Aspects of the invention described in this patent application relate to and/or may be used in conjunction with aspects of the inventions described in: (a) U.S. patent application Ser. No. 10/839,695 filed May 6, 2004 (entitled “Article of Apparel Utilizing Zoned Venting and/or Other Body Cooling Features or Methods”) and/or (b) U.S. patent application Ser. No. 11/059,357 filed Feb. 17, 2005 (entitled “Article of Apparel Utilizing Targeted Venting or Heat Retention Zones that may be Defined Based on Thermal Profiles”). These earlier applications are entirely incorporated herein by reference.
Aspects of the present invention generally relate to fabrics and garments that include a three dimensional structure, e.g., to improve a body's evaporative cooling processes to thereby help keep the wearer cool or to improve the thermal insulative properties of the fabric or garment to thereby help keep the wearer warm.
One of the biggest challenges athletes face when competing or training, particularly in moderate to hot temperature conditions, is heat. Not only must the athlete cope with heat from the external environment, but he/she also must cope with heat generated within his/her own body as a result of physical exertion.
Substantial heat may be generated in a person's body as a result of physical activity and exertion. In general, a body's core temperature rises with increased physical activity. Typically, less than about 25% of the energy created during physical activity is converted into work energy (e.g., energy used to move the body and/or resist an applied force). The remaining 75%+ of the created energy typically must be dissipated as released heat. The human body's most effective mechanism for dealing with excess heat is through evaporative cooling. When a person's core body temperature rises to a certain level, the body will start to sweat. When this liquid sweat evaporates, the physical conversion of the liquid to its corresponding gas form (i.e., the drying) draws heat from the nearest heat source. In the case of sweat, the nearest heat source is the skin. In this manner, sweating cools a person due to the evaporative cooling action as the sweat dries. This evaporation of sweat is dependent upon various factors, including, for example, the water vapor pressure (or relative humidity) of the air in contact with the skin. Air movement also is an important factor. For example, ambient air gains humidity as it picks up moisture during evaporation of sweat. In the absence of adequate air movement (ventilation), this humidified air becomes trapped in areas surrounding the skin, thus inhibiting the cooling potentially available through the continued evaporation of sweat.
Failure to properly release and move heat away from the body during exercise or physical exertion in a warm environment can cause a dangerous rise in a person's body temperature, potentially resulting in adverse health consequences, such as heat exhaustion or heat stroke.
Various known garment features are available and used to assist athletes in coping with excess heat generated as a result of physical exertion. For example, mesh venting has been used in garments to help dissipate heat. In sports apparel, it is common to see underarm vents provided by very small or closed-hole meshes, or by small eyelets provided through the fabric. While helpful, such meshes or vents typically are too small or too impermeable to provide adequate cooling effects.
Adequate cooling is not the only body temperature control issue that athletes and others face. The human body also may suffer adverse effects when exposed to cool or cold environmental conditions, particularly when exposed to such conditions for lengthy time periods. While people can simply add another layer of clothing to help stave off the adverse effects of a cold environment in some situations, the addition of clothing layers can adversely impact the wearer's ability to move, particularly when engaged in exercise, athletic events, or other activities requiring movement. The additional weight, bulk, and/or wind resistance resulting from the additional clothing also can adversely impact athletic performance. The adverse impacts on performance and comfort may deter some users from adequately dressing to protect themselves from the cold.
Some example aspects of the present invention relate to fabrics and/or garments that have “dimensionalized” or three dimensional fabric structures. As more specific examples, fabrics according to at least some examples of this invention include: (a) a fabric material forming a fabric base level (e.g., corresponding to the fabric's major surface(s)); and (b) a plurality of self-standing fabric surface modifying elements integrally formed in the fabric material (e.g., by molding, embossing, etc.), wherein at least some of the fabric surface modifying elements define a fabric contact level different from the fabric base level. The fabric surface modifying elements may be formed throughout the fabric structure, or alternatively, they may be formed in one or more discrete portions or regions of the fabric structure. Garments according to at least some examples of this invention may include, for example, a first fabric element formed from a fabric material including fabric surface modifying elements of the types described above. The fabric material and/or the locations of the surface modifying elements in the garment structure may be selected, if desired, to promote better evaporative cooling of the body, such as by providing dimensionalized mesh or other highly permeable fabric along the wearer's spine, along the wearer's sides, and/or at other locations of the body that release substantial heat, e.g., during exercise, exertion, etc. Alternatively, the fabric material and/or the locations of the surface modifying elements in the garment structure may be selected, if desired, to provide improved thermal insulative properties (e.g., air pockets) at desired locations along the wearer's body, e.g., to better hold in heat generated by the wearer's body and resist transfer of cold from the outside. The overall garment structure may be made from multiple pieces of fabric joined together, and any number of these multiple pieces (including all of the pieces) may include fabric having surface modifying elements.
