Face tracking is a recent innovation in digital cameras and related consumer imaging devices such as camera phones and handheld video cameras. Face tracking technologies have been improving to where they can detect and track faces at up to 60 fps (see, e.g., U.S. Pat. Nos. 7,403,643, 7,460,695, 7,315,631, 7,460,694, and 7,469,055, and US publications 2009/0208056, 2008/0267461 and U.S. Ser. No. 12/063,089, which are all assigned to the same assignee and are incorporated by reference). Users have now come to expect high levels of performance from such in-camera technology.
Faces are initially detected using a face detector, which may use a technique such as that described by Viola-Jones which use rectangular Haar classifiers (see, e.g., US2002/0102024 and Jones, M and Viola, P., “Fast multi-view face detection,” Mitsubishi Electric Research Laboratories, 2003.
Once a face is detected, its location is recorded and a localized region around that face is scanned by a face detector in the next frame. Thus, once a face is initially detected, it can be accurately tracked from frame to frame without a need to run a face detector across the entire image. The “located” face is said to be “locked” by the face tracker. Note that it is still desirable to scan the entire image or at least selected portions of the image with a face detector as a background task in order to locate new faces entering the field of view of the camera. However, even when a “face-lock” has been achieved, the localized search with a face detector may return a negative result even though the face is still within the detection region. This can happen because the face has been turned into a non-frontal, or profile pose, facing instead either too much up, down, left or right to be detected. That is, a typical face detector can only accurately detect faces in a semi-frontal pose. Face lock may also be lost due to sudden changes in illumination conditions, e.g. backlighting of a face as it passes in front of a source of illumination, among other possibilities such as facial distortions and occlusions by other persons or objects in a scene.
Now that face detection has been quickly adopted as a “must-have” technology for digital cameras, many engineers have begun to consider the problem of performing more sophisticated face analysis within portable imaging devices. Perhaps the most desired of these is to recognize and distinguish between the individual subjects within an image, or to pick out the identity of a particular individual, for example, from a stored set of friends & family members. These applications are examples of what may be referred to generically as face recognition.
Face recognition is known from other fields of research. In particular it is known from the areas of law enforcement and from applications relating in immigration control and in the recognition of suspected terrorists at border crossing. Face recognition is also used in applications in gaming casinos and in a range of commercial security applications.
Most of these applications fall into a sub-category of face recognition that may be referred to as forensic face recognition. In such applications a large database of images acquired under controlled conditions—in particular controlled frontal pose and regulated diffuse illumination—is used to train a set of optimal basis functions for a face. When a new face is acquired, it is analyzed in terms of these basis functions. A facial pattern, or faceprint, is obtained and matched against the recorded patterns of all other faces from this large database (see, e.g., U.S. Pat. Nos. 7,551,755, 7,558,408, 7,587,068, 7,555,148, and 7,564,994, which are assigned to the same assignee and incorporated by reference). Thus, an individual can be compared with the many individuals from a law-enforcement database of known criminals, or some other domestic or international law-enforcement database of known persons of interest. Such system relies on the use of a large back-end database and powerful computing infrastructure to facilitate a large number of pattern matching comparisons.
In consumer electronics, the use of face recognition is clearly somewhat different in nature than in say law enforcement or security. To begin with, the nature and implementation of face recognition is influenced by a range of factors which cannot be controlled to the same extent as in forensic applications, such as: (i) there are significant variations in the image acquisition characteristics of individual handheld imaging devices resulting in variable quality of face regions; (ii) image acquisition is uncontrolled and thus faces are frequently acquired at extremes of pose and illumination; (iii) there is not a suitable large database of pre-acquired images to facilitate training; (iv) there is not control on the facial appearance of individuals so people can wear different make-up, hairstyles, glasses, beards, etc; (v) devices are often calibrated to match local demographics or climate conditions—e.g. cameras in California normally expect sunny outdoor conditions, whereas in Northern Europe cloudy, overcast conditions are the norm, and thus the default white balance in these locations will be calibrated differently; (vi) faces are typically acquired against a cluttered background, making it difficult to accurately extract face regions for subsequent analysis. Additional discussion can be found, for example, in Automated sorting of consumer image collections using face and peripheral region image classifiers, IEEE Transactions on Consumer Electronics, Vol. 51, No. 3, August 2005, pp. 747-754 (Corcoran, P.; Costache, G.). and in US 20060140455, Method and component for image recognition to Corcoran et al.
From the above discussion, it can be understood that on a handheld imaging device the face recognition process may be significantly less reliable than in a typical forensic face recognition system. The acquisition of face regions produces less reliable face regions for analysis, the handheld device can hold a much smaller dataset of face patterns for comparison, and the training of new faces typically relies on data input from the user of a camera who may not be professionally trained and may not capture optimal images for training.
A technique is provided for recognizing faces in an image stream using a digital image acquisition device. A first acquired image is received from an image stream. A first face region is detected within the first acquired image having a given size and a respective location within the first acquired image. First faceprint data uniquely identifying the first face region are extracted along with first peripheral region data around the first face region. The first faceprint and peripheral region data are stored, and the first peripheral region data are associated with the first face region. The first face region is tracked until a face lock is lost. A second face region is detected within a second acquired image from the image stream. Second peripheral region data around the second face region are extracted. The second face region is identified upon matching the first and second peripheral region data.
The storing of peripheral region data may occur within volatile memory.
A database may be provided with an identifier and associated parameters for each of a number of one or more faces to be recognized. Using the database, face recognition may be selectively applied to the first face region to provide an identifier for the first face region
Second faceprint data uniquely identifying the second face region may be extracted. The first and second faceprint data may be matched, thereby confirming the identifying of the second face region. If they do not match, the identifying of the second face region as being the same as the first face region is discontinued.
Texture information may be retrieved and matched from the first and second peripheral region data.
The detecting and identifying of the second face region may occur within two seconds, or within one second, or less.
A same identifier may be displayed along with the first and second face regions. The identifier may include a nickname of a person associated with the first and second face regions.
