Fabrication method for emissive display with light management system

Information

  • Patent Grant
  • 10381332
  • Patent Number
    10,381,332
  • Date Filed
    Tuesday, January 16, 2018
    7 years ago
  • Date Issued
    Tuesday, August 13, 2019
    5 years ago
Abstract
A method is provided for fabricating an emissive display substrate with a light management system. The method provides a transparent first substrate with a top surface and forms a plurality of emissive element wells. The well sidewalls are formed from a light absorbing material or a light reflector material. In one aspect, a light blocking material film layer is formed overlying the first substrate top surface, and the emissive element sidewalls are formed in the light blocking material film layer. In another aspect, a transparent second substrate is formed overlying the first substrate top surface. Then, the emissive element wells are formed in the second substrate with via surfaces, and the light blocking material is deposited overlying the well via surfaces. Additionally, the light blocking material may be formed on the bottom surface of each well. An emissive display substrate with light management system is provided below.
Description
RELATED APPLICATIONS

Any and all applications, if any, for which a foreign or domestic priority claim is identified in the Application Data Sheet of the present application are hereby incorporated by reference under 37 CFR 1.57.


BACKGROUND OF THE INVENTION
1. Field of the Invention

This invention generally relates to emissive displays and, more particularly, to a light management system for an emissive display made using the micro-size emissive elements.


2. Description of the Related Art

A red-green-blue (RGB) display can be made with micro-sized emissive elements, such as a micro light emitting diode (μLED). Such a display might be used in a television, computer monitor, or handheld device. Micro-sized emissive elements may have a diameter or cross-section of less than 100 microns. The emissive elements are aligned in some manner into pixel arrays. Conventional processing and integration steps following the placement of emissive elements include metallization to connect the emissive elements to a matrix of control lines.


If the display is fabricated using a fluidic fabrication process, the display substrate is formed with an array of wells to capture the emissive elements. Typically, the display substrate is made of a transparent material such as glass. As a result, light can leak propagate through the transparent substrate between adjacent wells, which degrades color quality and contrast.


It would be advantageous if the light emission from each emissive substrate well could be controlled such that light from the emissive elements in wells is only directed to the top surface of a transparent surface, and prevented from propagating into adjacent wells.


SUMMARY OF THE INVENTION

Described herein are structural features used with direct emitting emissive elements, such as micro light emitting diodes (uLEDs), which control the directionality of light emitted. An emissive display may be composed of a multitude of uLED pixels; each one addressed individually. It is important that the direction of the light emitted by each uLED is controlled to reduce light leakage between pixels to ensure color quality and contrast. The light from each uLED is emitted from all surfaces including the faces and the sides and is thus emitted in directions perpendicular and parallel to the surface of the display. Unless controlled, the light emitted along the direction nominally parallel to a transparent display substrate surface will propagate to adjacent pixels. The structure features described herein are used to reflect or absorb this light. Reflective materials may include metals already incorporated into the backplane manufacturing, including aluminum, titanium, silver, tin, indium, nickel, gold, or other reflective metals. Absorptive materials may include black polymer resin and black photoresist materials containing carbon black or graphene oxide.


Accordingly, a method is provided for fabricating an emissive display substrate with a light management system. The method provides a transparent first substrate with a top surface and forms a plurality of emissive element wells. The well sidewalls are formed from a light blocking material. In the simplest case, the wells are formed in the first substrate. As mentioned above, the light blocking material may be a light absorbing material or a light reflector material. In one aspect, a light blocking material film layer is formed overlying the first substrate top surface, and the emissive element sidewalls are formed in the light blocking material film layer.


In another aspect, a transparent second substrate is formed overlying the first substrate top surface. Then, the emissive element wells are formed in the second substrate with via surfaces, and the light blocking material is deposited overlying the well via surfaces. Additionally, the light blocking material may be formed on the bottom surface of each well. If the first substrate includes electrical interfaces formed on the top surface, the emissive element wells formed in the second substrate are etched to expose an electrical interface formed on each well bottom surface. Then, the light blocking material on the well bottom surface is patterned to avoid the electrical interface formed on the well bottom surface.