Additional example aspects of this invention relate to methods for forming fabrics and/or garments including “dimensionalized” materials, e.g., fabrics and garments having surface modifying elements, e.g., of the types described above. Methods of producing fabrics according to at least some examples of this invention may include: (a) providing a fabric material (e.g., making the fabric, obtaining it from a commercial vendor, etc.); and (b) forming a plurality of self-standing fabric surface modifying elements in the fabric material, wherein at least some of the fabric surface modifying elements define a fabric contact level that differs from a base level of the fabric material. Any desired manner of forming the fabric surface modifying elements in the fabric may be used without departing from the invention, such as via molding, rolling, embossing, and/or calendering procedures; through stretching or crimping procedures; by applying heat and/or pressure; etc. Example methods of forming garments in accordance with at least some example aspects of this invention may include: (a) providing and/or forming a fabric element including a “dimensionalized” fabric material, e.g., fabrics having surface modifying elements of the types described above; and (b) forming a garment structure including the fabric material (e.g., by sewing and/or other conventional techniques). The fabric surface modifying elements may be formed in the fabric material at any time in the process, e.g., before or after garment formation, as one of the garment formation steps, etc. Any combination of mesh, non-mesh, and/or “dimensionalized” mesh fabrics may be used in an individual garment structure without departing from this invention. Also, the garments may be formed in such a manner so as to provide the fabric surface modifying elements at one or more desired or targeted locations or zones in the garment structure (e.g., along the user's spine and/or sides; at locations that release substantial body heat; etc.).
Various objects, features, and advantages of the present invention will be more readily apparent and more fully understood from the following detailed description, taken in conjunction with the appended drawings, in which:
Various specific examples of the invention are described in detail below in conjunction with the attached drawings.
I. General Description of Aspects of the Invention
A. Fabrics and Garments in Accordance with Example Aspects of this Invention
In general, at least some example aspects of this invention relate to fabrics and garments that have “dimensionalized” structures. Fabrics according to at least some examples of this invention include: (a) a fabric material that defines or forms a fabric base level; and (b) a plurality of self-standing fabric surface modifying elements integrally formed in the fabric material, wherein at least some of the fabric surface modifying elements define a fabric contact level different from the fabric base level. In at least some more specific examples of this invention, the fabric material may define a first major surface and a second major surface opposite the first major surface, and the plurality of self-standing fabric surface modifying elements may include at least first and second self-standing fabric surface modifying elements that extend in a direction from the fabric material's first major surface toward its second major surface, and at least some portions of the fabric material forming the fabric surface modifying elements may extend beyond the second major surface. While the “dimensionalizing” structure may be formed throughout the fabric material structure, alternatively, if desired, it may be formed in one or more discrete portions of the fabric material structure without departing from this invention.
Garments according to at least some examples of this invention may include, for example, a first fabric element formed from a fabric material. This fabric material may include a fabric base level and a plurality of self-standing fabric surface modifying elements integrally formed in the fabric material. At least some of the fabric surface modifying elements may define a fabric contact level different from the fabric base level. Still other garments according to examples of this invention may include fabric having at least first and second self-standing fabric surface modifying elements of the types described above. The fabric including the surface modifying elements may be selected and/or positioned at various locations in the garment structure (e.g., at specially targeted regions or zones), e.g., to promote better cooling of the body, such as along the wearer's spine, along the wearer's sides, etc.; to provide thermal insulative air pockets to better retain heat near the wearer's body and prevent cold transfer from the external environment; etc. The overall garment structure may be made from multiple pieces of fabric joined together. If desired, the fabric material including the surface modifying elements may be joined to other fabric materials that include additional surface modifying elements, or it may be joined with fabric materials not including surface modifying elements without departing from the invention. An individual garment structure may contain any desired number of different pieces of fabric, and optionally any desired number of pieces of fabric material including surface modifying elements formed therein, without departing from this invention.