Another method is provided for recognizing faces in an image stream using a digital image acquisition device. A first acquired image is acquired from an image stream. A first face region is detected within the first acquired image having a given size and a respective location within the first acquired image. First faceprint data uniquely identifying the first face region are extracted along with first peripheral region data around the first face region. The first faceprint and peripheral region data are stored, including associating the first peripheral region data with the first face region. A first face region combination, including the first face region and peripheral region data, is tracked until face lock is lost. The first face region is identified.
A database may be provided with an identifier and associated parameters for each of a number of one or more faces to be recognized. Using the database, face recognition may be selectively applied to the first face region to provide an identifier for the first face region.
Texture information may be retrieved and matched from the first and second peripheral region data.
The image stream may include two or more relatively low resolution reference images.
The image stream may include a series of reference images of nominally a same scene of a main acquired image, such as two or more preview or postview images, and/or one or more images whose exposure period overlaps some part of the exposure duration of a main acquired image.
One or more processor-readable storage media are also provided herein having code embedded therein for programming a processor to perform any of the methods described herein.
A portable, digital image acquisition device is also provided herein, including a lens and image sensor for acquiring digital images, a processor, and a processor-readable medium having code embedded therein for programming the processor to perform any of the methods described herein.
Techniques are described below for improving the performance of an internal person recognition algorithm by using a combination of features extracted from face regions, as well as extra features extracted from regions adjacent to the face, around the face, surrounding the face, proximate to the face, just above, below or to the side of the face, at the periphery of the face. Herein, the term “peripheral regions” shall be used and is intended to include regions adjacent to the face, around the face, surrounding the face, proximate to the face, just above, below, in front, behind or to the side of the face, and/or at the periphery of the face. These extra, peripheral features can tend to be quite invariant to acquisition conditions and can be used, on a temporary basis, for person identification, and/or specifically to maintain a face-lock of a tracked face that is temporarily not detected but will reappear in an image stream upon resuming a more appropriate illumination, direction, pose, orientation or tilt relative to the camera and/or lighting.
The performance of in-camera face identification technology will typically decrease when there are differences in illumination, face pose and/or expression between the current face to be recognized and the face image used for learning the identity of a person. To improve the identification performance, we propose to use information from peripheral regions of the image surrounding the main face. For example, these regions may contain information about clothing, jewelry or electronic equipment being used, cigarette, gum chewing, whistling, shouting, singing, shape of neck and/or shoulders relative to face, shape of face or a feature of the face, scar, tattoo, bandage, brightness, color or tone of face, of a face feature or of a peripheral region, hairstyle, hair color, degree of hair loss, hair covering, toupee, hair on face, in ears or nose or on chest or neck, a hat or helmet, face mask, glasses, umbrella, name tag, label on clothing, or any of a wide variety of other items or features that may distinguish a “peripheral region” around a person's face, which can be used to compliment the identification of an individual.
Certain embodiments described herein are based on using facial features that are sensitive to small variations in face pose, tilt, expression and/or size, or other factors. An advantage is robustness to face variations in pose, tilt, expression and/or size as well as facial occlusions. Very short identification times are achieved.
Current problems with existing solutions are mitigated in certain embodiments described herein by using smart processing techniques. In certain embodiments, these take advantage of technologies now available within state-of-art digital cameras. In particular, multiple face regions may be extracted and pre-filtered from a preview image stream until face regions which are suitable (e.g., with regard to frontal pose and constant illumination) are obtained. Then, the actual pattern matching process of face recognition is initiated.
Challenges are introduced by the expectations of camera users. It is desired to have a camera with a real-time face tracking facility that can detect and independently track up to nine or more faces in real-time. User expectations for face recognition are and will continue to be quite high. It is further desired not only that a camera will correctly recognize a face captured in a still image, but also that the camera can recognize a face as it tracks the face prior to capturing a still image.
Now, an in-camera recognition algorithm may typically take several tens of seconds to extract, pre-process and then achieve a reliable initial recognition of a face region. After a camera is first pointed at a scene with several face images, it has been acceptable to have a delay of this order of magnitude. It has been understood by the user that the camera has to “think” about the different faces before it reaches a decision as to the identity of each. However, once the camera has identified a person, it is desired that subsequent recognitions and/or maintaining recognition during tracking should not present serious further delays.
With an analogy being face detection versus face-tracking, where the initial detection takes more time than tracking in subsequent frames, it is desired that while initially recognizing a face region in a preview stream may present some initial delay, it is desired to continue to hold a “face-lock” of a recognized face with the tracking algorithm; maintaining a “memory” of this face. However, when a recognized face leaves the current imaging scene and then re-enters it a short while later, it is desired not to have to repeat the same initial face recognition delays. In the past, a background face detection algorithm would find the face within a second or two, and the face recognition algorithm would not recall the identity of that person within the same time-frame and have to initiate recognition again with unacceptable delays. Thus, the camera is considered to have forgotten the person even though they only left the imaging scene for a few seconds.
In embodiments herein, information contained within peripheral regions, that is, regions of the image surrounding the main face region, are used to improve and refine the sorting of images containing faces (see Automated sorting of consumer image collections using face and peripheral region image classifiers, IEEE Transactions on Consumer Electronics, Vol. 51, No. 3, August 2005, pp. 747-754 (Corcoran, P.; Costache, G.). and in US 20060140455, Method and component for image recognition to Corcoran et al., incorporated by reference). In particular these regions contain information that can be used to compliment the identification of an individual, so that sufficient information is maintained throughout the face tracking to maintain face-lock even when the face region itself is not optimally directed, is blocked or partially blocked, and/or illuminated unevenly and/or insufficiently or overly illuminated.
It is noted that in certain embodiments the peripheral regions may be tracked, along with the face regions, and not lost in the first place such that recovery is not necessary. In other embodiments, the peripheral regions are quickly detected after loss of face lock, such that the face detector and face recognition components know to look for the specific face that was lost in the vicinity of the detected peripherals regions. Either way, re-initiating face detection and recognition for the previously identified face is obviated by an advantageous embodiment described herein.
A challenge is to increase the speed at which the identity of a face is recovered after a “face-lock” is lost, or if a face-lock being lost entails initiating face recognition from the beginning, then to increase the duration, proportion and/or probability of maintenance of face-lock over the image stream at least while the particular face actually remains within the scene being imaged with the camera. Again, as re-initiating face recognition is too slow and can lead to gaps of tens of seconds while a suitable new face region is obtained and recognized, it is advantageous as described in embodiments herein to detect and utilize information contained in one or more peripheral regions to maintain the face-lock and/or to recover the identity of a face quickly.
