The present invention provides an improved method and apparatus for image processing in digital image acquisition devices. In particular the invention provides improved performance and accuracy of face searching and detection in a digital image acquisition device.
Several applications such as US published application no. 2002/0102024 to inventors Jones and Viola relate to fast-face detection in digital images and describe certain algorithms. Jones and Viola describe an algorithm that is based on a cascade of increasingly refined rectangular classifiers that are applied to a detection window within an acquired image. Generally, if all classifiers are satisfied, a face is deemed to have been detected, whereas as soon as one classifier fails, the window is determined not to contain a face.
An alternative technique for face detection is described by Froba, B., Ernst, A., “Face detection with the modified census transform”, in Proceedings of 6th IEEE Intl. Conf. on Automatic Face and Gesture Recognition, 17-19 May 2004 Page(s): 91-96. Although this is similar to Violla-Jones each of the classifiers in a cascade generates a cumulative probability and faces are not rejected if they fail a single stage of the classifier. We remark that there are advantages in combining both types of classifier (i.e. Violla-Jones and modified census) within a single cascaded detector.
Referring to
A search may be performed in a linear fashion with the dx, dy increments being a predetermined function of image resolution and detection window size. Thus, the detection window may be moved across the image with constant increments in x and y directions.
A problem with linear searching occurs when the window size decreases, such when attempting to detect small faces, and the number of sliding windows that are to be as analyzed increases quadratically to the reduction in window size. This results in a compounded slow execution time, making “fast” face detection otherwise unsuitable for real-time embedded implementations.
U.S. application Ser. No. 11/464,083, filed Aug. 11, 2006, which is assigned to the same assignee as the present application, discloses improvements to algorithms such as those described by Jones and Viola, and in particular in generating a precise resolution corresponding to a representation of an image, such as an integral image or a Gaussian image, for subsequent face detection.
A method of detecting a face in an image includes performing face detection within a first window of the image at a first location. A confidence level is obtained from the face detection indicating a probability of the image including a face at or in the vicinity of the first location. Face detection is performed within a second window at a second location that is determined based on the confidence level.
A number of windows that are analyzed is advantageously significantly reduced for a same face detection quality, and so faster face searching is provided, even in the case of small faces, therefore allowing acceptable performance for face detection in real-time embedded implementations such as in digital cameras, mobile phones, digital video cameras and hand held computers.
Embodiments will now be described, by way of example, with reference to the accompanying drawings, in which:
a) illustrates a detection window oscillating diagonally around an initial position;
b) illustrates a smaller scale detection window oscillating transversely around the initial position;
An improved method of face searching and detection in a digital image acquisition device is described that calculates x and/or y increments of a detection window in an adaptive fashion.
In face detection processes, during analysis of a detection window and/or while oscillating around the detection window, a confidence level can be accumulated providing a probabilistic measure of a face being present at the location of the detection window. When the confidence level reaches a preset threshold for a detection window, a face is confirmed for location of the detection window.
Where a face detection process generates such a confidence level for a given location of detection window, in a preferred embodiment, the confidence level is captured and stored as an indicator of the probability of a face existing at the given location. Such probability may reflect confidence that a face has been detected, or confidence that there is no face detected in the window.
Alternatively, where a face detection process applies a sequence of tests each of which produce a Boolean “Face” or “No face” result, the extent to which the face detection process has progressed through the sequence before deciding that no face exists at the location can be taken as equivalent to a confidence level and indicating the probability of a face existing at the given location. For example, where a cascade of classifiers fails to detect a face at a window location at classifier 20 of 32, it could be taken that this location is more likely to include a face (possibly at a different scale or shifted slightly) than where a cascade of classifiers failed to detect a face at a window location at classifier 10 of 32.
Referring now to
Alternatively, if particular regions of an image have been identified through some pre-processing as being more likely to include a face, the detection window can be located at a suitable corner of one such region and the embodiment can be applied to each such region of the image in turn or in parallel. Examples of such pre-processing include identifying regions of the image which include skin as being candidate face regions.
In this regard, it is possible to create a skin map for an acquired image where the value of a pixel within the skin map is determined by its probability of being a skin pixel.
There are many possible techniques for providing a skin map, for example:
(i) “Comparison of Five Color Models in Skin Pixel Classification”, Zarit et al presented at ICCV '99 International Workshop of Recognition, Analysis, and Tracking of Faces and Gestures in Real-Time Systems, contains many references to tests for skin pixels;
(ii) U.S. Pat. No. 4,203,671, Takahashi et al., discloses a method of detecting skin color in an image by identifying pixels falling into an ellipsoid in red, green, blue color space or within an ellipse in two dimensional color space;
(iii) U.S. Pat. No. 7,103,215 describes a method of detecting pornographic images, wherein a color reference database is prepared in LAB color space defining a plurality of colors representing relevant portions of a human body. A questionable image is selected, and sampled pixels are compared with the color reference database. Areas having a matching pixel are subjected to a texture analysis to determine if the pixel is an isolated color or if other comparable pixels surround it; a condition indicating possible skin;
(iv) U.S. Ser. No. 11/624,683 filed Jan. 18, 2007 (Ref: FN185) discloses real-valued skin tests for images in RGB and YCC formats. So, for example, where image information is available in RGB format, the probability of a pixel being skin is a function of the degree to which L exceeds 240, where L=0.3*R+0.59G+0.11B, and/or the degree to which R exceeds G+K and R exceeds B+K where K is a function of image saturation. In YCC format, the probability of a pixel being skin is a function of the degree to which Y exceeds 240, and/or the degree to which Cr exceeds 148.8162−0.1626*Cb+0.4726*K and Cr exceeds 1.2639*Cb−33.7803+0.7133*K, where K is a function of image saturation.
It will also be understood that many different techniques exist to provide a binary skin/not-skin classification (typically based on simple thresholding). So, it can be understood that some pixels may qualify as skin under one binary technique and as not-skin under a second technique. So in alternative implementations, several binary techniques can be combined, so that pixels may be ranked according to a number of criteria to obtain a relative probability that any particular pixel is skin. It is advantageous to weight different skin detection techniques according to image capture conditions, or according to data analyzed from previous image frames.
Where multiple skin classification techniques are implemented in a parallel hardware architecture it becomes possible to combine to outputs of multiple skin classification techniques architecture it becomes possible to combine the outputs of multiple skin classification techniques become available from the imaging sensor. In one preferred embodiment this refined skin probability is represented as a grayscale value, 2N where N>1 (N=1 represents a simple binary mask of skin/not-skin). In any case, once an image pixel is classified by a non-binary algorithm it may be considered as a grayscale representation of skin probability.
In assessing whether various sizes and locations of windows in an image might include portions of skin, it can be advantageous to use the integral image techniques disclosed in US 2002/0102024, Violla-Jones with the skin map probability values produced for an image.
In such an integral image, each element is calculated as the sum of intensities i.e. skin probabilities of all points above and to the left of the point in the image. The total intensity of any sub-window in an image can then be derived by subtracting the integral image value for the top left point of the sub-window from the integral image value for the bottom right point of the sub-window. Also intensities for adjacent sub-windows can be efficiently compared using particular combinations of integral image values from points of the sub-windows.
Thus the techniques employed to construct an integral image for determining the luminance of a rectangular portion of the final image may equally be employed to create a skin probability integral image. Once this integral image skin map (IISM) is created, it enables the skin probability of any rectangular area within the image to be quickly determined by simple arithmetic operations involving the four corner points of the rectangle, rather than having to average skin values over the full rectangle.
In the context of a fast face detector as described in the remainder of this specification, it can be understood that obtaining a rapid calculation of the averaged local skin pixel probability within a sub-window enables the skin probability to be advantageously employed either to confirm a local face region, or to be used as an additional, color sensitive classifier to supplement conventional luminance based Haar or census classifiers.
Alternatively or in combination with detection of skin regions, where the acquired image is one of a stream of images being analyzed, the candidate face regions might be face regions detected in previous frames, such as may be disclosed at U.S. application Ser. No. 11/464,083, (Ref: FN143) filed Aug. 11, 2006.
a illustrates the detection window oscillating diagonally around an initial position (outlined in bold).