The surface modifying elements may take on a wide variety of different forms without departing from this invention. For example, the surface modifying elements may be made in any desired size or shape and/or placed in any desired regular, repeating, and/or symmetrical pattern, or placed in a random, non-discernible or overlapping pattern or manner, without departing from this invention. Also, a single garment may have surface modifying elements in a variety of different shapes, sizes, and/or patterns without departing from this invention.
In at least some examples of this invention, at least some of the fabric surface modifying elements may be formed to include at least one wall member extending from the fabric base level toward the fabric contact level (e.g., a wall extending away from the main surface of the fabric, optionally transverse or substantially transverse to the main surface of the fabric, etc.). The fabric surface modifying elements further may include a base wall member extending from the wall member, and this base wall member may at least partially define the fabric contact level (e.g., it may at least partially extend parallel to or substantially parallel to the main surface of the fabric). The base wall member may be substantially smooth or it also may define multiple levels (e.g., by providing an annular base portion that at least partially defines the fabric contact level and a central portion located at a position other than the fabric contact level (e.g., a “raised center” portion)). When formed from a mesh fabric material, the fabric surface modifying elements may be sized, shaped, and arranged such that the wall member and/or the base wall member include at least portions of plural mesh openings of the mesh fabric material.
Fabric surface modifying elements of the types described above may perform a variety of functions. For example, when used in a garment structure for warm or hot environments, the fabric material may be selected to be relatively gas permeable (e.g., mesh or other highly gas permeable fabrics), and the surface modifying elements may help prevent undesired cling to the body (e.g., due to sweat, rain, damp or humid conditions, etc.) and/or provide increased space for air circulation (e.g., as the wearer moves, from wind, etc.). When used in a garment structure for cool or cold environments, the fabric material may be selected to be somewhat less gas permeable, and the surface modifying elements may help provide thermally insulative air pockets that help hold heat near the wearer's body and prevent cold transfer from the external environment. Even when formed for use in cool or cold environments, the fabric material may contain some degree of gas permeability, e.g., sufficient to wick away moisture and provide some breathability, to provide a comfortable fit, etc.
The fabric surface modifying elements may be self-standing, as described above, and they may be integrally formed in the fabric without additional or separate supporting members (e.g., by forming the fabric surface modifying elements in a mold or using a calender, by embossing procedures, by application of heat and/or pressure (akin to forming a crease or pleat in fabrics, e.g., by ironing or pressing techniques, etc.), etc.). In this manner, the fabric surface modifying elements may remain flexible and/or deformable from their original shape (e.g., under an applied force), for example, they may flatten out, compress, fold, collapse, or stretch under an applied force or load. Once deformed, however, fabric surface modifying elements in accordance with at least some examples of this invention will tend to return toward their original shape, e.g., when the applied force or load is removed or reduced in intensity.
The type or characteristics of the fabric, the temperature during molding or embossing, the time of fabric contact with the heated molding or embossing equipment (also called “dwell time”), as well as other processing parameters may be important factors in producing a final fabric or garment structure. For example, if the temperature is too high or the dwell time too long, the fabric may burn, harden (e.g., due to excessive fiber melting, clumping, etc.), or otherwise obtain undesirable characteristics. On the other hand, if the temperature is too low or the dwell time too short, the resulting three dimensional “structure” may not be well formed or well set in the fabric structure (which may cause the fabric to quickly lose its structure, e.g., during routine use, laundering, etc.). Those skilled in the art will be capable of determining appropriate dwell times, temperatures, and/or other embossing or molding conditions for a given fabric material through the use of routine experimentation.