In another aspect, prior to depositing the light blocking material, a fluidic assembly process is used to populate the wells with emissive elements. Note, the wells can also be populated using a pick-and-place process, which is inherently more time consuming. The well sidewall light blocking material is then formed by conformally depositing the light absorbing blocking material overlying the second substrate top surface and filling the wells, and etching the light absorbing blocking material to expose the emissive elements.


Additional details of the above-described method and an emissive display substrate with light management system are provided below.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a partial cross-sectional view of an emissive display substrate with a light management system.



FIG. 2 is a partial cross-sectional view depicting a first variation of the light management system.



FIG. 3 is a partial cross-sectional view depicting a second variation of the light management system.



FIGS. 4A and 4B are, respectively, partial cross-sectional and plan views related to the second variation of light management system present in FIG. 3.



FIGS. 5A and 5B are partial cross-sectional views depicting the display light management system subsequent to the addition of emissive elements.



FIG. 6 is a partial cross-sectional diagram of the light management feature enabled as a well structure created from a reflective material.



FIG. 7 is a partial cross-sectional view depicting a light management feature enabled as a well structure created from a light absorbing material.



FIG. 8 is a partial cross-sectional view depicting the light management feature enabled as a well structure coated with a light reflecting material.



FIG. 9 is a partial cross-sectional view of the light management feature enabled a well structure coated with a light absorbing material.



FIG. 10 is a partial cross-sectional view depicting the light management feature enabled as a well structure, with emissive elements overcoated with a light absorbing layer.



FIG. 11 is a flowchart illustrating a method for fabricating an emissive display substrate with a light management system.



FIG. 12 is a flowchart illustrating a method for managing the direction of light emitted from an emissive display substrate.





DETAILED DESCRIPTION


FIG. 1 is a partial cross-sectional view of an emissive display substrate with a light management system. The display 100 comprises a first substrate 102 with a first substrate top surface 104. For example, the first substrate 102 may be a transparent material such as glass or plastic, but alternatively the material be a non-transparent plastic, metal, or silicon material. A plurality of emissive element wells 106 exists (one well is shown), with well sidewalls formed from a light blocking material 108. In one simple aspect as shown, the wells 106 are formed directly in the first substrate 102. The light blocking material may be either a light absorbing material or a light reflector material. Some examples of a light absorber material include a black polymer resin, a black photoresist, a material comprising carbon black, or a material comprising graphene oxide. Some examples of a light reflector material include aluminum, titanium, silver, tin, indium, nickel, and gold. Advantageously, these materials are commonly used in thin-film display and integrated circuit (IC) fabrication processes. In one aspect, for example see FIG. 8, the well via surfaces and sidewalls are sloped.



FIG. 2 is a partial cross-sectional view depicting a first variation of the light management system. In this aspect, the light blocking material forms a film layer 108 overlying the first substrate top surface 104. The wells 106 are formed in the light blocking material film layer 108. Although not shown, the light blocking film layer need not necessary be etched to expose the first substrate top surface when the well is formed.



FIG. 3 is a partial cross-sectional view depicting a second variation of the light management system. In this aspect, a transparent second substrate 300 with a top surface 302 overlies the first substrate top surface 104. The wells 106 are formed in the second substrate 300 with well via surfaces 302, and light blocking material sidewalls 108 overlie the well via surfaces. Although not shown, the second substrate need not necessary be etched to expose the first substrate top surface when the well is formed.



FIGS. 4A and 4B are, respectively, partial cross-sectional and plan views related to the second variation of light management system present in FIG. 3. In this aspect, the light blocking material 402 is formed on a bottom surface 400 of each well 106. Note, light blocking material 402 and 108 are typically the same material formed in the same process, but have been given different reference designators for the purpose of clarity. Although not shown, the second substrate need not necessary be etched to expose the first substrate top surface when the well is formed.