Of note, peripheral regions are generally more texture-based than face regions, such that peripheral regions are more invariant to acquisition conditions. Thus, when a face is first recognized, a process in accordance with certain embodiments extracts and records the textures of these one or more peripheral regions, and associates the peripheral regions, at least on a temporary basis, with the particular recognition profile.
In certain embodiments, the association of peripheral regions with a face region may be temporary in nature, such that the peripheral region data may include volatile data that will eventually be discarded, e.g., when the camera is switched off, or after a fixed time interval (e.g. 1 hour, 1 day), or when the camera moves to a new location which is removed from the current location by a certain distance (e.g. 1000 meters), or when manually reset by the user, or when the identified person is confirmed to have left the scene, or based on combinations of these and some other criteria.
An exemplary process is now described with reference to
At S3, peripheral region data PRD1 are obtained and analyzed. This peripheral data PRD1 is stored and associated with the identified person from step 2. At S4, the camera continues to track the face region until “face lock” is lost. Before face lock is lost the identified person may be displayed with a tag or other identifier (e.g. writing a nickname beside their face in the display, or using a symbol identifier of selected and/or arbitrary type designated by a user). At S5, a new face FR2 is detected and tracking is initiated. The peripheral regions PRD2 around this face FR2 are extracted at S6. At S7, the PRD2 are compared with peripheral region data which is currently stored, e.g., such as PRD1 associated with lost face region FR1. If a match of PRIM and PRD2 is determined at S7, then at S9 the face FR2 is temporarily identified (and displayed) as being the person ID1 associated with this peripheral region data PRD2/PRD1, which is the same identifier ID1 used for FR 1 before it was lost. If no match can be determined, then the process stops at S8 and no identity information for this face is provided at this time.
At S10, after a good face region FR2 is obtained from the tracked face FR2, then a face pattern or faceprint FP2 is extracted. Pattern matching is performed to recognize the face FR2 and the person is thus identified at S12 from a set of known persons, or marked as “unknown” at S11. Where an identification ID1 was already provided by volatile data this can be confirmed at S12, or replaced at S11 by the identity from the recognition algorithm.
After S11, if peripheral regions and recognized identity did not match, then a new set of volatile peripheral region data PRD2 is created and associated with this new identity ID2. The camera continues to track this face region until “face lock” is lost displaying the identified person (e.g. writing a nickname beside their face in the display), as the process is basically returned with regard to FR2 and ID2 to S4. The volatile data PRD1 and PRD2 is stored within the camera until an extinction event (power-down, count-down, change of location or manual intervention or combinations thereof) occurs whereupon the volatile data is deleted.
Referring now to
When a face detector fails, it may still be possible to retain a “face-lock” using other techniques than those described above, or a combination of techniques. For example, face regions have a skin color or skin tone that can be segmented from the background scene, such that even when a face region turns into a profile pose, it can still exhibit a relatively large region of skin color pixels. Thus a skin-color filter can be used to augment the face detector and improve the reliability of a face tracker. Other augmentation techniques can include luminance and edge filters. It is also possible to use stereo audio analysis to track the relative location of a face of a speaker in a scene without visually detecting the face. This can be useful in video conferencing systems, where it is desired to locate the speaker in a group of more than one person. The face tracker may in fact use a combination of techniques to constantly and reliably maintain a coherent lock on a tracked face region.
The face detection process'can tend to be relatively time-consuming, and so in some embodiments is not performed on every frame. In some cases, only a portion of each frame is scanned for faces with the face detector (see, e.g., U.S. Ser. No. 12/479,593, filed Jun. 5, 2009, which is assigned to the same assignee and is incorporated by reference), such that the entire frame is scanned over a number of frames, e.g., 5 or 10 frames. The frame portion to be scanned may be changed from frame to frame so that over a sequence of several frames the entire field of view is covered. Alternatively, after initial face detection is performed on the entirety of the image either in a single frame or a sequence of frames, the face detector can change to being applied just to the outside of the frame to locate new faces entering the field of view, while previously detected faces, which may also be recognized and identified, within the frame are tracked.
In certain face tracking systems within digital cameras, multiple faces (e.g., up to 9 in some cameras) can be independently tracked in a single scene. Such face tracker can still be very responsive and exhibit less than a few seconds time lag to detect a new face. The face tracker will independently track the movements of a relatively large number (e.g., nine or more) of faces. Tracking is smooth and highly responsive in almost all acquisition conditions, although at very low light levels performance may be significantly degraded.
While an exemplary drawings and specific embodiments of the present invention have been described and illustrated, it is to be understood that that the scope of the present invention is not to be limited to the particular embodiments discussed. Thus, the embodiments shall be regarded as illustrative rather than restrictive, and it should be understood that variations may be made in those embodiments by workers skilled in the arts without departing from the scope of the present invention.
In addition, in methods that may be performed according to preferred embodiments herein and that may have been described above, the operations have been described in selected typographical sequences. However, the sequences have been selected and so ordered for typographical convenience and are not intended to imply any particular order for performing the operations, except for those where a particular order may be expressly set forth or where those of ordinary skill in the art may deem a particular order to be necessary.
In addition, all references cited above and below herein, as well as the background, invention summary, abstract and brief description of the drawings, are all incorporated by reference into the detailed description of the preferred embodiments as disclosing alternative embodiments.