B. Methods of Making Fabrics and Garments in Accordance with Example Aspects of this Invention
Additional example aspects of this invention relate to methods for forming fabrics and garments including “dimensionalized” structures, e.g., fabrics and garments including fabric surface modifying elements of the types described above. Methods of producing fabrics according to at least some examples of this invention may include: (a) providing a fabric material (e.g., making the fabric, obtaining it from a commercial vendor, etc.); and (b) forming a plurality of self-standing fabric surface modifying elements in the fabric material, wherein at least some of the fabric surface modifying elements form or define a fabric contact level that differs from a base level of the fabric material. Any desired manner of forming the fabric surface modifying elements in the fabric may be used without departing from the invention. For example, the fabric surface modifying elements may be formed in a mold, using rollers or a calender device, by embossing, through stretching or crimping methods, and the like. If desired, heat and/or pressure may be applied to the fabric material, optionally in combination with one or more of the various techniques described above, to form the self-standings fabric surface modifying elements (akin to forming creases or pleats in fabric). While the “dimensionalizing” structure may be formed throughout the fabric structure, if desired, it also may be formed in one or more discrete portions of the fabric structure without departing from this invention.
Still additional aspects of this invention relate to methods for forming garments that include a “dimensionalized” material (e.g., mesh or other materials with surface modifying elements of the various types described above). Such methods may include providing a first fabric element of a fabric material. The fabric material may be formed so as to integrally include a plurality of self-standing fabric surface modifying elements, wherein at least some of the fabric surface modifying elements form or define a fabric contact level that differs from a base level of the fabric material. This fabric element is formed as at least part of a garment structure. The fabric surface modifying elements may be formed in the fabric material at any time in the process, e.g., before, during, or after garment formation.
The fabric material may be provided for use in the garment forming process, if desired, by forming the fabric to include surface modifying elements, e.g., in the manner(s) described above. Alternatively, if desired, one could obtain fabric including self-standing fabric surface modifying elements formed therein from another source (e.g., produced by a vendor, etc.). The garment structure “forming” step may be accomplished in various different manners without departing from the invention, including by conventional garment forming techniques known and used in the art. For example, the garment may be produced by sewing multiple pieces of fabric together, wherein one or more of the various fabric pieces include a “dimensionalized” structure. Any combination of “dimensionalized” and “non-dimensionalized” fabrics may be used in an individual garment structure without departing from this invention. Also, the garments may be formed in such a manner so as to provide the fabric surface modifying elements at one or more desired or targeted locations in the garment structure (e.g., along the user's spine, sides, etc.).
In the same manner as described above, the surface modifying elements may be provided and/or formed in many desired forms without departing from this invention. For example, the surface modifying elements may be provided and/or formed in any desired size or shape; in any desired regular, repeating, and/or symmetrical pattern; and/or in random, non-discernible, and/or overlapping patterns or manners, without departing from this invention. Also, a single garment structure may formed so as to include surface modifying elements in a variety of different shapes, sizes, and/or patterns without departing from this invention.
Specific examples of the invention are described in more detail below. The reader should understand that these specific examples are set forth merely to illustrate examples of the invention, and they should not be construed as limiting the invention.
II. Specific Examples of the Invention
The figures in this application illustrate various examples of fabrics and/or garment structures in accordance with this invention. When the same reference number appears in more than one drawing, that reference number is used consistently in this specification and the drawings to refer to the same part or element throughout.
Also, the surface level modifying elements may be separated from one another by any desired distance without departing from this invention, e.g., depending on the size, shape, and/or dimensions of the individual surface level modifying elements, desired aesthetics, anticipated use, etc. As some more specific examples, if desired, the center-to-center distance between surface level modifying elements may be at least 15 mm, or even at least 20 mm or 25 mm, without departing from this invention. Also, if desired, the center-to-center distance may be different in one dimension of the fabric as compared to another dimension. The center-to-center distances and/or directions also may change and vary within an individual piece of fabric.