If an electrical interface 404 is formed on each well bottom surface 400, as shown in FIG. 4B, the light blocking material 402 on the bottom surface 400 of each well is patterned to avoid the electrical interface formed on the well bottom surface. In this example the well is shown as having a circular shape, but other shapes (e.g., square, rectangular, oval, etc.) are also possible. Although not shown, each well may include an additional electrical interface that would be exposed by the patterning of the light blocking material 402.



FIGS. 5A and 5B are partial cross-sectional views depicting the display light management system subsequent to the addition of emissive elements. In this aspect, the display 100 further comprises emissive elements 500 populating the wells 106. Optionally, as shown in FIG. 5A, if the wells 106 include an electrical interface 404 formed on each well bottom surface 400, the emissive elements 500 each have an electrical contact 502 connected to the electrical interface formed on the well bottom surfaces. In some aspects not shown, the well bottom surface includes two electrical interfaces and the emissive element includes two electrical contacts. Although a second transparent substrate 300 is used in this example, with light blocking sidewalls 108, alternatively, the light blocking sidewalls can be formed from a light blocking film layer, as shown in FIG. 2.


As shown in FIG. 5B, wells 106 are formed in the top surface 504 of second substrate 300. Absorbing type light blocking material 506 overlies the second substrate top surface 504 and forms the well sidewalls. Absorbing type light blocking material 506 is patterned to expose a top surface 508 of each emissive element 500.


The variations presented above describe structural elements employed within a direct emitting emissive element display to control the directionality of the light emitted by the emissive element. One example of an emissive element is a micro light emitting diode (uLED). The display is comprised of a multitude of uLED pixels; each one addressed individually. It is important that the direction of the light emitted by each uLED is controlled to reduce light leakage between pixels to ensure color quality and contrast. The light from each uLED is emitted from all surfaces including the faces and the sides and is thus emitted in directions perpendicular and parallel to the surface of the display substrate. The light emitted along the direction nominally parallel to the surface would propagate to adjacent pixels without a structure to reflect or absorb this light. These structural elements are either an absorbing or reflecting type. Reflective materials that can be used include metals already incorporated into the backplane manufacturing including aluminum, titanium, silver, tin, indium, nickel, gold or other reflective metals. Absorptive materials include black polymer resin and black photoresist materials containing carbon black or graphene oxide.



FIG. 6 is a partial cross-sectional diagram of the light management feature enabled as a well structure created from a reflective material. Shown are wells 106-0 and 106-n. This reflective material could be metal for example. A substrate 102 such as glass is supplied onto which a metal electrode may be patterned (not shown) by standard photolithographic methods. A reflective well layer 600 is deposited several microns in thickness with exact thickness determined by the thickness of the emissive elements (500-0 and 500-n). The reflective well layer 600 is patterned by photolithographic methods forming wells 106-0 and 106-n. Emissive elements 500-0 and 500-n may be fluidically assembled into the well structure, and if electrical interfaces exist on the well bottom layer (not shown), they are connected to the emissive elements through a solder process.



FIG. 7 is a partial cross-sectional view depicting a light management feature enabled as a well structure created from a light absorbing material. This absorbing material could be black matrix material for example. A substrate 102 such as glass is supplied onto which a metal electrode (not shown) may be patterned by standard photolithographic methods. An absorbing well layer 700 is deposited several microns in thickness with the exact thickness determined by the thickness of the emissive element. The absorbing well layer 700 is patterned by photolithographic methods to form wells 106-0 and 106-n. Emissive elements 500-0 and 500-n are fluidically assembled into the well structures 106-0 and 106-n, respectively, and if electrical interfaces exist on the well bottom layer (not shown), they are connected to the emissive elements through a solder process.



FIG. 8 is a partial cross-sectional view depicting the light management feature enabled as a well structure coated with a light reflecting material. This reflecting material could be a metal for example. A substrate such as glass 102 is supplied onto which a metal electrode (not shown) may be patterned by standard photolithographic methods. Well pattern layer 300, typically made from a transparent material, is deposited to be several microns in thickness with the exact thickness determined by the thickness of the emissive element. The well pattern layer 300 is patterned by photolithographic methods to form wells 106-0 and 106-n. A reflective coating 800-0 and 800-n is respectively deposited on well structures 106-0 and 106-n through an evaporation or sputter process for example. The reflective coatings 800-0 and 800-n are patterned by photolithographic methods. Emissive elements 500-0 and 500-n are fluidlically assembled into the well structures 106-0 and 106-n, and if electrical interfaces exist on the well bottom layer (not shown), they are connected to the emissive elements through a solder process.