The following are incorporated by reference: U.S. Pat. Nos. 7,587,085, 7,587,068, 7,574,016, 7,565,030, 7,564,994, 7,558,408, 7,555,148, 7,551,755, 7,551,754, 7,545,995, 7,515,740, 7,471,846, 7,469,071, 7,469,055, 7,466,866, 7,460,695, 7,460,694, 7,440,593, 7,436,998, 7,403,643, 7,352,394, 6,407,777, 7,269,292, 7,308,156, 7,315,631, 7,336,821, 7,295,233, 6,571,003, 7,212,657, 7,039,222, 7,082,211, 7,184,578, 7,187,788, 6,639,685, 6,628,842, 6,256,058, 5,579,063, 6,480,300, 5,781,650, 7,362,368 and 5,978,519; and
U.S. published application nos. 2008/0175481, 2008/0013798, 2008/0031498, 2005/0041121, 2007/0110305, 2006/0204110, PCT/US2006/021393, 2005/0068452, 2006/0120599, 2006/0098890, 2006/0140455, 2006/0285754, 2008/0031498, 2007/0147820, 2007/0189748, 2008/0037840, 2007/0269108, 2007/0201724, 2002/0081003, 2003/0198384, 2006/0276698, 2004/0080631, 2008/0106615, 2006/0077261 and 2007/0071347; and
U.S. patent applications Ser. Nos. 10/764,339, 11/861,854, 11/573,713, 11/462,035, 12/042,335, 12/063,089, 11/761,647, 11/753,098, 12/038,777, 12/043,025, 11/752,925, 11/767,412, 11/624,683, 60/829,127, 12/042,104, 11/856,721, 11/936,085, 12/142,773, 60/914,962, 12/038,147, 11/861,257, 12/026,484, 11/861,854, 61/024,551, 61/019,370, 61/023,946, 61/024,508, 61/023,774, 61/023,855, 61/221,467, 61/221,425, 61/221,417, 61/091,700, 61/182,625, 61/221,455, 11/319,766, 11/673,560, 12/485,316, 12/374,040, 12/479,658, 12/479,593, 12/362,399, 12/191,304, 11/937,377, 12/038,147, 12/055,958, 12/026,484, 12/554,258, 12/437,464, 12/042,104, 12/485,316, and 12/302,493.
Number | Name | Date | Kind |
---|---|---|---|
4047187 | Mashimo et al. | Sep 1977 | A |
4317991 | Stauffer | Mar 1982 | A |
4367027 | Stauffer | Jan 1983 | A |
RE31370 | Mashimo et al. | Sep 1983 | E |
4448510 | Murakoshi | May 1984 | A |
4638364 | Hiramatsu | Jan 1987 | A |
4796043 | Izumi et al. | Jan 1989 | A |
4970663 | Bedell et al. | Nov 1990 | A |
4970683 | Harshaw et al. | Nov 1990 | A |
4975969 | Tal | Dec 1990 | A |
5008946 | Ando | Apr 1991 | A |
5018017 | Sasaki et al. | May 1991 | A |
RE33682 | Hiramatsu | Sep 1991 | E |
5051770 | Cornuejols | Sep 1991 | A |
5063603 | Burt | Nov 1991 | A |
5111231 | Tokunaga | May 1992 | A |
5150432 | Ueno et al. | Sep 1992 | A |
5161204 | Hutcheson et al. | Nov 1992 | A |
5164831 | Kuchta et al. | Nov 1992 | A |
5164992 | Turk et al. | Nov 1992 | A |
5227837 | Terashita | Jul 1993 | A |
5278923 | Nazarathy et al. | Jan 1994 | A |
5280530 | Trew et al. | Jan 1994 | A |
5291234 | Shindo et al. | Mar 1994 | A |
5305048 | Suzuki et al. | Apr 1994 | A |
5311240 | Wheeler | May 1994 | A |
5331544 | Lu et al. | Jul 1994 | A |
5353058 | Takei | Oct 1994 | A |
5384615 | Hsieh et al. | Jan 1995 | A |
5384912 | Ogrinc et al. | Jan 1995 | A |
5430809 | Tomitaka | Jul 1995 | A |
5432863 | Benati et al. | Jul 1995 | A |
5450504 | Calia | Sep 1995 | A |
5465308 | Hutcheson et al. | Nov 1995 | A |
5488429 | Kojima et al. | Jan 1996 | A |
5493409 | Maeda et al. | Feb 1996 | A |
5496106 | Anderson | Mar 1996 | A |
5543952 | Yonenaga et al. | Aug 1996 | A |
5576759 | Kawamura et al. | Nov 1996 | A |
5633678 | Parulski et al. | May 1997 | A |
5638136 | Kojima et al. | Jun 1997 | A |
5638139 | Clatanoff et al. | Jun 1997 | A |
5652669 | Liedenbaum | Jul 1997 | A |
5680481 | Prasad et al. | Oct 1997 | A |
5684509 | Hatanaka et al. | Nov 1997 | A |
5706362 | Yabe | Jan 1998 | A |
5710833 | Moghaddam et al. | Jan 1998 | A |
5715325 | Bang et al. | Feb 1998 | A |
5724456 | Boyack et al. | Mar 1998 | A |
5745668 | Poggio et al. | Apr 1998 | A |
5748764 | Benati et al. | May 1998 | A |
5764790 | Brunelli et al. | Jun 1998 | A |
5764803 | Jacquin et al. | Jun 1998 | A |
5771307 | Lu et al. | Jun 1998 | A |
5774129 | Poggio et al. | Jun 1998 | A |
5774591 | Black et al. | Jun 1998 | A |
5774747 | Ishihara et al. | Jun 1998 | A |
5774754 | Ootsuka | Jun 1998 | A |
5781650 | Lobo et al. | Jul 1998 | A |
5802208 | Podilchuk et al. | Sep 1998 | A |
5812193 | Tomitaka et al. | Sep 1998 | A |
5818975 | Goodwin et al. | Oct 1998 | A |
5835616 | Lobo et al. | Nov 1998 | A |
5842194 | Arbuckle | Nov 1998 | A |
5844573 | Poggio et al. | Dec 1998 | A |
5850470 | Kung et al. | Dec 1998 | A |
5852669 | Eleftheriadis et al. | Dec 1998 | A |
5852823 | De Bonet | Dec 1998 | A |
RE36041 | Turk et al. | Jan 1999 | E |
5870138 | Smith et al. | Feb 1999 | A |
5905807 | Kado et al. | May 1999 | A |