The surface level modifying elements 108a and 108b of this example structure 100 include at least one wall member 110 extending from the fabric base surface level (e.g., in a generally transverse direction away from the base surface level) and a base wall 112 generally located below the level of the fabric base surface level. The base wall 112, if desired, may extend generally parallel to the fabric base surface level. Alternatively, if desired, the base wall 112 itself may form or define multiple different levels, such as by providing a raised central portion, as will be described in more detail below. Notably, as illustrated in
Through structures of the types described above, the surface level modifying elements 108a and 108b establish or define a fabric contact surface or level located below the base surface level of the fabric material 100. This contact surface or level may be used to help hold at least some portions of the fabric material 100 (e.g., the majority of the fabric material 100) up and off the wearer's body 102, thereby reducing “cling” of the fabric material 100 to the wearer's body, improving air flow around and against the wearer's body, and improving or maximizing evaporative cooling. Alternatively, in some examples, this contact surface or level may be used to provide a thermally insulative partial layer of heated air within the fabric or garment structure, to help keep the wearer warm in cold environments.
Through wearer movement, wind, and/or ambient air movement, air currents 116 will contact the exterior surface 106a of the mesh fabric material 100. The mesh openings 104 in the fabric material 100, other openings, and/or the general permeability of the fabric material 100, will allow at least some portion of the air currents 116 to pass to the interior of the garment, as illustrated by the arrows identified by reference number 118 in
The fabric structure 300, including fabric surface modifying elements 306 having raised central portions 314, has added advantageous properties in that a very low percentage of the fabric material 300 may directly contact the wearer's skin 102, thereby providing additional room for air circulation and/or less fabric “cling” to the wearer's body 102. The raised central portions 314 also can help provide additional structural “stiffness” and more stability to the overall fabric surface modifying elements 306, making them less likely to collapse or turn inside-out and making it somewhat less likely that the fabric base surface 302b will bow inward and contact the wearer's skin 102 in the area between adjacent fabric surface modifying elements 306. Nonetheless, the fabric material 300 may remain relatively soft and flexible, e.g., such that in some instances and/or at least at some times, the major surface 302b of the fabric material 300 may contact the wearer's body 102 in areas between surface level modifying elements 306.
Of course, the fabric surface modifying elements 306 may be of any desired size, shape, and/or arrangement without departing from this invention, e.g., in the manners described above. Also, the raised central portion 314 may have any desired size, shape, and configuration without departing from the invention. Furthermore, if desired, the raised central portion 314 may be shaped differently from the general outer or exterior shape of the fabric surface modifying element 306 in which it sits (for example, if desired, the raised central portion 314 inside the circular annular ring portion 312 may be square, elliptical, star-shaped, triangular; it may include formed letters, numbers, logos, or symbols; etc.). Additionally, the raised central portion 314 may extend back toward the fabric base level to any desired degree without departing from the invention, including, if desired, beyond one or both of the major surfaces 302a and 302b. Different sizes and shapes of the various fabric surface modifying elements 306 and/or raised central portions 314 may be provided in a single piece of fabric material 300 without departing from this invention. Additionally, the exterior shape of the surface modifying element 306 may include any desired shapes, such as letters, numbers, logos, symbols, etc.
Alternatively, as described above, the structure of
As noted above, the garment 400 may include one or more fabric panels 402, 404, and/or 406, and these panels 402, 404, and/or 406 may include surface level modifying elements 408, as illustrated in the figure and described above. The material 410 in the areas between the illustrated panels 402, 404, and 406 may be one or more individual pieces of any desired or type of material without departing from the invention. Additionally, if desired, all or any desired parts of the garment 400 may be made of a mesh material, optionally the same material as (or similar material to) that used in panels 402, 404, and/or 406. As still another possible option, all or a large part of the garment 400 may be made a material including surface modifying elements 408 of the types shown in
If desired, as illustrated in
The rise in core body temperature during exercise or exertion when wearing an example garment in accordance with at least some examples of the invention may be somewhat slowed or reduced (e.g., between about 0.2° F. to 0.5° F. lower or more) as compared to exercise under similar conditions wearing garments with other types of venting and/or as compared to exercise under similar conditions wearing unvented garments. Although this temperature decrease may be meaningless or minimal to the athlete who is merely “warm,” an increase of even a few tenths of a degree can be very distressing to the athlete who is approaching his/her limit of heat tolerance.