FIG. 9 is a partial cross-sectional view of the light management feature enabled a well structure coated with a light absorbing material. This absorbing material may be a black matrix material for example. A substrate 102 such as glass is supplied onto which a metal electrode (not shown) is optionally patterned by standard photolithographic methods. A transparent well pattern layer 300 is deposited several microns in thickness with the exact thickness determined by the thickness of the emissive element. The well layer 300 is patterned by photolithographic methods to form wells 106-0 and 106-n. An absorbing coating 900-0 and 900-n is deposited, respectively on well structures 106-0 and 106-n. The absorbing coating is patterned by photolithographic methods. Emissive elements 500-0 and 500-n are fluidically assembled, respectively, into the well structures 106-0 and 106-n, and if electrical interfaces exist on the well bottom layer (not shown), they are connected to the emissive elements through a solder process.



FIG. 10 is a partial cross-sectional view depicting the light management feature enabled as a well structure, with emissive elements overcoated with a light absorbing layer. This absorbing material 1000 can be a black matrix material for example. A substrate 102 such as glass is supplied onto which a metal electrode (not shown) is optionally patterned by standard photolithographic methods. A transparent well pattern layer 300 is deposited several microns in thickness with the exact thickness determined by the thickness of the emissive element. The well layer 300 is patterned by photolithographic methods to form wells 106-0 and 106-n. Emissive elements 500-0 and 500-n are fluidically assembled, respectively into the well structures 106-0 and 106-n, and if electrical interfaces exist on the well bottom layer (not shown), they are connected to the emissive elements through a solder process. The absorbing coating 1000 is deposited on a well structure. The absorbing coating 1000 is patterned by photolithographic methods.



FIG. 11 is a flowchart illustrating a method for fabricating an emissive display substrate with a light management system. Although the method is depicted as a sequence of numbered steps for clarity, the numbering does not necessarily dictate the order of the steps. It should be understood that some of these steps may be skipped, performed in parallel, or performed without the requirement of maintaining a strict order of sequence. Generally however, the method follows the numeric order of the depicted steps. The method starts at Step 1100.


Step 1102 provides a transparent first substrate with a top surface. Step 1104 forms a plurality of emissive element wells, and Step 1106 forms well sidewalls from a light blocking material. As noted above, the blocking material may be a light absorbing material such as a black polymer resin, a black photoresist, a material comprising carbon black, or a material comprising graphene oxide. Otherwise, the light blocking material is a light reflector material such as aluminum, titanium, silver, tin, indium, nickel, and gold. In one aspect, the wells are formed directly in the first substrate. In another aspect, forming the emissive element wells in Step 1104 includes forming wells with sloped via surfaces, and forming well sidewalls in Step 1106 includes forming sloped well sidewalls.


In one aspect, Step 1103a forms a light blocking material film layer overlying the first substrate top surface. Then, forming well sidewalls in Step 1106 includes forming the emissive element sidewalls in the light blocking material film layer. In this aspect, Step 1108 may use a fluidic assembly process to populate the emissive element wells with emissive elements. Alternatively, a pick-and-place process can be used to populate the wells.


In another aspect, Step 1103b forms a transparent second substrate overlying the first substrate top surface. Then, forming the emissive element wells in Step 1104 includes forming the emissive element wells in the second substrate with via surfaces, and forming the well sidewalls in Step 1106 includes depositing the light blocking material overlying the well via surfaces. Optionally, Step 1106 may form the light blocking material on a bottom surface of each well. If Step 1102 provides the first substrate with electrical interfaces formed on the first substrate top surface, then forming the emissive element wells in Step 1104 includes etching the second substrate to expose an electrical interface formed on each well bottom surface. Similarly, forming the light blocking material on the bottom surface of each well in Step 1106 would then include patterning the light blocking material to avoid the electrical interface formed on the well bottom surface. In this aspect, Step 1108 uses a fluidic assembly process to populate the emissive element wells with emissive elements. Alternatively, a pick-and-place process can be used to populate the wells.