5911139 | Jain et al. | Jun 1999 | A |
5912980 | Hunke | Jun 1999 | A |
5966549 | Hara et al. | Oct 1999 | A |
5978519 | Bollman et al. | Nov 1999 | A |
5990973 | Sakamoto | Nov 1999 | A |
5991456 | Rahman et al. | Nov 1999 | A |
6009209 | Acker et al. | Dec 1999 | A |
6016354 | Lin et al. | Jan 2000 | A |
6028960 | Graf et al. | Feb 2000 | A |
6035074 | Fujimoto et al. | Mar 2000 | A |
6053268 | Yamada | Apr 2000 | A |
6061055 | Marks | May 2000 | A |
6072094 | Karady et al. | Jun 2000 | A |
6097470 | Buhr et al. | Aug 2000 | A |
6101271 | Yamashita et al. | Aug 2000 | A |
6108437 | Lin | Aug 2000 | A |
6115052 | Freeman et al. | Sep 2000 | A |
6128397 | Baluja et al. | Oct 2000 | A |
6128398 | Kuperstein et al. | Oct 2000 | A |
6134339 | Luo | Oct 2000 | A |
6148092 | Qian | Nov 2000 | A |
6151073 | Steinberg et al. | Nov 2000 | A |
6173068 | Prokoski | Jan 2001 | B1 |
6188777 | Darrell et al. | Feb 2001 | B1 |
6192149 | Eschbach et al. | Feb 2001 | B1 |
6240198 | Rehg et al. | May 2001 | B1 |
6246779 | Fukui et al. | Jun 2001 | B1 |
6246790 | Huang et al. | Jun 2001 | B1 |
6249315 | Holm | Jun 2001 | B1 |
6252976 | Schildkraut et al. | Jun 2001 | B1 |
6263113 | Abdel-Mottaleb et al. | Jul 2001 | B1 |
6268939 | Klassen et al. | Jul 2001 | B1 |
6278491 | Wang et al. | Aug 2001 | B1 |
6282317 | Luo et al. | Aug 2001 | B1 |
6292575 | Bortolussi et al. | Sep 2001 | B1 |
6301370 | Steffens et al. | Oct 2001 | B1 |
6301440 | Bolle et al. | Oct 2001 | B1 |
6332033 | Qian | Dec 2001 | B1 |
6334008 | Nakabayashi | Dec 2001 | B2 |
6349373 | Sitka et al. | Feb 2002 | B2 |
6351556 | Loui et al. | Feb 2002 | B1 |
6393148 | Bhaskar | May 2002 | B1 |
6400830 | Christian et al. | Jun 2002 | B1 |
6404900 | Qian et al. | Jun 2002 | B1 |
6407777 | DeLuca | Jun 2002 | B1 |
6421468 | Ratnakar et al. | Jul 2002 | B1 |
6426779 | Noguchi et al. | Jul 2002 | B1 |
6438234 | Gisin et al. | Aug 2002 | B1 |
6438264 | Gallagher et al. | Aug 2002 | B1 |
6441854 | Fellegara et al. | Aug 2002 | B2 |
6445810 | Darrell et al. | Sep 2002 | B2 |
6456732 | Kimbell et al. | Sep 2002 | B1 |
6459436 | Kumada et al. | Oct 2002 | B1 |
6463163 | Kresch | Oct 2002 | B1 |
6473199 | Gilman et al. | Oct 2002 | B1 |
6501857 | Gotsman et al. | Dec 2002 | B1 |
6502107 | Nishida | Dec 2002 | B1 |
6504942 | Hong et al. | Jan 2003 | B1 |
6504951 | Luo et al. | Jan 2003 | B1 |
6516154 | Parulski et al. | Feb 2003 | B1 |
6526156 | Black et al. | Feb 2003 | B1 |
6526161 | Yan | Feb 2003 | B1 |
6529630 | Kinjo | Mar 2003 | B1 |
6549641 | Ishikawa et al. | Apr 2003 | B2 |
6556708 | Christian et al. | Apr 2003 | B1 |
6564225 | Brogliatti et al. | May 2003 | B1 |
6567983 | Shiimori | May 2003 | B1 |
6587119 | Anderson et al. | Jul 2003 | B1 |
6606398 | Cooper | Aug 2003 | B2 |
6633655 | Hong et al. | Oct 2003 | B1 |
6661907 | Ho et al. | Dec 2003 | B2 |
6697503 | Matsuo et al. | Feb 2004 | B2 |
6697504 | Tsai | Feb 2004 | B2 |
6700999 | Yang | Mar 2004 | B1 |
6714665 | Hanna et al. | Mar 2004 | B1 |
6747690 | Molgaard | Jun 2004 | B2 |
6754368 | Cohen | Jun 2004 | B1 |
6754389 | Dimitrova et al. | Jun 2004 | B1 |
6760465 | McVeigh et al. | Jul 2004 | B2 |
6760485 | Gilman et al. | Jul 2004 | B1 |
6765612 | Anderson et al. | Jul 2004 | B1 |
6778216 | Lin | Aug 2004 | B1 |
6792135 | Toyama | Sep 2004 | B1 |
6798834 | Murakami et al. | Sep 2004 | B1 |
6801250 | Miyashita | Oct 2004 | B1 |
6801642 | Gorday et al. | Oct 2004 | B2 |
6816611 | Hagiwara et al. | Nov 2004 | B1 |
6829009 | Sugimoto | Dec 2004 | B2 |
6850274 | Silverbrook et al. | Feb 2005 | B1 |
6876755 | Taylor et al. | Apr 2005 | B1 |
6879705 | Tao et al. | Apr 2005 | B1 |
6900840 | Schinner et al. | May 2005 | B1 |
6937773 | Nozawa et al. | Aug 2005 | B1 |
6940545 | Ray et al. | Sep 2005 | B1 |
6947601 | Aoki et al. | Sep 2005 | B2 |
6959109 | Moustafa | Oct 2005 | B2 |
6965684 | Chen et al. | Nov 2005 | B2 |
6967680 | Kagle et al. | Nov 2005 | B1 |
6977687 | Suh | Dec 2005 | B1 |
6980691 | Nesterov et al. | Dec 2005 | B2 |
6993157 | Oue et al. | Jan 2006 | B1 |
7003135 | Hsieh et al. | Feb 2006 | B2 |
7020337 | Viola et al. | Mar 2006 | B2 |
7027619 | Pavlidis et al. | Apr 2006 | B2 |
7027621 | Prokoski | Apr 2006 | B1 |
7034848 | Sobol | Apr 2006 | B2 |
7035456 | Lestideau | Apr 2006 | B2 |
7035462 | White et al. | Apr 2006 | B2 |
7035467 | Nicponski | Apr 2006 | B2 |
7038709 | Verghese | May 2006 | B1 |
7038715 | Flinchbaugh | May 2006 | B1 |