Returning to the operation of the main face detector, we note that face detection is applied for the detection window at step 34, and this returns a confidence level for the detection window. The particular manner in which the detection window oscillates around a particular location and the calculation of the confidence level in the preferred embodiment is as follows:
Once a given detection window location has been tested for the presence of a face, the window is sequentially shifted by −dox,−doy; +dox,−doy; +dox,+doy; and −dox,−doy (as shown in
The confidence level for the detection window location is recorded at step 36.
If the detection window has not traversed the entire image/region to be searched at step 38, it is advanced as a function of the confidence level stored for the location at step 40.
In the preferred embodiment, where the confidence level for an immediately previous detection window at the present window size has exceeded a threshold, then the x and y increment for the detection window is decreased.
Referring now to
If a face is not detected in a region following a confidence level triggering at a face-like (but not an actual face) position, the x and y increments return to their original relaxed value, when over the whole extent of a row, the confidence levels do not rise above the threshold level. So for example, in the row after the detection window passes location 10(c), no detection window will produce a confidence level above the threshold and so after this row, the y increment would revert to its relaxed level, even if a face had not been detected at location 10(b).
Once the image and/or its regions have been traversed by a detection window of a given size, unless this has been the smallest detection window at step 42 of
In certain embodiments, when the confidence level for an immediately previous detection window at the present window size exceeds a threshold, a change in dx,dy for a detection window is triggered. However, this change could equally and/or additionally be a function of or be triggered by the confidence level for a bigger detection window or windows at or around the same location.
In certain embodiments, detection windows are applied from the largest to the smallest size and so it is assumed that a given location has been checked by a larger sized detection window before a given sized detection window, so indicating that if a face has not been detected for the larger sized detection window, it is to be found near that location with a smaller sized detection window. Alternatively, it can indicate that even if a face has been found at a given location for a larger sized detection window, there is a chance that the face might be more accurately bounded by a smaller sized detection window around that location when subsequently applied.
As many more windows may be employed when looking for smaller size faces than larger faces, where confidence levels from larger detection windows are used to drive the increments for smaller detection windows, the savings made possible by embodiments of the present invention are greater than if smaller detection windows were applied first.
In the embodiments described above, for a given detection window size, either a large or small x or y increment is employed depending on whether or not a face is likely to be in the vicinity of a detection window location. However, the increment can be varied in any suitable way. So for example, the increment could be made inversely proportional to the confidence level of previous detection windows applied in the region.
Alternatively, instead of returning a quasi-continuous value as described above, the confidence level returned by the face detection process 34 could be discretely-valued indicating either: (i) no face; (ii) possible face; or (iii) face, each causing the advance step 40 to act as set out in relation to
The detection window does not have to move along a row. Instead, its progress in each of the x and y directions may be adjusted from one increment to the next as a function of the confidence level of previous detection windows applied in the region.
The embodiments described above can be implemented in a digital image processing device such a digital stills camera, a digital video camera, camera phone or the like. The embodiments due to their computational efficiency can be implemented within a real-time face detection function which for example enables the device to highlight with a respective boundary (corresponding to a detection window) in a viewfinder faces detected in an acquired image or image stream.
Alternatively or in addition, the embodiments can be implemented within an off-line face detection function either within a digital image processing device or in a connected computing device to which an image is transferred or which has access to the image, to provide more efficient face detection.
Alternatively or in addition, the detected face regions can be employed with image post-processing functions such as red-eye detection and/or correction, or for example face expression detection and/or correction, or face recognition.
Where the detected face regions are employed in facial recognition, as many facial recognition systems remain sensitive to slight variations in either facial rotation or size, it is advantageous to apply post-processing measures in order to optimize the accuracy of facial recognition. This is because, even where frontal face regions are detected and saved, these regions may not be optimally aligned or scaled for the purposes of face recognition. Also, it should be noted that many images captured are consumer images and that subjects in such images will rarely maintain their faces in a squarely facing frontal position at the time of image acquisition.
Where as in the embodiment above, the face detection employed is highly optimized for speed and for the accurate determination of the presence of a face region, face detection is typically not optimized to accurately match the precise scale, rotation or pose of a detected face region.
There are many techniques known in the prior art for achieving such normalization, however, in an embedded imaging device, such as a digital camera, where processing must be both compact in terms of code footprint and efficient resource usage, it can be impractical to deploy more of such complex processing.
Thus, in one embodiment the face detector, already available within the image acquisition device, can be re-purposed for use in post-processing of detected/tracked face regions. In the embodiment, a supplementary frontal face detector which is generally identical to a standard detector, but highly optimized at the training stage to detect only frontal faces is employed. So for example, the frontal face detector would not be suitable for normal face detection/tracking where a more relaxed detector, hereafter referred to as a standard detector is required.
Referring now to
A standard detector is next applied to the expanded region, step 54, but across a smaller range of maximum and minimum scales, and at finer granular resolution than would be employed across a full image.
As an example, at step 54, the detector might scale from 1.1 to 0.9 times the size of the face region determined by the original detection process, step 50, but in increments of 0.025; thus 0.9, 0.925, 0.95, 0.975, 1.00, and so on, and similarly with step size. The goal is to determine a sub-window optimized in scale and alignment within the extracted, expanded face region where the face probability is highest. Ideally, such a sub-window will exceed a 2nd threshold probability for face detection no less than the 1st threshold. If not, and if rotation is not to be applied in an attempt to improve this probability, then this face region is marked as “unreliable” for recognition, step 56.
Where the first or second thresholds are exceeded then either the sub-window for the originally detected face region or the optimized window from step 54 are expanded by say Y=10%<X, step 58.
The frontal face detector is then applied to the expanded region, step 60. If a sub-window with a face detection probability above a third threshold (higher than each of the first and second thresholds is identified), step 62, then that sub-window is marked as “reliable” and is passed on to a recognition process, step 64.
Where the frontal face detection step fails at step 62, but we know there is a high probability face region, then it is likely that one or both of a small rotational or pose normalization is also required to produce a face region suitable for face recognition.
In one embodiment, the original X % expanded face region is next rotated through one of a number of angular displacements, say −0.2, −0.15, −0.1, −0.05, 0.0, +0.05, +0.1, +0.15 and +0.2 radians, step 66, and the fine grained standard face detection and possibly frontal face detection steps are re-applied as before.
Ideally, the face probability will increase above the required 3rd threshold as these angular rotations are applied to the extracted face region and the face region can be marked as “reliable”. It will also be seen that the potentially changing probabilities from face region rotation can also be used to guide the direction of rotation of the region. For example, if a rotation of −0.05 radians increases the face detection probability but not sufficiently, then the next rotation chosen would be −0.1 radians. Whereas if a rotation of −0.05 radians decreases the face detection probability, then the next rotation chosen would be 0.05 radians and if this did not increase the face detection probability, then the face region could be marked as “unreliable” for recognition, step 56
As an alternative or in addition to this in-plane rotation of the face region, an AAM (Active Appearance Model) or equivalent module can be applied to the detected face region in an attempt to provide the required pose normalization to make the face region suitable for face recognition. AAM modules are well known and a suitable module for the present embodiment is disclosed in “Fast and Reliable Active Appearance Model Search for 3-D Face Tracking”, F Dornaika and J Ahlberg, IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics, Vol 34, No. 4, pg 1838-1853, August 2004, although other models based on the original paper by TF Cootes et al “Active Appearance Models” Proc. European Conf. Computer Vision, 1998, pp 484-498 could also be employed.
In this embodiment, the AAM model has two parameters trained for horizontal and vertical pose adjustments, and the AAM model should converge to the face within the detected face region indicating the approximate horizontal and vertical pose of the face. The face region may then be adjusted by superimposing the equivalent AAM model to provide a “straightened” face region rotated out of the plane of the image, step 68.
Again, fine grained standard face detection and frontal face detection steps are re-applied, and if the threshold for the detected face region(s) is not above the required probability, then small incremental adjustments of the horizontal and vertical pose may be stepped through as before until either the frontal face detector probability increases sufficiently to mark the face region as “reliable” or the face region is confirmed to be “unreliable” to use for face recognition purposes.