In another aspect using the transparent second substrate, Step 1105 uses a fluidic assembly process to populate the wells with emissive elements prior to depositing the light blocking material. Then, forming well sidewalls from a light blocking material includes substeps. Step 1106a conformally deposits a light absorbing blocking material overlying the second substrate top surface and filling the wells, and Step 1106b etches the light absorbing blocking material to expose the emissive elements.



FIG. 12 is a flowchart illustrating a method for managing the direction of light emitted from an emissive display substrate. The method begins at Step 1200. Step 1202 provides a transparent substrate and a plurality of emissive element wells. Step 1204 forms light blocking material well sidewalls and Step 1206 populates the wells with emissive elements using a fluidic (or pick-and-place) assembly process. As noted in the explanation of FIG. 11, in some aspects Step 1206 may be performed before Step 1204. In response to the light blocking material sidewalls, Step 1208 prevents the propagation of light between adjacent wells.


An emissive display light management system has been provided. Examples of particular material, circuit layouts, and process steps have been presented to illustrate the invention. However, the invention is not limited to merely these examples. Other variations and embodiments of the invention will occur to those skilled in the art.

Claims
  • 1. A method for fabricating an emissive display substrate with a light management system, the method comprising: providing a transparent first substrate with a top surface;forming a transparent second substrate overlying the first substrate top surface;forming a plurality of emissive element wells in the second substrate with via surfaces;depositing a light blocking material overlying the well via surfaces:forming emissive element well sidewalls from the light blocking material; and,using a fluidic assembly process to populate the wells with emissive elements.
  • 2. The method of claim 1 wherein the light blocking material is selected from the group consisting of a light absorbing material and a light reflector material.
  • 3. The method of claim 2 wherein the light absorber material is selected from a group consisting of a black polymer resin, a black photoresist, a material comprising carbon black, and a material comprising graphene oxide.
  • 4. The method of claim 2 wherein the light reflector material is selected from a group consisting of aluminum, titanium, silver, tin, indium, nickel, and gold.
  • 5. The method of claim 1 wherein providing the first substrate includes providing a substrate with a first plurality of electrical interfaces formed on the top surface; and, wherein forming the emissive element wells includes etching the second substrate to expose the first plurality of electrical interfaces, forming an electrical interface on each well bottom surface.
  • 6. The method of claim 5 wherein forming well sidewalls from the light blocking material includes: conformally depositing the light absorbing blocking material overlying the second substrate top surface and filling the wells;patterning the light blocking material to avoid the electrical interface formed on the well bottom surface; and,etching the light absorbing blocking material to expose the electric interface on each well bottom surface.
  • 7. The method of claim 1 wherein forming the emissive element wells includes forming emissive wells with sloped via surfaces; and, wherein forming emissive element well sidewalls includes forming sloped emissive element well sidewalls.