7039222 | Simon et al. | May 2006 | B2 |
7042501 | Matama | May 2006 | B1 |
7042505 | DeLuca | May 2006 | B1 |
7042511 | Lin | May 2006 | B2 |
7043056 | Edwards et al. | May 2006 | B2 |
7043465 | Pirim | May 2006 | B2 |
7050607 | Li et al. | May 2006 | B2 |
7057653 | Kubo | Jun 2006 | B1 |
7064776 | Sumi et al. | Jun 2006 | B2 |
7082212 | Liu et al. | Jul 2006 | B2 |
7099510 | Jones et al. | Aug 2006 | B2 |
7106374 | Bandera et al. | Sep 2006 | B1 |
7106887 | Kinjo | Sep 2006 | B2 |
7110569 | Brodsky et al. | Sep 2006 | B2 |
7110575 | Chen et al. | Sep 2006 | B2 |
7113641 | Eckes et al. | Sep 2006 | B1 |
7119838 | Zanzucchi et al. | Oct 2006 | B2 |
7120279 | Chen et al. | Oct 2006 | B2 |
7146026 | Russon et al. | Dec 2006 | B2 |
7151843 | Rui et al. | Dec 2006 | B2 |
7158680 | Pace | Jan 2007 | B2 |
7162076 | Liu | Jan 2007 | B2 |
7162101 | Itokawa et al. | Jan 2007 | B2 |
7171023 | Kim et al. | Jan 2007 | B2 |
7171025 | Rui et al. | Jan 2007 | B2 |
7190829 | Zhang et al. | Mar 2007 | B2 |
7194114 | Schneiderman | Mar 2007 | B2 |
7200249 | Okubo et al. | Apr 2007 | B2 |
7218759 | Ho et al. | May 2007 | B1 |
7227976 | Jung et al. | Jun 2007 | B1 |
7254257 | Kim et al. | Aug 2007 | B2 |
7274822 | Zhang et al. | Sep 2007 | B2 |
7274832 | Nicponski | Sep 2007 | B2 |
7289664 | Enomoto | Oct 2007 | B2 |
7295233 | Steinberg et al. | Nov 2007 | B2 |
7315630 | Steinberg et al. | Jan 2008 | B2 |
7315631 | Corcoran et al. | Jan 2008 | B1 |
7317815 | Steinberg et al. | Jan 2008 | B2 |
7321670 | Yoon et al. | Jan 2008 | B2 |
7324670 | Kozakaya et al. | Jan 2008 | B2 |
7324671 | Li et al. | Jan 2008 | B2 |
7336821 | Ciuc et al. | Feb 2008 | B2 |
7336830 | Porter et al. | Feb 2008 | B2 |
7352394 | DeLuca et al. | Apr 2008 | B1 |
7362210 | Bazakos et al. | Apr 2008 | B2 |
7362368 | Steinberg et al. | Apr 2008 | B2 |
7403643 | Ianculescu et al. | Jul 2008 | B2 |
7437998 | Burger et al. | Oct 2008 | B2 |
7440593 | Steinberg et al. | Oct 2008 | B1 |
7460695 | Steinberg et al. | Dec 2008 | B2 |
7469055 | Corcoran et al. | Dec 2008 | B2 |
7515740 | Corcoran et al. | Apr 2009 | B2 |
7683946 | Steinberg et al. | Mar 2010 | B2 |
7738015 | Steinberg et al. | Jun 2010 | B2 |
7809162 | Steinberg et al. | Oct 2010 | B2 |
20010000025 | Darrell et al. | Mar 2001 | A1 |
20010005222 | Yamaguchi | Jun 2001 | A1 |
20010028731 | Covell et al. | Oct 2001 | A1 |
20010031142 | Whiteside | Oct 2001 | A1 |
20010038712 | Loce et al. | Nov 2001 | A1 |
20010038714 | Masumoto et al. | Nov 2001 | A1 |
20020105662 | Patton et al. | Aug 2002 | A1 |
20020106114 | Yan et al. | Aug 2002 | A1 |
20020114535 | Luo | Aug 2002 | A1 |
20020118287 | Grosvenor et al. | Aug 2002 | A1 |
20020136433 | Lin | Sep 2002 | A1 |
20020141640 | Kraft | Oct 2002 | A1 |
20020150662 | Dewis et al. | Oct 2002 | A1 |
20020168108 | Loui et al. | Nov 2002 | A1 |
20020172419 | Lin et al. | Nov 2002 | A1 |
20020181801 | Needham et al. | Dec 2002 | A1 |
20020191861 | Cheatle | Dec 2002 | A1 |
20030012414 | Luo | Jan 2003 | A1 |
20030023974 | Dagtas et al. | Jan 2003 | A1 |
20030025812 | Slatter | Feb 2003 | A1 |
20030035573 | Duta et al. | Feb 2003 | A1 |
20030044070 | Fuersich et al. | Mar 2003 | A1 |
20030044177 | Oberhardt et al. | Mar 2003 | A1 |
20030048950 | Savakis et al. | Mar 2003 | A1 |
20030052991 | Stavely et al. | Mar 2003 | A1 |
20030059107 | Sun et al. | Mar 2003 | A1 |
20030059121 | Savakis et al. | Mar 2003 | A1 |
20030071908 | Sannoh et al. | Apr 2003 | A1 |
20030084065 | Lin et al. | May 2003 | A1 |
20030095197 | Wheeler et al. | May 2003 | A1 |
20030107649 | Flickner et al. | Jun 2003 | A1 |
20030118216 | Goldberg | Jun 2003 | A1 |
20030123713 | Geng | Jul 2003 | A1 |
20030123751 | Krishnamurthy et al. | Jul 2003 | A1 |
20030142209 | Yamazaki et al. | Jul 2003 | A1 |
20030151674 | Lin | Aug 2003 | A1 |
20030174773 | Comaniciu et al. | Sep 2003 | A1 |
20030202715 | Kinjo | Oct 2003 | A1 |
20040022435 | Ishida | Feb 2004 | A1 |
20040041121 | Yoshida et al. | Mar 2004 | A1 |
20040095359 | Simon et al. | May 2004 | A1 |
20040114904 | Sun et al. | Jun 2004 | A1 |
20040120391 | Lin et al. | Jun 2004 | A1 |
20040120399 | Kato | Jun 2004 | A1 |
20040125387 | Nagao et al. | Jul 2004 | A1 |
20040170397 | Ono | Sep 2004 | A1 |
20040175021 | Porter et al. | Sep 2004 | A1 |
20040179719 | Chen et al. | Sep 2004 | A1 |
20040218832 | Luo et al. | Nov 2004 | A1 |
20040223063 | DeLuca et al. | Nov 2004 | A1 |