U.S. patent application Ser. No. 11/752,925 filed May 24, 2007 (Ref: FN172) describes capturing face regions from a preview stream and subsequently aligning and combining these images using super-resolution techniques in order to provide a repair template for portions of a facial region in a main acquired image. These techniques may be advantageously employed, in addition to or as an alternative to the steps above, independently or as part of a post-processing step on a face region in order to bring the face region into a substantially frontal alignment before face recognition.
In other alternative applications for detected face regions, the selected regions may be consecutively applied to a series of images such as preview images, post-view images or a video stream of full- or reduced-resolution images, or combinations thereof, where the confidence level as well as the window locations are passed from one preview image, post-view image, etc., to the next.
While an exemplary drawings and specific embodiments of the present invention have 10 been described and illustrated, it is to be understood that that the scope of the present invention is not to be limited to the particular embodiments discussed.
In addition, in methods that may be performed according to preferred embodiments herein and that may have been described above, the operations have been described in selected typographical sequences. However, the sequences have been selected and so ordered for typographical convenience and are not intended to imply any particular order for performing the operations, except for those where a particular order may be expressly set forth or where those of ordinary skill in the art may deem a particular order to be necessary.
This application claims the benefit and priority under 35 U.S.C. §120 as a Continuation of U.S. patent application Ser. No. 14/177,212 filed Feb. 10, 2014, which claims priority to continuation of Ser. No. 12/374,040 (now U.S. Pat. No. 8,649,604), titled “Face Searching and Detection in A Digital Image Acquisition Device,” filed Jun. 28, 2010, which claims the benefit and priority of PCT Application Serial No. PCT/EP2007/006540, filed Jul. 23, 2007, which claims priority to U.S. Provisional Application Ser. No. 60/892,883, filed Mar. 5, 2007. The contents of all of these documents are incorporated herein by reference, as if fully set forth herein. The applicants hereby rescind any disclaimer of claim scope in the parent application or the prosecution history thereof and advise the USPTO that the claims in this application may be broader than any claim in the parent applications.
Number | Name | Date | Kind |
---|---|---|---|
4047187 | Mashimo | Sep 1977 | A |
4317991 | Stauffer | Mar 1982 | A |
4367027 | Stauffer | Jan 1983 | A |
RE31370 | Mashimo et al. | Sep 1983 | E |
4448510 | Murakoshi | May 1984 | A |
4638364 | Hiramatsu | Jan 1987 | A |
4796043 | Izumi | Jan 1989 | A |
4853788 | Murashima et al. | Aug 1989 | A |
4922346 | Hidaka et al. | May 1990 | A |
4967279 | Murashima | Oct 1990 | A |
4970663 | Bedell et al. | Nov 1990 | A |
4970683 | Harshaw et al. | Nov 1990 | A |
4975969 | Tal | Dec 1990 | A |
5003339 | Kikucki et al. | Mar 1991 | A |
5008946 | Ando | Apr 1991 | A |
5018017 | Sasaki | May 1991 | A |
RE33682 | Hiramatsu | Sep 1991 | E |
5051770 | Cornuejols | Sep 1991 | A |
5063603 | Burt | Nov 1991 | A |
5111231 | Tokunaga | May 1992 | A |
5150432 | Ueno et al. | Sep 1992 | A |
5161204 | Hutcheson et al. | Nov 1992 | A |
5164831 | Kuchta | Nov 1992 | A |
5164992 | Turk et al. | Nov 1992 | A |
5227837 | Terasita | Jul 1993 | A |
5280530 | Trew | Jan 1994 | A |
5291234 | Shindo et al. | Mar 1994 | A |
5305048 | Suzuki et al. | Apr 1994 | A |
5311240 | Wheeler | May 1994 | A |
5331544 | Lu et al. | Jul 1994 | A |
5353058 | Takei | Oct 1994 | A |
5384615 | Hsieh et al. | Jan 1995 | A |
5384912 | Orgrinc | Jan 1995 | A |
5430809 | Tomitaka | Jul 1995 | A |
5432863 | Benati et al. | Jul 1995 | A |
5450504 | Calia | Sep 1995 | A |
5465308 | Hutcheson et al. | Nov 1995 | A |
5488429 | Kojima et al. | Jan 1996 | A |
5493409 | Maeda et al. | Feb 1996 | A |
5496106 | Anderson | Mar 1996 | A |
5576759 | Kawamura | Nov 1996 | A |
5633678 | Parulski | May 1997 | A |
5638136 | Kojima et al. | Jun 1997 | A |
5638139 | Clatanoff et al. | Jun 1997 | A |
5652669 | Liedenbaum et al. | Jul 1997 | A |
5680481 | Prasad | Oct 1997 | A |
5684509 | Hatanaka | Nov 1997 | A |
5706362 | Yabe | Jan 1998 | A |
5710833 | Moghaddam et al. | Jan 1998 | A |
5715325 | Bang et al. | Feb 1998 | A |
5724456 | Boyack et al. | Mar 1998 | A |
5745668 | Poggio et al. | Apr 1998 | A |
5764803 | Jacquin et al. | Jun 1998 | A |
5771307 | Lu et al. | Jun 1998 | A |
5774129 | Poggio et al. | Jun 1998 | A |
5774747 | Ishihara | Jun 1998 | A |
5774754 | Ootsuka | Jun 1998 | A |
5781650 | Lobo et al. | Jul 1998 | A |
5790710 | Price et al. | Aug 1998 | A |
5802208 | Podilchuk | Sep 1998 | A |
5812193 | Tomitaka et al. | Sep 1998 | A |
5818975 | Goodwin et al. | Oct 1998 | A |
5835616 | Lobo et al. | Nov 1998 | A |
5842194 | Arbuckle | Nov 1998 | A |
5844573 | Poggio et al. | Dec 1998 | A |
5850463 | Horii | Dec 1998 | A |
5850470 | Kung et al. | Dec 1998 | A |
5852669 | Eleftheriadis et al. | Dec 1998 | A |
5852823 | De Bonet | Dec 1998 | A |
RE36041 | Turk et al. | Jan 1999 | E |
5870138 | Smith et al. | Feb 1999 | A |
5905807 | Kado et al. | May 1999 | A |
5911139 | Jain et al. | Jun 1999 | A |
5966549 | Hara et al. | Oct 1999 | A |
5978519 | Bollman et al. | Nov 1999 | A |
5982912 | Fukui et al. | Nov 1999 | A |
5991456 | Rahman et al. | Nov 1999 | A |
6028960 | Graf et al. | Feb 2000 | A |
6035074 | Fujimoto et al. | Mar 2000 | A |
6053268 | Yamada | Apr 2000 | A |
6061055 | Marks | May 2000 | A |
6072094 | Karady et al. | Jun 2000 | A |
6097470 | Buhr et al. | Aug 2000 | A |
6101271 | Yamashita et al. | Aug 2000 | A |
6108437 | Lin | Aug 2000 | A |
6128397 | Baluja | Oct 2000 | A |
6128398 | Kuperstein et al. | Oct 2000 | A |
6134339 | Luo | Oct 2000 | A |
6148092 | Qian | Nov 2000 | A |
6151073 | Steinberg | Nov 2000 | A |
6173068 | Prokoski | Jan 2001 | B1 |
6188777 | Darrell et al. | Feb 2001 | B1 |
6192149 | Eschbach et al. | Feb 2001 | B1 |
6215898 | Woodfill et al. | Apr 2001 | B1 |
6246779 | Fukui et al. | Jun 2001 | B1 |