  • 8. A method for managing the direction of light emitted from an emissive display substrate, the method comprising: providing a transparent substrate and a plurality of emissive element wells;forming light blocking material well sidewalls;populating the wells with emissive elements using a fluidic assembly process; and,in response to the light blocking material sidewalls, preventing the propagation of light between adjacent wells.
  • 9. A method for fabricating an emissive display substrate with a light management system, the method comprising: providing a transparent first substrate with a top surface;forming a light blocking material film layer overlying the first substrate top surface;forming a plurality of emissive element wells in the light blocking material film layer; and,using a fluidic assembly process, populating the emissive element wells with emissive elements.
  • 10. The method of claim 9 wherein the light blocking material is selected from the group consisting of a light absorbing material and a light reflector material.
  • 11. The method of claim 10 wherein the light absorber material is selected from a group consisting of a black polymer resin, a black photoresist, a material comprising carbon black, and a material comprising graphene oxide.
  • 12. The method of claim 10 wherein the light reflector material is selected from a group consisting of aluminum, titanium, silver, tin, indium, nickel, and gold.
  • 13. The method of claim 9 wherein forming the plurality of emissive element wells in the light blocking material film layer includes forming the light blocking material on a bottom surface of each well.
  • 14. The method of claim 13 wherein providing the first substrate includes providing a substrate with a plurality of electrical interfaces formed on the top surface; the method further comprising:patterning the light blocking material to avoid the electrical interface formed on the well bottom surface; and,etching the light blocking film layer to expose the first plurality of electrical interfaces, forming an electrical interface on each well bottom surface.
  • 15. The method of claim 9 wherein forming the emissive element wells includes forming emissive element wells with sloped via surfaces; and, wherein forming emissive element well sidewalls includes forming sloped emissive element well sidewalls.
  • 16. A method for fabricating an emissive display substrate with a light management system, the method comprising: providing a transparent first substrate with a top surface;forming emissive element wells in the first substrate with via surfaces;depositing a light blocking material overlying the well via surfaces; and,using a fluidic assembly process, populating the emissive element wells with emissive elements.
  • 17. The method of claim 16 wherein the light blocking material is selected from the group consisting of a light absorbing material and a light reflector material.
  • 18. The method of claim 17 wherein the light absorber material is selected from a group consisting of a black polymer resin, a black photoresist, a material comprising carbon black, and a material comprising graphene oxide.
  • 19. The method of claim 17 wherein the light reflector material is selected from a group consisting of aluminum, titanium, silver, tin, indium, nickel, and gold.
  • 20. The method of claim 16 further comprising: forming the light blocking material on a bottom surface of each well.
  • 21. The method of claim 16 wherein depositing the light blocking material overlying the well via surfaces includes: conformally depositing a light blocking material film layer;patterning the light blocking material to avoid an electrical interface formed on each well bottom surface; and,etching the light blocking film layer to expose the first plurality of electrical interfaces, forming an electrical interface on each well bottom surface.
