip 126 alters the inlet to the steam generator 60. In the exemplary embodiment, the lower portion 108 of the water supply conduit 104 may be received by the tank 90 with the outlet 110 disposed a distance A above the bottom 92 of the tank 90, and the distance A may be any suitable distance less than a distance B between an upper end of the lip 126 and the bottom 92 of the tank 90. Absent the lip 126, the distance A may be any suitable distance less than a distance B′ between the steam generator connector 122 and the bottom of the tank 90.
If the outlet 110 is lower than the inlet or effective inlet to the steam generator 60 then a water plug may form between the outlet 110 and the inlet or effective inlet to the steam generator 60, with the water plug functioning as a water trap preventing steam in the steam generator tube 130 from backflowing into the water supply conduit 104. In the illustrated embodiment, a volume of the tank chamber 124 between the steam generator inlet or effective inlet and the tank bottom 92 may be filled with water from the water supply conduit 104 to form the water plug. In fact, the water plug need not reach the inlet or effective inlet to the steam generator 60 as long as the outlet 110 is positioned in the water plug (i.e., the water plug may have a height between the outlet 110 and the inlet or effective inlet to the steam generator 60). The positioning of the outlet 110 in the water plug precludes steam from flowing upstream from the steam generation chamber 136, through the water supply conduit outlet 110, and to the water supply 29. The water plug is discussed further below with respect to the operation of the washing machine 10, particularly the operation of the steam generator 60.
The reservoir 64 and the steam generator 60 may be positioned with the reservoir 64 at the steam generator inlet, as illustrated in
The reservoir 64 and the steam generator 60 may be oriented such that they are generally perpendicular to one another, as illustrated in
The steam generator 60 may be employed for steam generation during operation of the washing machine 10, such as during a wash operation cycle, which can include prewash, wash, rinse, and spin steps, during a washing machine cleaning operation cycle to remove or reduce biofilm and other undesirable substances, like microbial bacteria and fungi, from the washing machine, during a refresh or dewrinkle operation cycle, or during any other type of operation cycle. The steam generator may also be employed for generating heated water during operation of the washing machine 10.
To operate the steam generator 60, water from the water supply 29 may be provided to the steam generator 60 via the valve 34, the second supply conduit 62, the water supply conduit 104, and the tank 90. As illustrated in
Referring back to
Referring back to
In the embodiment shown, because of the lip 126, the water level in the tank 90 will not drop below the water level corresponding to the water plug 150 if the water level in the steam generation chamber 136 falls below that of the water plug 150, including depletion of the water in the steam generation chamber 136. Water can be resupplied to the steam generation chamber 136 at any suitable time during the operation of the steam generator 60. Optionally, the reservoir 64 may include a drain for draining the water plug 150, such as following operation of the steam generator 60. The lip 126 also functions as a baffle that retards deposits in the water from flowing back into the tank chamber 124, which might then interfere with the flow of water though the lower portion 108 as the deposits collect in the bottom 92 of the tank 90.
During the operation of the washing machine 10, the siphon break device may prevent water or other liquids from the tub 14 and/or the drum 16 from undesirably flowing to the water supply 29 via the steam generator 60. Any siphoned liquids may flow through the steam generator 60, into the reservoir 64, through the water supply conduit 104, and through the siphon break conduit 116 (
The term “water plug” has been employed to describe the volume of water physically located between the water supply conduit outlet 110 and the inlet or effective inlet to the steam generator 60. The term “water plug” is descriptive in the sense that the water fills the space between the water supply conduit outlet 110 and the inlet or effective inlet to the steam generator 60 to block backflow of steam, much like a conventional plug fills a space. Other connotations associated with “plug” are not necessarily intended to be attributed to the “water plug” of the current invention. For example, one connotation associated with a plug may be that a plug permanently fills a space. Indeed, the water plug may be designed as having a volume that may provide sufficient resistance to an upper limit of pressure applied by steam such that the steam cannot push or force the water in the water plug to flow upstream through the water supply conduit 104. Alternatively, the water plug may have a volume corresponding to a predetermined threshold of steam pressure such that steam of the predetermined threshold of steam pressure may push or force the water in the water plug to flow upstream through the water supply conduit 104.
The liquid trap 164 is illustrated as being formed by the conduit 168 having a U-shaped 170 portion that holds water to form the liquid trap. The conduit 168 can be separate from or integrated with the second supply conduit 62. The water level in the U-shaped portion will vary depending on the operating conditions. However, if the U-shaped portion is located below the bottom of the of the steam generator tube 130, then a sufficient amount of water will be maintained in the U-shaped portion to completely block the interior of the conduit and form a water plug as previously described.
The conduit 168 has a second U-shaped portion 172 that connects the first U-shaped portion to the steam generator tube 130, such that an end 174 is fluidly connected to an upper portion of the steam generator tube 130, which negates the need for the lip 126 to retard the flow of deposits. As the end 174 enters the steam generator tube above the anticipated operating fill level of the steam generator, any entrained deposits are not likely to flow out of the steam generation chamber and into the conduit 168. The extension of the second U-shaped portion 172 above the steam generation chamber 136 further retards the entrained particles from passing out of the steam generation chamber 136.
While the invention has been specifically described in connection with certain specific embodiments thereof, it is to be understood that this is by way of illustration and not of limitation, and the scope of the appended claims should be construed as broadly as the prior art will permit.