6246790 | Huang et al. | Jun 2001 | B1 |
6249315 | Holm | Jun 2001 | B1 |
6252976 | Schildkraut et al. | Jun 2001 | B1 |
6263113 | Abdel-Mottaleb et al. | Jul 2001 | B1 |
6268939 | Klassen et al. | Jul 2001 | B1 |
6278491 | Wang et al. | Aug 2001 | B1 |
6282317 | Luo et al. | Aug 2001 | B1 |
6301370 | Steffens et al. | Oct 2001 | B1 |
6301440 | Bolle et al. | Oct 2001 | B1 |
6332033 | Qian | Dec 2001 | B1 |
6349373 | Sitka et al. | Feb 2002 | B2 |
6351556 | Loui et al. | Feb 2002 | B1 |
6389155 | Funayama et al. | May 2002 | B2 |
6393148 | Bhaskar | May 2002 | B1 |
6400830 | Christian | Jun 2002 | B1 |
6404900 | Qian et al. | Jun 2002 | B1 |
6407777 | Deluca | Jun 2002 | B1 |
6421468 | Ratnakar et al. | Jul 2002 | B1 |
6426779 | Noguchi et al. | Jul 2002 | B1 |
6438234 | Gisin et al. | Aug 2002 | B1 |
6438264 | Gallagher et al. | Aug 2002 | B1 |
6445819 | Kinjo | Sep 2002 | B1 |
6456732 | Kimbell | Sep 2002 | B1 |
6456737 | Woodfill et al. | Sep 2002 | B1 |
6459436 | Kumada | Oct 2002 | B1 |
6463163 | Kresch | Oct 2002 | B1 |
6473199 | Gilman et al. | Oct 2002 | B1 |
6501857 | Gotsman et al. | Dec 2002 | B1 |
6502107 | Nishida | Dec 2002 | B1 |
6504942 | Hong | Jan 2003 | B1 |
6504951 | Luo | Jan 2003 | B1 |
6516154 | Parulski et al. | Feb 2003 | B1 |
6526161 | Yan | Feb 2003 | B1 |
6529630 | Kinjo | Mar 2003 | B1 |
6549641 | Ishikawa et al. | Apr 2003 | B2 |
6556708 | Christian | Apr 2003 | B1 |
6564225 | Brogliatti et al. | May 2003 | B1 |
6567983 | Shimori | May 2003 | B1 |
6587119 | Anderson et al. | Jul 2003 | B1 |
6606398 | Cooper | Aug 2003 | B2 |
6633655 | Hong et al. | Oct 2003 | B1 |
6661907 | Ho et al. | Dec 2003 | B2 |
6697503 | Matsuo | Feb 2004 | B2 |
6697504 | Tsai | Feb 2004 | B2 |
6700999 | Yang | Mar 2004 | B1 |
6747690 | Molgaard | Jun 2004 | B2 |
6754368 | Cohen | Jun 2004 | B1 |
6754389 | Dimitrova | Jun 2004 | B1 |
6760465 | Mcveigh | Jul 2004 | B2 |
6760485 | Gilman et al. | Jul 2004 | B1 |
6765612 | Anderson | Jul 2004 | B1 |
6778216 | Lin | Aug 2004 | B1 |
6792135 | Toyama | Sep 2004 | B1 |
6801250 | Miyashita | Oct 2004 | B1 |
6816611 | Hagiwara et al. | Nov 2004 | B1 |
6829009 | Sugimoto | Dec 2004 | B2 |
6850274 | Silverbrook | Feb 2005 | B1 |
6856708 | Aoki | Feb 2005 | B1 |
6876755 | Taylor | Apr 2005 | B1 |
6879705 | Tao | Apr 2005 | B1 |
6900840 | Schinner et al. | May 2005 | B1 |
6937773 | Nozawa et al. | Aug 2005 | B1 |
6940545 | Ray et al. | Sep 2005 | B1 |
6959109 | Moustafa | Oct 2005 | B2 |
6965684 | Chen | Nov 2005 | B2 |
6977687 | Suh | Dec 2005 | B1 |
6993157 | Oue | Jan 2006 | B1 |
7003135 | Hsieh | Feb 2006 | B2 |
7020337 | Viola | Mar 2006 | B2 |
7027619 | Pavlidis | Apr 2006 | B2 |
7027621 | Prokoski | Apr 2006 | B1 |
7034848 | Sobol | Apr 2006 | B2 |
7035456 | Lestideau | Apr 2006 | B2 |
7035462 | White et al. | Apr 2006 | B2 |
7035467 | Nicponski | Apr 2006 | B2 |
7038709 | Verghese | May 2006 | B1 |
7038715 | Flinchbaugh | May 2006 | B1 |
7039222 | Simon et al. | May 2006 | B2 |
7042511 | Lin | May 2006 | B2 |
7043465 | Prim | May 2006 | B2 |
7050607 | Li | May 2006 | B2 |
7057653 | Kubo | Jun 2006 | B1 |
7064776 | Sumi | Jun 2006 | B2 |
7082212 | Liu | Jul 2006 | B2 |
7088865 | Ejima et al. | Aug 2006 | B2 |
7099510 | Jones | Aug 2006 | B2 |
7106374 | Bandera et al. | Sep 2006 | B1 |
7106887 | Kinjo | Sep 2006 | B2 |
7110569 | Brodsky et al. | Sep 2006 | B2 |
7110575 | Chen et al. | Sep 2006 | B2 |
7113641 | Eckes | Sep 2006 | B1 |
7119838 | Zanzucchi | Oct 2006 | B2 |
7120279 | Chen | Oct 2006 | B2 |
7151843 | Rui | Dec 2006 | B2 |
7158680 | Pace | Jan 2007 | B2 |
7162076 | Liu | Jan 2007 | B2 |
7162101 | Itokawa | Jan 2007 | B2 |
7171023 | Kim | Jan 2007 | B2 |
7171025 | Rui | Jan 2007 | B2 |
7190829 | Zhang | Mar 2007 | B2 |
7194114 | Schneiderman | Mar 2007 | B2 |
7200249 | Okubo | Apr 2007 | B2 |
7218759 | Ho | May 2007 | B1 |
7221805 | Bachelder | May 2007 | B1 |
7227976 | Jung et al. | Jun 2007 | B1 |
7254257 | Kim | Aug 2007 | B2 |
7269292 | Steinberg | Sep 2007 | B2 |
7274822 | Zhang | Sep 2007 | B2 |
7274832 | Nicponski | Sep 2007 | B2 |
7295233 | Steinberg et al. | Nov 2007 | B2 |
7315630 | Steinberg et al. | Jan 2008 | B2 |
7315631 | Corcoran et al. | Jan 2008 | B1 |
7317815 | Steinberg et al. | Jan 2008 | B2 |
7336821 | Ciuc et al. | Feb 2008 | B2 |
7362368 | Steinberg et al. | Apr 2008 | B2 |
7379621 | Aoki | May 2008 | B2 |
7394943 | Kinney et al. | Jul 2008 | B2 |
7403643 | Ianculescu et al. | Jul 2008 | B2 |
7440593 | Steinberg et al. | Oct 2008 | B1 |
7515740 | Corcoran et al. | Apr 2009 | B2 |
7565030 | Steinberg et al. | Jul 2009 | B2 |
7587085 | Steinberg et al. | Sep 2009 | B2 |
7590305 | Steinberg et al. | Sep 2009 | B2 |
7692696 | Steinberg et al. | Apr 2010 | B2 |
7715597 | Costache et al. | May 2010 | B2 |
7792335 | Steinberg et al. | Sep 2010 | B2 |
7844076 | Corcoran et al. | Nov 2010 | B2 |
7868922 | Ciuc et al. | Jan 2011 | B2 |
7889886 | Matsugu et al. | Feb 2011 | B2 |
8180106 | Matsugu et al. | May 2012 | B2 |
20010005222 | Yamaguchi | Jun 2001 | A1 |
20010028731 | Covell et al. | Oct 2001 | A1 |
20010031142 | Whiteside | Oct 2001 | A1 |
20010038712 | Loce et al. | Nov 2001 | A1 |
20010038714 | Masumoto et al. | Nov 2001 | A1 |
20020081026 | Izume et al. | Jun 2002 | A1 |
20020105662 | Patton et al. | Aug 2002 | A1 |
20020106114 | Yan et al. | Aug 2002 | A1 |
20020114535 | Luo | Aug 2002 | A1 |
20020118287 | Grosvenor et al. | Aug 2002 | A1 |
20020136433 | Lin | Sep 2002 | A1 |
20020150662 | Dewis et al. | Oct 2002 | A1 |
20020168108 | Loui et al. | Nov 2002 | A1 |
20020172419 | Lin et al. | Nov 2002 | A1 |
20020176609 | Hsieh | Nov 2002 | A1 |
20020181801 | Needham et al. | Dec 2002 | A1 |
20020191861 | Cheatle | Dec 2002 | A1 |
20030023974 | Dagtas et al. | Jan 2003 | A1 |
20030025812 | Slatter | Feb 2003 | A1 |
20030035573 | Duta et al. | Feb 2003 | A1 |
20030048950 | Savakis et al. | Mar 2003 | A1 |
20030052991 | Stavely et al. | Mar 2003 | A1 |
20030059107 | Sun et al. | Mar 2003 | A1 |
20030059121 | Savakis et al. | Mar 2003 | A1 |
20030071908 | Sannoh et al. | Apr 2003 | A1 |
20030084065 | Lin et al. | May 2003 | A1 |
20030107649 | Flickner et al. | Jun 2003 | A1 |
20030118216 | Goldberg | Jun 2003 | A1 |
20030123713 | Geng | Jul 2003 | A1 |
20030123751 | Krishnamurthy et al. | Jul 2003 | A1 |
20030142209 | Yamazaki et al. | Jul 2003 | A1 |