20040228505 | Sugimoto | Nov 2004 | A1 |
20040233301 | Nakata et al. | Nov 2004 | A1 |
20040234156 | Watanabe et al. | Nov 2004 | A1 |
20050013479 | Xiao et al. | Jan 2005 | A1 |
20050013603 | Ichimasa | Jan 2005 | A1 |
20050018923 | Messina et al. | Jan 2005 | A1 |
20050031224 | Prilutsky et al. | Feb 2005 | A1 |
20050041121 | Steinberg et al. | Feb 2005 | A1 |
20050068446 | Steinberg et al. | Mar 2005 | A1 |
20050068452 | Steinberg et al. | Mar 2005 | A1 |
20050069208 | Morisada | Mar 2005 | A1 |
20050089218 | Chiba | Apr 2005 | A1 |
20050104848 | Yamaguchi et al. | May 2005 | A1 |
20050105780 | Ioffe | May 2005 | A1 |
20050128518 | Tsue et al. | Jun 2005 | A1 |
20050140801 | Prilutsky et al. | Jun 2005 | A1 |
20050185054 | Edwards et al. | Aug 2005 | A1 |
20050275721 | Ishii | Dec 2005 | A1 |
20060006077 | Mosher et al. | Jan 2006 | A1 |
20060008152 | Kumar et al. | Jan 2006 | A1 |
20060008171 | Petschnigg et al. | Jan 2006 | A1 |
20060008173 | Matsugu et al. | Jan 2006 | A1 |
20060018517 | Chen et al. | Jan 2006 | A1 |
20060029265 | Kim et al. | Feb 2006 | A1 |
20060039690 | Steinberg et al. | Feb 2006 | A1 |
20060050933 | Adam et al. | Mar 2006 | A1 |
20060056655 | Wen et al. | Mar 2006 | A1 |
20060093212 | Steinberg et al. | May 2006 | A1 |
20060093213 | Steinberg et al. | May 2006 | A1 |
20060093238 | Steinberg et al. | May 2006 | A1 |
20060098875 | Sugimoto | May 2006 | A1 |
20060098890 | Steinberg et al. | May 2006 | A1 |
20060120599 | Steinberg et al. | Jun 2006 | A1 |
20060133699 | Widrow et al. | Jun 2006 | A1 |
20060140455 | Costache et al. | Jun 2006 | A1 |
20060147192 | Zhang et al. | Jul 2006 | A1 |
20060153472 | Sakata et al. | Jul 2006 | A1 |
20060177100 | Zhu et al. | Aug 2006 | A1 |
20060177131 | Porikli | Aug 2006 | A1 |
20060187305 | Trivedi et al. | Aug 2006 | A1 |
20060203106 | Lawrence et al. | Sep 2006 | A1 |
20060203107 | Steinberg et al. | Sep 2006 | A1 |
20060204034 | Steinberg et al. | Sep 2006 | A1 |
20060204055 | Steinberg et al. | Sep 2006 | A1 |
20060204056 | Steinberg et al. | Sep 2006 | A1 |
20060204058 | Kim et al. | Sep 2006 | A1 |
20060204110 | Steinberg et al. | Sep 2006 | A1 |
20060210264 | Saga | Sep 2006 | A1 |
20060227997 | Au et al. | Oct 2006 | A1 |
20060257047 | Kameyama et al. | Nov 2006 | A1 |
20060268150 | Kameyama et al. | Nov 2006 | A1 |
20060269270 | Yoda et al. | Nov 2006 | A1 |
20060280380 | Li | Dec 2006 | A1 |
20060285754 | Steinberg et al. | Dec 2006 | A1 |
20060291739 | Li et al. | Dec 2006 | A1 |
20070047768 | Gordon et al. | Mar 2007 | A1 |
20070053614 | Mori et al. | Mar 2007 | A1 |
20070070440 | Li et al. | Mar 2007 | A1 |
20070071347 | Li et al. | Mar 2007 | A1 |
20070076921 | Living | Apr 2007 | A1 |
20070091203 | Peker et al. | Apr 2007 | A1 |
20070098218 | Zhang et al. | May 2007 | A1 |
20070098303 | Gallagher et al. | May 2007 | A1 |
20070110305 | Corcoran et al. | May 2007 | A1 |
20070110417 | Itokawa | May 2007 | A1 |
20070116379 | Corcoran et al. | May 2007 | A1 |
20070116380 | Ciuc et al. | May 2007 | A1 |
20070154095 | Cao et al. | Jul 2007 | A1 |
20070154096 | Cao et al. | Jul 2007 | A1 |
20070160307 | Steinberg et al. | Jul 2007 | A1 |
20070189748 | Drimbarean et al. | Aug 2007 | A1 |
20070189757 | Steinberg et al. | Aug 2007 | A1 |
20070201724 | Steinberg et al. | Aug 2007 | A1 |
20070201725 | Steinberg et al. | Aug 2007 | A1 |
20070201726 | Steinberg et al. | Aug 2007 | A1 |
20070263104 | DeLuca et al. | Nov 2007 | A1 |
20070273504 | Tran | Nov 2007 | A1 |
20070296833 | Corcoran et al. | Dec 2007 | A1 |
20080002060 | DeLuca et al. | Jan 2008 | A1 |
20080013798 | Ionita et al. | Jan 2008 | A1 |
20080013799 | Steinberg et al. | Jan 2008 | A1 |
20080013800 | Steinberg et al. | Jan 2008 | A1 |
20080019565 | Steinberg | Jan 2008 | A1 |
20080037839 | Corcoran et al. | Feb 2008 | A1 |
20080043121 | Prilutsky et al. | Feb 2008 | A1 |
20080043122 | Steinberg et al. | Feb 2008 | A1 |
20080049970 | Ciuc et al. | Feb 2008 | A1 |
20080055433 | Steinberg et al. | Mar 2008 | A1 |
20080075385 | David et al. | Mar 2008 | A1 |
20080144966 | Steinberg et al. | Jun 2008 | A1 |
20080175481 | Petrescu et al. | Jul 2008 | A1 |
20080186389 | DeLuca et al. | Aug 2008 | A1 |
20080205712 | Ionita et al. | Aug 2008 | A1 |
20080219517 | Blonk et al. | Sep 2008 | A1 |
20080240555 | Nanu et al. | Oct 2008 | A1 |
20080267461 | Ianculescu et al. | Oct 2008 | A1 |
20090002514 | Steinberg et al. | Jan 2009 | A1 |