  • 22. The method of claim 16 wherein forming the emissive element wells includes forming emissive element wells with sloped via surfaces; and, wherein forming emissive element well sidewalls includes forming sloped emissive element well sidewalls.
  • 23. A method for fabricating an emissive display substrate with a light management system, the method comprising: providing a transparent substrate with a top surface;forming a plurality of emissive element wells in the substrate top surface with via surfaces;using a fluidic assembly process to populate the wells with emissive elements;subsequent to populating the wells with the emissive elements, depositing a light blocking material overlying the substrate top surface: and,pattern etching the light blocking material to expose emissive element top surfaces.
  • 24. The method of claim 23 wherein depositing the light blocking material includes forming emissive element well sidewalls from the light blocking material.
US Referenced Citations (156)
Number Name Date Kind
5545291 Smith et al. Aug 1996 A
5594463 Sakamoto Jan 1997 A
5824186 Smith et al. Oct 1998 A
5904545 Smith et al. May 1999 A
6274508 Jacobsen et al. Aug 2001 B1
6274890 Oshio Aug 2001 B1
6281038 Jacobsen et al. Aug 2001 B1
6316278 Jacobsen et al. Nov 2001 B1
6417025 Gengel Jul 2002 B1
6420266 Smith et al. Jul 2002 B1
6468638 Jacobsen et al. Oct 2002 B2
6479395 Smith et al. Nov 2002 B1
6527964 Smith et al. Mar 2003 B1
6555408 Jacobsen et al. Apr 2003 B1
6566744 Gengel May 2003 B2
6586338 Smith et al. Jul 2003 B2
6590346 Hadley et al. Jul 2003 B1
6606247 Credelle et al. Aug 2003 B2
6613610 Iwafuchi et al. Sep 2003 B2
6618030 Kane et al. Sep 2003 B2
6623579 Smith et al. Sep 2003 B1
6657289 Craig et al. Dec 2003 B1
6665044 Jacobsen et al. Dec 2003 B1
6683663 Hadley et al. Jan 2004 B1
6687987 Mayer et al. Feb 2004 B2
6723576 Nozawa et al. Apr 2004 B2
6731353 Credelle et al. May 2004 B1
6780696 Schatz Aug 2004 B1
6816380 Credelle et al. Nov 2004 B2
6825499 Nakajima et al. Nov 2004 B2
6850312 Jacobsen et al. Feb 2005 B2
6863219 Jacobsen et al. Mar 2005 B1
6870190 Okuyama et al. Mar 2005 B2
6919225 Craig et al. Jul 2005 B2
6927085 Hadley et al. Aug 2005 B2
6980184 Stewart et al. Dec 2005 B1
6984927 Tomoda et al. Jan 2006 B2
6985361 Credelle et al. Jan 2006 B2
7046328 Jacobsen et al. May 2006 B2
7049207 Tomoda May 2006 B2
7049227 Tomoda et al. May 2006 B2
7060542 Nakajima et al. Jun 2006 B2
7070851 Jacobsen et al. Jul 2006 B2
7080444 Craig et al. Jul 2006 B1
7087934 Oohata et al. Aug 2006 B2
7101502 Smith et al. Sep 2006 B2
7113250 Jacobsen et al. Sep 2006 B2
7122826 Okuyama et al. Oct 2006 B2
7129514 Okuyama et al. Oct 2006 B2
7141176 Smith et al. Nov 2006 B1
7172789 Smith et al. Feb 2007 B2
7179210 Soukeras Feb 2007 B2
7199527 Holman Apr 2007 B2
7244326 Craig et al. Jul 2007 B2
7250314 Nakajima et al. Jul 2007 B2
7250320 Okuyama et al. Jul 2007 B2
7260882 Credelle et al. Aug 2007 B2
7288432 Jacobsen et al. Oct 2007 B2
7317211 Watanabe et al. Jan 2008 B2
7317435 Hsueh Jan 2008 B2
7321159 Schatz Jan 2008 B2
7353598 Craig et al. Apr 2008 B2
7417306 Jacobsen et al. Aug 2008 B1
7425467 Jacobsen et al. Sep 2008 B2
7452748 Craig et al. Nov 2008 B1
7500610 Hadley et al. Mar 2009 B1
7531218 Smith et al. May 2009 B2
7542301 Liong et al. Jun 2009 B1
7561221 Jacobsen et al. Jul 2009 B2
7564064 Oohata et al. Jul 2009 B2
7572649 Kanemitsu et al. Aug 2009 B2
7573194 Doi et al. Aug 2009 B2
7576656 Craig et al. Aug 2009 B2
7589355 Tomoda et al. Sep 2009 B2