20030151674 | Lin | Aug 2003 | A1 |
20030169907 | Edwards et al. | Sep 2003 | A1 |
20030202715 | Kinjo | Oct 2003 | A1 |
20040017938 | Cooper et al. | Jan 2004 | A1 |
20040022435 | Ishida | Feb 2004 | A1 |
20040095359 | Simon et al. | May 2004 | A1 |
20040120391 | Lin et al. | Jun 2004 | A1 |
20040120399 | Kato | Jun 2004 | A1 |
20040170397 | Ono | Sep 2004 | A1 |
20040175021 | Porter et al. | Sep 2004 | A1 |
20040179719 | Chen et al. | Sep 2004 | A1 |
20040218832 | Luo et al. | Nov 2004 | A1 |
20040223649 | Zacks et al. | Nov 2004 | A1 |
20040228505 | Sugimoto | Nov 2004 | A1 |
20040264744 | Zhang et al. | Dec 2004 | A1 |
20050013479 | Xiao | Jan 2005 | A1 |
20050041121 | Steinberg et al. | Feb 2005 | A1 |
20050068446 | Steinberg et al. | Mar 2005 | A1 |
20050068452 | Steinberg et al. | Mar 2005 | A1 |
20050069208 | Morisada | Mar 2005 | A1 |
20050089218 | Chiba | Apr 2005 | A1 |
20050104848 | Yamaguchi et al. | May 2005 | A1 |
20050105780 | Ioffe | May 2005 | A1 |
20050129278 | Rui | Jun 2005 | A1 |
20050140801 | Prilutsky et al. | Jun 2005 | A1 |
20050185054 | Edwards et al. | Aug 2005 | A1 |
20050275721 | Ishii | Dec 2005 | A1 |
20060006077 | Mosher et al. | Jan 2006 | A1 |
20060008152 | Kumar et al. | Jan 2006 | A1 |
20060008173 | Matsugu et al. | Jan 2006 | A1 |
20060018517 | Chen et al. | Jan 2006 | A1 |
20060029265 | Kim et al. | Feb 2006 | A1 |
20060039690 | Steinberg et al. | Feb 2006 | A1 |
20060050933 | Adam et al. | Mar 2006 | A1 |
20060072811 | Porter et al. | Apr 2006 | A1 |
20060098875 | Sugimoto | May 2006 | A1 |
20060098890 | Steinberg et al. | May 2006 | A1 |
20060120599 | Steinberg et al. | Jun 2006 | A1 |
20060140455 | Costache et al. | Jun 2006 | A1 |
20060147192 | Zhang et al. | Jul 2006 | A1 |
20060177100 | Zhu | Aug 2006 | A1 |
20060177131 | Porikli | Aug 2006 | A1 |
20060203106 | Lawrence et al. | Sep 2006 | A1 |
20060203107 | Steinberg et al. | Sep 2006 | A1 |
20060203108 | Steinberg et al. | Sep 2006 | A1 |
20060204034 | Steinberg et al. | Sep 2006 | A1 |
20060204054 | Steinberg et al. | Sep 2006 | A1 |
20060204055 | Steinberg et al. | Sep 2006 | A1 |
20060204056 | Steinberg et al. | Sep 2006 | A1 |
20060204057 | Steinberg | Sep 2006 | A1 |
20060204058 | Kim et al. | Sep 2006 | A1 |
20060204110 | Steinberg et al. | Sep 2006 | A1 |
20060210264 | Saga | Sep 2006 | A1 |
20060215924 | Steinberg et al. | Sep 2006 | A1 |
20060257047 | Kameyama et al. | Nov 2006 | A1 |
20060268150 | Kameyama et al. | Nov 2006 | A1 |
20060269270 | Yoda et al. | Nov 2006 | A1 |
20060280380 | Li | Dec 2006 | A1 |
20060285754 | Steinberg et al. | Dec 2006 | A1 |
20060291739 | Li | Dec 2006 | A1 |
20070018966 | Blythe et al. | Jan 2007 | A1 |
20070070440 | Li et al. | Mar 2007 | A1 |
20070071347 | Li et al. | Mar 2007 | A1 |
20070091203 | Peker | Apr 2007 | A1 |
20070098303 | Gallagher | May 2007 | A1 |
20070110305 | Corcoran et al. | May 2007 | A1 |
20070116379 | Corcoran et al. | May 2007 | A1 |
20070116380 | Ciuc et al. | May 2007 | A1 |
20070122056 | Steinberg et al. | May 2007 | A1 |
20070133901 | Aiso | Jun 2007 | A1 |
20070154095 | Cao | Jul 2007 | A1 |
20070154096 | Cao | Jul 2007 | A1 |
20070160307 | Steinberg et al. | Jul 2007 | A1 |
20070189606 | Ciuc et al. | Aug 2007 | A1 |
20070189748 | Drimbarean et al. | Aug 2007 | A1 |
20070189757 | Steinberg et al. | Aug 2007 | A1 |
20070201724 | Steinberg et al. | Aug 2007 | A1 |
20070269108 | Steinberg et al. | Nov 2007 | A1 |
20070296833 | Corcoran et al. | Dec 2007 | A1 |
20080013798 | Ionita et al. | Jan 2008 | A1 |
20080037827 | Corcoran et al. | Feb 2008 | A1 |
20080037838 | Ianculescu et al. | Feb 2008 | A1 |
20080037839 | Corcoran et al. | Feb 2008 | A1 |
20080037840 | Steinberg et al. | Feb 2008 | A1 |
20080043122 | Steinberg et al. | Feb 2008 | A1 |
20080049970 | Ciuc et al. | Feb 2008 | A1 |
20080055433 | Steinberg et al. | Mar 2008 | A1 |
20080075385 | David et al. | Mar 2008 | A1 |
20080107341 | Lu | May 2008 | A1 |
20080144966 | Steinberg | Jun 2008 | A1 |
20080175481 | Petrescu et al. | Jul 2008 | A1 |
20080205712 | Ionita et al. | Aug 2008 | A1 |
20080240555 | Nanu et al. | Oct 2008 | A1 |
Number | Date | Country |
---|---|---|
1128316 | Aug 2001 | EP |
1626569 | Feb 2006 | EP |
1626569 | Feb 2006 | EP |
1887511 | Feb 2008 | EP |
2370438 | Jun 2002 | GB |
5260360 | Oct 1993 | JP |
11-146405 | May 1999 | JP |
2002-015311 | Jan 2002 | JP |
2002-024811 | Jan 2002 | JP |
2002-150287 | May 2002 | JP |
2004-062651 | Feb 2004 | JP |
25164475 | Jun 2005 | JP |
2005-316743 | Nov 2005 | JP |
26005662 | Jan 2006 | JP |
2006508463 | Mar 2006 | JP |
2006-119817 | May 2006 | JP |
2006-254415 | Sep 2006 | JP |
26254358 | Sep 2006 | JP |
10-2005-0041772 | May 2005 | KR |
WO02052835 | Jul 2002 | WO |
WO2007095477 | Aug 2007 | WO |
WO2007095477 | Aug 2007 | WO |
WO2007095483 | Aug 2007 | WO |
WO2007095553 | Aug 2007 | WO |
WO2007095553 | Aug 2007 | WO |
WO2007142621 | Dec 2007 | WO |
WO2008015586 | Feb 2008 | WO |
WO2008015586 | Feb 2008 | WO |
WO2008018887 | Feb 2008 | WO |
WO2008023280 | Feb 2008 | WO |
WO2008104549 | Sep 2008 | WO |
WO 2008107002 | Dec 2008 | WO |
Entry |
---|
PCT Transmittal of International Preliminary Examination Report, International Preliminary on Patentablity, Chapter II of the Patent Cooperation Treaty, for PCT Application No. PCT/EP2007/006540, report dated Apr. 3, 2009, 24 pages. |
Communication from the Examining Division, dated Jun. 27, 2012, for European patent application No. 07 765 248.5, 4 pages. |
Letter on behalf of the Applicant, dated Dec. 15, 2009, for European patent application No. 07 765 248.5, including Amended claims filed after receipt of (European) search report, 18 pages. |
Bernhard Froba, Andreas Ernst: “Face detection with the modified census transform”, Proceedings of the Sixth IEEE International Conference on Automatic Face and Gesture Recognition, 2004, pp. 91-96, XP002455697. |
Raphael Feraud, Olivier J. Bernier, Jean-Emmanuel Viallet, and Michel Collobert: “A Fast and Accurate Face Detector Based on Neural Networks” IEEE Transactions on Pattern Analysis and Machine Intelligence, IEEE Service Center, Los Alamitos, CA, US, vol. 23, No. 1, Jan. 1, 2001, pp. 42-53, XP001008995, ISSN: 0162-8828. |