20090003652 | Steinberg et al. | Jan 2009 | A1 |
20090003708 | Steinberg et al. | Jan 2009 | A1 |
20090052749 | Steinberg et al. | Feb 2009 | A1 |
20090087030 | Steinberg et al. | Apr 2009 | A1 |
20090324008 | Kongqiao et al. | Dec 2009 | A1 |
20110157370 | Livesey | Jun 2011 | A1 |
Number | Date | Country |
---|---|---|
578508 | Jan 1994 | EP |
Entry |
---|
Batur et al., “Adaptive Active Appearance Models”, IEEE Transactions on Image Processing, 2005, pp. 1707-1721, vol. 14-Issue 11. |
Beymer, David, “Pose-Invariant face Recognition Using Real and Virtual Views, A.I. Technical Report No. 1574”, Massachusetts Institute of Technology Artificial Intelligence Laboratory, 1996, pp. 1-176. |
Bradski Gary et al., “Learning-Based Computer Vision with Intel's Open Source Computer Vision Library”, Intel Technology, 2005, pp. 119-130, vol. 9-Issue 2. |
Corcoran, P. et al., “Automatic Indexing of Consumer Image Collections Using Person Recognition Techniques”, Digest of Technical Papers. International Conference on Confumer Electronics, 2005, pp. 127-128. |
Costache, G. et al., “In-Camera Person Indexing of Digital Images”, Digest of Technical Papers. International Conference on Consumer Electronics, 2006, pp. 339-340. |
Demirkir, C. et al., “Face detection using boosted tree classifier stages”, Proceedings of the IEEE 12th Signal Processing and Communications Applications Conference, 2004, pp. 575-578. |
Drimbarean, A.F. et al., “Image Processing Techniques to Detect and Filter Objectionable Images based on Skin Tone and Shape Recognition”, International Conference on Consumer Electronics, 2001, pp. 278-279. |
Goodall, C., “Procrustes Methods in the Statistical Analysis of Shape, Stable URL: http://www.jstor.org/stable/2345744”, Journal of the Royal Statistical Society. Series B (Methodological), 1991, pp. 285-339, vol. 53-Issue 2, Blackwell Publishing for the Royal Satistical Society. |
Heisele, B. et al., “Hierarchical Classification and Feature Reduction for Fast Face Detection with Support Vector Machines”, Pattern Recognition, 2003, pp. 2007-2017, vol. 36-Issue 9, Elsevier. |
Kouzani, A.Z., “Illumination-Effects Compensation in Facial Images Systems”, Man and Cybernetics, IEEE SMC '99 Conference Proceedings, 1999, pp. VI-840-VI-844, vol. 6. |
Nayak et al., “Automatic illumination correction for scene enhancement and objection tracking, XP005600656, ISSN: 0262-8856”, Image and Vision Computing, 2006, pp. 949-959, vol. 24-Issue 9. |
Turk, Matthew et al., “Eigenfaces for Recognition”, Journal of Cognitive Neuroscience, 1991, 17 pgs, vol. 3-Issue 1. |
PCT Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration, for PCT Application No. PCT/EP2010/063293, dated Nov. 12, 2010, 13 pages. |
Charay Lerdsudwichai, Mohamed Abdel-Mottaleb and A-Nasser Ansari, Tracking multiple people with recovery from partial and total occlusion, Pattern Recognition, vol. 38, Issue 7, Jul. 2005, pp. 1059-1070, ISSN: 0031-3203 doi>10.1016/j.patcog.2004.11.022. |
Xuefeng Song, and Ram Nevatia, Combined Face-Body Tracking in Indoor Environment, Pattern Recognition, 2004. ICPR 2004, Proceedings of the 17th International Conference on Cambridge, UK Aug. 23-26, 2004, Piscataway, NJ, USA, IEEE, LNKDDOI: 10.1109/Icpr2004.1333728, vol. 4, Aug. 23, 2004, pp. 159-162, Xp010723886, ISBN: 978-0-7695-2128-2. |
Mark Everingham , Josef Sivic and Andrew Zisserman, “Hello! My name is . . . Buffy”—Automatic Naming of Characters in TV Video, Proceedings of the British Machine Vision, Conference (2006), Jan. 1, 2006, pp. 1-10, XP009100754. |
Ming Yang, Fengjun LV, Wei XU, and Yihong Gong, Detection Driven Adaptive Multi-cue Integration for Multiple Human Tracking, IEEE 12th International Conference on Computer Vision (ICCV), Sep. 30, 2009, pp. 1554-1561, XP002607967. |
Hieu T. Nguyen, and Arnold W. Smeulders, Robust Tracking Using Foreground-Background Texture Discrimination, International Journal of Computer Vision, Kluwer Academic Publishers, BO LNKDDOI:10.1007/S11263-006-7067-X, vol. 69, No. 3, May 1, 2006, pp. 277-293, XP019410143, ISSN: 1573-1405. |
Gael Jaffre and Philippe Joly, Improvement of a Person Labelling Method Using Extracted Knowledge on Costume, Jan. 1, 2005, Computer Analysis of Images and Patterns Lecture Notes in Computer Science; LNCS, Springer, Berlin, DE, pp. 489-497, XP019019231, ISBN: 978-3-540-28969-2. |
Number | Date | Country | |
---|---|---|---|
20110081052 A1 | Apr 2011 | US |