7615479 Craig et al. Nov 2009 B1
7619598 Pulvirenti et al. Nov 2009 B2
7662008 Hillis et al. Feb 2010 B2
7763901 Tomoda Jul 2010 B2
7774929 Jacobs Aug 2010 B2
7795049 Watanabe et al. Sep 2010 B2
7795629 Watanabe et al. Sep 2010 B2
7838410 Hirao et al. Nov 2010 B2
7880184 Iwafuchi et al. Feb 2011 B2
7884543 Doi Feb 2011 B2
7888690 Iwafuchi et al. Feb 2011 B2
7931063 Craig et al. Apr 2011 B2
7968474 Martin et al. Jun 2011 B2
7977130 Hillis et al. Jul 2011 B2
8101457 Tomoda et al. Jan 2012 B2
8222659 Tomoda Jul 2012 B2
8232640 Tomoda et al. Jul 2012 B2
8252164 Martin et al. Aug 2012 B2
8257538 Doi et al. Sep 2012 B2
8284120 Hillis et al. Oct 2012 B2
8300007 Hillis et al. Oct 2012 B2
8312619 Chow et al. Nov 2012 B2
8333860 Bibl et al. Dec 2012 B1
8349116 Bibl et al. Jan 2013 B1
8361268 Mizuno et al. Jan 2013 B2
8361297 Mayer et al. Jan 2013 B2
8379003 Kawaguchi et al. Feb 2013 B2
8382544 Hillis et al. Feb 2013 B2
8383506 Golda et al. Feb 2013 B1
8384116 Ohtorii et al. Feb 2013 B2
8390537 Hillis et al. Mar 2013 B2
8409886 Iwafuchi et al. Apr 2013 B2
8415767 Golda et al. Apr 2013 B1
8415768 Golda et al. Apr 2013 B1
8415771 Golda et al. Apr 2013 B1
8415879 Lowenthal et al. Apr 2013 B2
8426227 Bibl et al. Apr 2013 B1
8476826 Oohata et al. Jul 2013 B2
8518204 Hu et al. Aug 2013 B2
8552436 Bibl et al. Oct 2013 B2
8558243 Bibl et al. Oct 2013 B2
8569115 Golda et al. Oct 2013 B1
8570482 Hillis et al. Oct 2013 B2
8573469 Hu et al. Nov 2013 B2
8628994 Tomoda Jan 2014 B2
8646505 Bibl et al. Feb 2014 B2
8648328 Crowder et al. Feb 2014 B2
8669703 Hillis et al. Mar 2014 B2
8683416 Trivedi et al. Mar 2014 B1
8685774 Crowder et al. Apr 2014 B2
8686447 Tomoda et al. Apr 2014 B2
8686542 Golda et al. Apr 2014 B2
8711063 Hillis et al. Apr 2014 B2
8789573 Bibl et al. Jul 2014 B2
8809126 Lowenthal et al. Aug 2014 B2
8846457 Lowenthal et al. Sep 2014 B2
8906713 Rettke Dec 2014 B2
9240397 Bibl et al. Jan 2016 B2
9252375 Bibl et al. Feb 2016 B2
9269322 Nathan et al. Feb 2016 B2
9293476 Bedell et al. Mar 2016 B2
9305807 Whiting et al. Apr 2016 B2
9318475 Bibl et al. Apr 2016 B2
9343448 Sakariya et al. May 2016 B2
20020153606 Gengel Oct 2002 A1
20050206585 Stewart et al. Sep 2005 A1
20050233504 Doi et al. Oct 2005 A1
20100186883 Tomoda Jul 2010 A1
20110266039 Tomoda Nov 2011 A1
20110273410 Park et al. Nov 2011 A1
20120169786 Okuyama et al. Jul 2012 A1
20120218318 Hirao et al. Aug 2012 A1
20130126098 Bibl et al. May 2013 A1
20130126827 Bibl et al. May 2013 A1
20130128585 Bibl et al. May 2013 A1
20130210194 Bibl et al. Aug 2013 A1
20140008691 Tomoda et al. Jan 2014 A1
20140048909 Golda et al. Feb 2014 A1
20140084482 Hu et al. Mar 2014 A1
20150179877 Hu et al. Jun 2015 A1
20150263066 Hu et al. Sep 2015 A1
20160086534 Seo et al. Mar 2016 A1
Non-Patent Literature Citations (3)
Entry
Bui, Thanh Son, et al. “High optical density and low dielectric constant black matrix containing graphene oxide and carbon black . . . ” Displays 34.3 (2013): 192-199.
Den Boer, Willem. Active matrix liquid crystal displays: fundamentals and applications. Elsevier, 2011.
U.S. Appl. No. 14/305,295, pending, LED Display Driving Circuits.
Related Publications (1)
Number Date Country
20180145057 A1 May 2018 US
Continuation in Parts (10)
Number Date Country
Parent 15410195 Jan 2017 US
Child 15872749 US
Parent 15410001 Jan 2017 US
Child 15410195 US
Parent 14749569 Jun 2015 US
Child 15410001 US
Parent 15221571 Jul 2016 US
Child 14749569 US
Parent 15197266 Jun 2016 US
Child 15221571 US
Parent 15190813 Jun 2016 US
Child 15197266 US
Parent 15158556 May 2016 US
Child 15190813 US
Parent 15266796 Sep 2016 US
Child 15158556 US
Parent 14680618 Apr 2015 US
Child 15266796 US
Parent 14530230 Oct 2014 US
Child 14680618 US