Garments in accordance with examples of the present invention may be made from any desired material(s) without departing from the invention, including from conventional materials known and used in the art. In at least some examples of the invention, the fabric material making up the portions of the garment outside the “dimensionalized” panels (if any) may be a non-mesh material (or not processed to include mesh openings and/or containing fewer mesh openings). The garment portions other than the portions including the “dimensionalized” fabric zones, if any, may make up a majority of the garment structure and/or may cover a majority of the upper torso and/or the lower torso of the wearer.
The entire garment may be made from a single type of material (and even from a single piece of material), in at least some examples of the invention, but the material provided in at least the “dimensionalized” zones of the garment may be processed or otherwise altered in some manner to increase its air permeability, if desired. Such processing may include, for example: laser treatments (to perforate the material and/or provide a mesh structure); calendering, rolling, and/or other physical treatments to perforate the material and/or provide a mesh structure; stretching the fabric and/or weave (to increase inter-fiber distance); and the like.
Examples of suitable materials for garment structures in accordance with the invention include both natural and synthetic materials and mixtures thereof, e.g., depending on the desired degree of gas permeability, whether used in hot or cold environments, etc. More specific examples of suitable natural materials include: leathers, cotton materials, wool materials, fleece materials, silk materials, and the like. More specific examples of synthetic materials include: polyesters, vinyls, nylons, rubbers, spandex, polyester microfibers, polyester microfiber/cotton blends, polyester microfiber/cotton/spandex blends, and the like. In some more specific examples, apparel in accordance with at least some examples of this invention may be made from or include high performance sweat management materials (e.g., thin, lightweight fabrics made from or containing polyester microfibers, polyester microfiber/cotton blends, polyester microfiber/cotton/spandex blends, polyester/spandex blends, and the like), such as “Sphere Dry” polyester knit material and/or a Dri-FIT polyester material, e.g., as included in various commercial products available from NIKE, Inc., of Beaverton, Oreg. The garment material may be knitted, woven, and/or formed or constructed in any desired manner, including in conventional manners known and used in the art.
Of course, many variations in the garment structure and/or construction are possible without departing from the invention.
The “dimensionalized” zones or regions in a garment structure are not limited to zones or regions of any particular shapes and/or sizes.
Garments other than jersey or T-shirt type garments may be provided with “dimensionalized” structures without departing from this invention.
Of course, any change or pattern of change in surface modifying element size, shape, depth, height, or orientation features may take place in a given fabric or garment structure without departing from this invention.
The example garment structure 1000 of
A wide variety of different shapes of fabric surface modifying elements also may be provided in a fabric structure without departing from this invention.
While the examples of
Also, while the specific example structures above have been described primarily in terms of garments and fabrics made from mesh or other highly gas permeable fabrics, those skilled in the art will understand that the same surface modifying elements and arrangements may be used to provide cool or cold weather fabrics and garments. This can be accomplished, for example, by providing a heavier fabric (e.g., fleece or wool fabrics, etc.) and/or a less gas permeable fabric, and forming the surface modifying elements therein. In this manner, the surface modifying elements will help hold a layer of thermally insulative air between the fabric and the wearer's body, which can help keep the cold air out and/or keep the warm air near the wearer in cool or cold conditions without adding the weight, bulk, and/or wind resistance of additional clothing layers. The fabric material may remain sufficiently gas permeable such that the fabric retains adequate breathability and/or wicks away moisture while still providing heat insulating properties.
Any way of making fabric including surface modifying elements of the types described above may be used without departing from this invention. In at least some examples of this invention, the fabric material will be formed to include surface modifying elements by embossing and/or molding techniques, as opposed to forming the surface modifying elements by attempting to directly weave or knit surface modifying structures into the overall fabric or garment structure. As one more specific example, as generally illustrated in
Also, the molding step as described above may take place at any desired time, such as before the fabric 1400 is made part of a garment structure, after the fabric 1400 is included in a garment structure, and/or as part of a garment forming process, without departing from this invention. Any desired size or shape mold also may be used without departing from this invention. The mold also may stretch the fabric somewhat, e.g., in the areas for the surface modifying elements, which can increase inter-fiber distance and also increase gas permeability of the fabric in these regions.