Bernhard Froba, Andreas Ernst, Christian Kulblbeck.: “Real time face detection” Proceedings of Lasted “Signal and Image Processing”, Kauai, Hawail, [Online] 2002, pp. 1-6, XP002455698, Retrieved from the Internet:URL:http://www.embassi.de/publi/veroeffent/Froeba.pdf> [retrieved on Oct. 23, 2007]. |
F. Smeraldi, J. Bigun: “Facial feature detection by saccadic exploration of the Gabor decomposition”, International Conference on Image Processing, Chicago, IL, USA, Oct. 4-7, 1998, vol. 3, Oct. 4, 1998, pp. 163-167, XP010586874, ISBN: 0-8186-8821-1. |
Nathan Mekuz, Konstantinos G. Derpanis, and John K. Tsotsos: “Adaptive Step Size Window Matching for Detection” Proceedings of the 18th International Conference on Pattern Recognition, Hong Kong, China, vol. 2, Aug. 2006, pp. 259-262, XP002455696. : “Adaptive Step Size Window Matching for Detection” Proceedings of the 18th International Conference on Pattern Recognition, Hong Kong, China, vol. 2, Aug. 2006, pp. 259-262, XP002455696. |
Hanjin Ryu, Ja-Cheon Yoon, Seung Soo Chun, Sanghoon Sull: “Coarse-to-Fine Classification for Image-Based Face Detection” Image and Video Retrieval, Lecture Notes in Computer Science, LNCS, Springer-Verlag Berlin Heidelberg 2006, vol. 4071, Jul. 2006, pp. 291-299, XP019036040, ISBN: 3-540-36018-2. |
Huang, J. and Gutta, S., Detection of human faces using decision trees, 2nd International Conference on Automatic Face and Gesture Recognition (FG '96). p. 248, IEEE Xplore, http://doi.ieeecomputersociety.org/10.1109/AFGR.1996.557272. |
Jones, M., Viola, P., Fast multi-view face detection, Mitsubishi Electric Research Lab, 2003. http://www.merl.com/papers/docs/TR2003-96.pdf. |
Rowley, H.A., Baluja, S. Kanade, T. , Neural network-based face detection, IEEE Transactions on Pattern Analysis and Machine Intelligence, Jan. 1998, vol. 20, Issue: 1, pp. 23-38, ISSN: 0162-8828, DOI: 10.1109/34.655647, Posted online: Aug. 6, 2002. http://ieeexplore.ieee.org/xpl/freeabs—all.jsp?arnumber=655647&isnumber=14286. |
Feng, G. C. and Yuen, P.C., Pattern Recognition 34 (2001), pp. 95-109. http://digitalimaging.inf.brad.ac.uk/publication/pr34-1.pdf. |
Bradski Gary et al., “Learning-Based Computer Vision with Intel's Open Source Computer Vision Library”, Intel Technology, 2005, pp. 119-130, vol. 9—Issue 2. |
Corcoran, P. et al., “Automatic Indexing of Consumer Image Collections Using Person Recognition Techniques”, Digest of Technical Papers. International Conference on Consumer Electronics, 2005, pp. 127-128. |
Costache, G. et al., “In-Camera Person-Indexing of Digital Images”, Digest of Technical Papers. International Conference on Consumer Electronics, 2006, pp. 339-340. |
Demirkir, C. et al., “Face detection using boosted tree classifier stages”, Proceedings of the IEEE 12th Signal Processing and Communications Applications Conference, 2004, pp. 575-578. |
Drimbarean, A.F. et al., “Image Processing Techniques to Detect and Filter Objectionable Images based on Skin Tone and Shape Recognition”, International Conference on Consumer Electronics, 2001, pp. 278-279. |
Viola, P. et al., “Rapid Object Detection using a Boosted Cascade of Simple Features”, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2001, pp. I-511-I-518, vol. 1. |
Viola, P. et al., “Robust Real-Time Face Detection”, International Journal of Computer Vision, 2004, pp. 137-154, vol. 57—Issue 2, Kluwer Academic Publishers. |
Xin He et al., “Real-Time Human Face Detection in Color Image”, International Conference on Machine Learning and Cybernetics, 2003, pp. 2915-2920, vol. 5. |
Zhao, W. et al., “Face recognition: A literature survey, ISSN: 0360-0300, http://portal.acm.org/citation.cfm?id=954342andcoll=GUIDEanddl=GUIDEandCFID=680-9268andCFTOKEN=82843223.”, ACM Computing Surveys (CSUR) archive, 2003, pp. 399-458, vol. 35—Issue 4, ACM Press. |
Zhu Qiang et al., “Fast Human Detection Using a Cascade of Histograms of Oriented Gradients”, Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2006, pp. 1491-1498, IEEE Computer Society. |
Aoki, Hiroyuki et al., “An Image Storage System Using Complex-Valued Associative Memories, Abstract printed from http://csdl.computer.org/comp/proceedings/icpr/2000/0750/02/07502626abs.htm”, International Conference on Pattern Recognition (ICPR '00), 2000, vol. 2. |
Batur et al., “Adaptive Active Appearance Models”, IEEE Transactions on Image Processing, 2005, pp. 1707-1721, vol. 14—Issue I 1. |
Beraldin, J.A. et al., “Object Model Creation from Multiple Range Images: Acquisition, Calibration, Model Building and Verification, Abstract printed from http://csdl.computer.org/comp/proceedings/nrc/1997/7943/00/79430326abs.htm”, Intl. Conference on Recent Advances in 3-D Digital Imaging and Modeling 1997. |
Beymer, D., “Pose-Invariant face Recognition Using Real and Virtual Views, A.I. Technical Report No. 1574”, MA Institute of Technology Artificial Intelligence Lab., 1996, pp. 1-176. |
Buenaposada, J., “Efficiently estimating 1-3,16 facial expression and illumination in appearance—based tracking, Retrieved from the Internet: URL:http://www.bmva.ac.uk/bmvc/2006/ [retrieved on Sep. 1, 2008]”. Proc. British machine vision conference, 2006. |
Chang, T., “Texture Analysis and Classification with Tree-Structured Wavelet Transform”, IEEE Transactions on Image Processing, 1993, pp. 429-441, vol. 2—Issue 4. |
Cootes T. et al., “Modeling Facial Shape and Appearance, S. Li and K. K. Jain (Eds.): “Handbook of face recognition”, XP002494037”, 2005, Chapter 3, Springer. |
Cootes, T.F. et al., “A comparative evaluation of active appearance model algorithms”, Proc. 9th British Machine Vison Conference. British Machine Vision Association, 1998, pp. 680-689. |
Cootes. T.F. et al., “On representing edge structure for model matching”, Proc. IEEE Computer Vision and Pattern Recognition, 2001, pp. 1114-1119. |
Crowley, J. et al., “Multi-modal tracking of faces for video communication, http://citeseer.ist.psu.edu/crowley97multimodal.html”, In Computer Vision and Patent Recognition, 1997. |
Dalton, John, “Digital Cameras and Electronic Color Image Acquisition, Abstract printed from http://csdl.computer.org/comp/proceedings/compcon/1996/7414/00/74140431abs.htm”, C0MPC0N Spring '96—41st IEEE International Conference, 1996. |
Donner, Rene et al., “Fast Active Appearance Model Search Using Canonical Correlation Analysis”, IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, pp. 1690-1694, vol. 28—Issue 10. |
Edwards, G.J. et al., “Advances in active appearance models”, International Conference on Computer Vision (ICCV'99), 1999, pp. 137-142. |
Edwards, G.J. et al., “Learning to identify and track faces in image sequences, Automatic Face and Gesture Recognition”, IEEE Comput. Soc, 1998, pp. 260-265. |
Fernandez, Anna T. et al., “Synthetic Elevation Beamforming and Image Acquisition Capabilities Using an 8×128 1.75D Array, Abstract Printed from http://www.ieee-uffc.org/archive/uffc/trans/toc/abs/03/t0310040.htm”, The Technical Institute of Electrical and Electronics Engineers. |
Garnaoui, H.H. et al., “Visual Masking and the Design of Magnetic Resonance Image Acquisition, Abstract printed from http://csdl.computer.org/comp/proceedings/icip/1995/7310/01/73100625abs.htm”, International Conference on Image Processing, 1995, vol. 1. |
Gaubatz, Matthew et al., “Automatic Red-Eye Detection and Correction”, IEEE ICIP, Proceedings 2002 Intl. Conference on Image Processing, 2002, pp. 1-804-1-807, vol. 2—Issue 3. |
Gerbrands, J., “On the Relationships Between SVD, KLT, and PCA”, Pattern Recognition, 1981, pp. 375-381. vol. 14, Nos. 1-6. |
Goodall, C., “Procrustes Methods in the Statistical Analysis of Shape, Stable URL: http://www.jstor.org/stable/2345744”, Journal of the Royal Statistical Society. Series B (Methodological), 1991, pp. 285-339, vol. 53—Issue 2, Blackwell Publishing for the Royal Statistical Society. |
Hou, Xinwen et al., “Direct Appearance Models”, IEEE, 2001, pp. I-828-I-833. |
Hu, Wen-Chen et al., “A Line String Image Representation for Image Storage and Retrieval, Abstract printed from http://csdl.computer.oro/comp/proceedings/icmcs/1997/7819/00/78190434abs.htm”, International Conference on Multimedia Computing and systems, 1997. |
Huang et al., “Image Indexing Using Color Correlograms”, Proceedings of the 1997 Conference on Computer Vision and Pattern Recognition (CVPR '97), 1997, pp. 762. |
Huang, J. et al., “Detection of human faces using decision trees, http://doLieeecomputersociety.org/10.1109/Recognition”, 2nd International Conference on Automatic Face and Gesture Recognition (FG '96), IEEE Xplore, 2001, p. 248. |
Huber, Reinhold et al., “Adaptive Aperture Control for Image Acquisition, Abstract printed from http://csdl.computer.org/comp/proceedings/wacv/2002/1858/00/18580320abs.htm. cited by other”, Sixth IEEE Workshop on Applications of Computer Vision, 2002. |
Jebara, T. S. et al., “3D Pose Estimation and Normalization for Face Recognition, A Thesis submitted to the Faculty of Graduate Studies and Research in Partial fulfillment of the requirements of the degree of Bachelor of Engineering”, Dept. of Electrical Engineering, 1996, pp. 1-121, McGill University. |
Jones, M et al., “Fast multi-view face detection, http://www.merl.com/papers/docs/TR2003-96.pdf”, Mitsubishi Electric Research Lab, 2003, 10 pgs. |
Kang, Sing Bing et al., “A Multibaseline Stereo System with Active Illumination and Real-Time Image Acquisition, Abstract printed from http://csdl.computer.org/comp/proceedings/iccv/1995/7042/00/70420088abs.htm”, Fifth International Conference on Computer Vision, 1995. |
Kita, Nobuyuki et al., “Archiving Technology for Plant Inspection Images Captured by Mobile Active Cameras —4D Visible Memory, Abstract printed from http://csdl.computer.org/comp/proceedings/3dpvt/2002/1521/00/15210208abs.htm”, 1st International Symposium on 3D Data Processing Visualization and Transmission (3DPVT '02), 2002. |
Kouzani, A.Z., “Illumination-Effects Compensation in Facial Images Systems”, Man and Cybernetics, IEEE SMC '99 Conference Proceedings, 1999, pp. VI-840-VI-844, vol. 6. |
Krishnan, Arun, “Panoramic Image Acquisition, Abstract printed from http://csdl.computer.org/comp/proceedings/cvpr/1996/7258/00/72580379abs.htm”, Conference on Computer Vision and Pattern Recognition (CVPR '96), 1996. |
Lai, J.H. et al., “Face recognition using holistic Fourier in variant features, http://digitalimaging.inf.brad.ac.uk/publication/pr34-I.pdf.”, Pattern Recognition, 2001, pp. 95-109, vol. 34. |
Lei et al., “A CBIR Method Based on Color-Spatial Feature”, IEEE Region 10th Ann. Int. Conf., 1999. |
Lienhart, R. et al., “A Detector Tree of Boosted Classifiers for Real-Time Object Detection and Tracking”, Proceedings of the 2003 International Conference on Multimedia and Expo, 2003, pp. 277-280, vol. 1, IEEE Computer Society. |
Matkovic, K. et al., “The 3D Wunderkammer an Indexing by Placing Approach to the Image Storage and Retrieval, Abstract printed from http://csdl.computer.org/comp/proccedings/tocg/2003/1942/00/19420034abs.htm”, Theory and Practice of Computer Graphics, 2003, University of Birmingham. |
Matthews, I. et al., “Active appearance models revisited, Retrieved from http://www.d.cmu.edu/pub—files/pub4/matthews—iain—2004—2/matthews—iain—2004—2.pdf”, International Journal of Computer Vision, 2004, pp. 135-164, vol. 60—Issue 2. |
Mitra, S. et al., “Gaussian Mixture Models Based on the Frequency Spectra for Human Identification and Illumination Classification”, Proceedings of the Fourth IEEE Workshop on Automatic Identification Advanced Technologies, 2005, pp. 245-250. |
Nordstrom, M.M. et al., “The IMM face database an annotated dataset of 240 face images, http://www2.imm.dtu.dk/pubdb/p.php?3160”, Informatics and Mathematical Modelling, 2004. |
Ohta, Y-I et al., “Color Information for Region Segmentation, XP008026458”, Computer Graphics and Image Processing, 1980, pp. 222-241, vol. 13—Issue 3, Academic Press. |
Park, Daechul et al., “Lenticular Stereoscopic Imaging and Displaying Techniques with no Special Glasses, Abstract printed from http://csdl.computer.org/comp/proceedings/icip/1995/7310/03/73103137abs.htm”, International Conference on Image Processing, 1995, vol. 3. |
PCT Intl. Search Report and Written Opinion of the Intl. Searching Authority, or the Declaration, for PCT App. No. PCT/US2006/021393, filed Jun. 2, 2006, paper dated Mar. 29, 2007, 12 pgs. |
PCT Intl. Search Rcport and Written Opinion of the Intl. Searching Authority, or the Declaration, for PCT App. No. PCT/US2006/060392, filed Oct. 31, 2006, paper dated Sep. 19, 2008, 9 pgs. |
PCT Invitation to Pay Additional Fees and, Where Applicable Protest Fee, for PCT Application No. PCT/EP2008/001578, paper dated Jul. 8, 2008, 5 Pages. |