Also, the fabric structure modifying element providing step(s) may take place, for example, before the fabric 1500 is made part of a garment structure, after the fabric 1500 is included in a garment structure, and/or as part of the garment forming process, without departing from this invention. As noted above, however, the procedures generally represented by
Dimensionalized fabrics in accordance with examples of this invention may be readily formed into garments and garment structures, e.g., using conventional techniques that are known to those skilled in the art, such as via sewing techniques, etc. Also, an individual garment may contain any desired number of fabric parts that are joined together (e.g., via sewing techniques), and any desired number of the fabric parts may be made from “dimensionalized” material(s). As still additional examples, if desired, some or all portions of a garment structure in accordance with examples of this invention may be made from a mesh material, and, if desired, only certain desired portions of that mesh material may include surface modifying elements or dimensionalizing structures (e.g., portions located in “targeted” regions of the garment corresponding to body regions that release substantial heat, such as along the wearer's central spine, etc.).
Fabric structures in accordance with at least some examples of this invention are advantageous, in at least some instances, because the contact level defined by the surface modifying elements helps keep the fabric up and off the wearer's skin surface. This can promote better air circulation and evaporative cooling (by allowing room for the air to move) and can help prevent cling (e.g., of wet, sweaty fabric) to the wearer's body. Moreover, the resulting material typically can be made lightweight, soft, and generally air permeable. Additionally, if desired, aspects of this invention, including the formation and providing of surface modifying elements, can be applied to existing fabric materials, including fabric materials already incorporated into existing garments, such as mesh and/or non-mesh materials, if desired.
By integrally forming the fabric surface modifying elements from the fabric material in a self-standing fashion (e.g., akin to the manner in which creases or pleats can be formed in fabric in a self-standing manner, e.g., by pressing or ironing techniques, etc.), the fabric material generally remains soft and flexible. If desired, heating of the fabric during surface modifying element formation may change the fabric fiber structure somewhat (e.g., melt it somewhat or cause clumping to some degree), to help provide a stable, long lasting surface modifying element structure that lasts through several uses and/or washing cycles, etc. Integrally forming the fabric surface modifying elements in the base fabric structure provides a single piece structure, without seams or openings, and without hard surfaces that are easy to grab onto (thus making the fabric somewhat grab, rip, and/or tear resistant). The fabric surface modifying elements may freely compress, move, bend, flex, and/or otherwise deform under applied force or pressure (such as stretching, bending, or the like), but they will tend to bounce back to or toward their original structured shape when the force or pressure is removed or reduced.
Of course, a wide variety of variations in the fabric and garment production processes are possible without departing from this invention. Moreover, the various different steps may be changed, changed in order, additional steps may be added, and/or the described steps may be eliminated and/or replaced with other steps or procedures without departing from this invention.
III. Conclusion
Various examples of the present invention have been described above, and it will be understood by those of ordinary skill that the present invention includes within its scope all combinations and subcombinations of these examples. Additionally, those skilled in the art will recognize that the above examples simply exemplify the invention. Various changes and modifications may be made without departing from the spirit and scope of the invention, as defined in the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
1852964 | George | Apr 1932 | A |
3568475 | Philip | Mar 1971 | A |
5399174 | Yeo et al. | Mar 1995 | A |
5896680 | Kim et al. | Apr 1999 | A |
6610390 | Kauschke et al. | Aug 2003 | B1 |
7043766 | Foreman et al. | May 2006 | B1 |
20050204449 | Baron et al. | Sep 2005 | A1 |
20050246813 | Davis et al. | Nov 2005 | A1 |
20060179539 | Harber | Aug 2006 | A1 |
20070144221 | Sytz | Jun 2007 | A1 |
Number | Date | Country |
---|---|---|
2000158577 | Jun 2000 | JP |
9858795 | Dec 1998 | WO |
Number | Date | Country | |
---|---|---|---|
20070293106 A1 | Dec 2007 | US |