PCT Notification of Transmittal of the Intl. Search Report and the Written Opinion of the Intl. Searching Authority, or the Declaration, for PCT/EP2008/001510, dated May 29, 2008, 13 pp. |
Yang, Ming-Hsuan et al., “Detecting Faces in Images: A Survey. ISSN:0162-8828. http://portal.acm.org/citation.cfm?id=505621andcoll=GUIDEanddl=GUIDEandCFID=680-9268andCFTOKEN=82843223.”, IEEE Transactions on Pattern Analysis and Machine Intelligence archive, 2002, pp. 34-58, vol. 24—Issue 1, IEEE Computer. Society. |
PCT Notification of Transmittal of the Intl. Search Report and the Written Opinion of the Intl. Searching Authority, or the Declaration, for PCT/IB2007/003724, dated Aug. 28, 2008, 9 pages. |
Romdhani, S. et al., “Face Identification by Fitting a 3D Morphable Model using linear Shape and Texture Error Functions, XP003018283”, European Conf. on Computer Vision, 2002, pp. 1-15. |
Rowley, Henry A. et al., “Neural network-based face detection, ISSN: 0162-8828. DOI: 10.1109/34.655647, Posted online: Aug. 6, 2002. http://ieeexplore.ieee.org/xpl/freeabs—all.jsp?arnumber-655647andisnumber-14286”, IEEE Transactions on Pattern Analysis and Machine Intelligence 1998, pp. 23-38, vol. 20—Issue 1. |
Ryu et al., “Coarse-to-Fine Classification for Image-Based Face Detection”, 1999, p. 92, subsection 8.3, Chapter 6, Carnegie Melon Univ. |
Shand, M., “Flexible Image Acquisition Using Reconfigurablc Hardware, Abstract printed from http://csdl.computer.org/comp/proceedings/fccm/1995/7086/00/70860125abs.htm”, IEEE Symposium of FPGA's for Custom Computing Machines (FCCM '95), 1995. |
Sharma, G. et al., “Digital color imaging, [Online]. Available: citeseer.ist.psu.edu/sharma97digital.html”, IEEE Transactions on Image Processing, 1997, pp. 901-932, vol. 6—Issue 7. |
Shock, D. et al., “Comparison of Rural Remote Site Production of Digital Images Employing a film Digitizer or a Computed Radiography (CR) System, Abstract printed from http://csdl/computer.org/comp/proceedings/imac/1995/7560/00/75600071abs.htm”. 4th International Conference on Image Management and Communication ( IMAC '95), 1995. |
Sim, T. et al., “The CMU Pose, Illumination, and Expression (PIE) Database of Human Faces Robotics Institute, Tech. Report. CMU-R1-TR-01-02”, 2001, 18 pgs, Carnegie Mellon University. |
Sim, T. et al., “The CMU Pose, Illumination, and Expression (PIE) database, Automatic Face and Gesture Recognition”, Fifth IEEE Intl. Conf, IEEE Piscataway, NJ, USA, 2002, 6 pages. |
Skocaj, D., “Range Image Acquisition of Objects with Non-Uniform Albedo Using Structured Light Range Sensor, Abstract printed from http://csdl.computer.org/comp/proceedings/icpr/2000/0750/01/07501778abs.htm”, Intl. Conference on Pattern Recognition (ICPR '00), 2000, vol. 1. |
Soriano, M. et al., “Making Saturated Facial Images Useful Again, XP002325961, ISSN: 0277-786X”, Proceedings of the Spie, 1999, pp. 113-121, vol. 3826. |
Stegmann, M.B. et al., “A flexible appearance modelling environment, Available: http://www2.imm.dtu.dk/pubdb/p.php?1918”, IEEE Transactions on Medical Imaging, 2003, pp. 1319-1331, vol. 22—Issue 10. |
Stegmann, M.B. et al., “Multi-band modelling of appearance, XP009104697”, Image and Vision Computing, 2003, pp. 61-67, vol. 21—Issue 1. |
Stricker et al., “Similarity of color images”. SPIE Proc, 1995, pp. 1-12. vol. 2420. |
Sublett, J.W. et al., “Design and Implementation of a Digital Teleultrasound System for Real-Time Remote Diagnosis, Abstract printed from http://csdl.computer.org/comp/proceedings/cbms/1995/7117/00/71170292abs.htm”, Eight Annual IEEE Symposium on Computer-Based Medical Systems (CBMS '95), 1995. |
Tang, Yuan Y. et al., “Information Acquisition and Storage of Forms in Document Processing, Abstract printed from http://csdl.computer.org/comp/proceedings/icdar/1997,7898/00/78980170abs.htm”, 4th International Conference Document Analysis and Recognition, 1997, vol. I and II. |
Tjahyadi et al., “Application of the DCT Energy Histogram for Face Recognition”, Proceedings of the 2nd International Conference on Information Technology for Application, 2004, pp. 305-310. |
Tkalcic, M. et al., “Colour spaces perceptual, historical and applicational background, ISBN: 0-7803-7763-X”, IEEE, EUROCON, 2003, pp. 304-308, vol. 1. |
Turk, Matthew et al., “Eigenfaces for Recognition”. Journal of Cognitive Neuroscience, 1991, 17 pgs, vol. 3—Issue 1. |
Twins Crack Face Recognition Puzzle, Internet article http://www.cnn.com/2003/TECH/ptech/03/10/israel.twins.reut/ index.html, printed Mar. 10, 2003, 3 pages. |
U.S. Appl. No. 11/554,539, filed Oct. 30, 2006, entitled Digital Image Processing Using Face Detection and Skin Tone Information. |
Vuylsteke, P. et al., “Range Image Acquisition with a Single Binary-Encoded Light Pattern, abstract printed from http://csdl.computer.org/comp/trans/tp/1990/02/i0148abs.htm”, IEEE Transactions on Pattern Analysis and Machine Intelligence, 1990, 1 page. |
Wan, S.J. et al., “Variance-based color image quantization for frame buffer display”, S. K. M. Wong Color Research and Application, 1990, pp. 52-58, vol. 15—Issue 1. |
Yang, Ming-Hsuan et al., “Detecting Faces in Images: A Survey. ISSN:0162-8828. http://portal.acm.org/citation.cfm?id=50562landcoll=GUIDEanddl=GUIDEandCFID=680-9268andCFTOKEN=82843223.”, IEEE Transactions on Pattern Analysis and Machine Intelligence archive, 2002, pp. 34-58, vol. 24—Issue 1, IEEE Computer. Society. |
Zhang, Jun et al., “Face Recognition: Eigenface, Elastic Matching, and Neural Nets”, Proceedings of the IEEE, 1997. pp. 1423-1435, vol. 85—Issue 9. |
International Search Report and Written Opinion of the Preliminary Examining Authority, PCT/EP2007/006540, dated Nov. 8, 2007. |
Written Opinion of the International Preliminary Examining Authority, PCT/EP2007/008540, dated Nov. 7, 2008. |
Feraud, R. et al., “A Fast and Accurate Face Detector Based on Neural Networks,” IEEE Trans. on Pattern Analysis, vol. 23, No. 1, Jan. 2001, pp. 42-53. |
Froba, B. et al., “Face Detection with the Modified Census Transform,” Proc. of the Sixth IEEE Intl. Conf., 2004, pp. 91-96. |
Froba, B. et al., “Real Time Face Detection,” Proc. of lasted “Signal and Image Processing,” URL: http://www.embassi.de/publi/veroeffent/Froeba, 2002, pp. 1-6. |
Mekuz, N. et al., “Adaptive Step Size Window Matching for Detection,” Proc. of the 18th Intl. Conf. on Pattern Recog., vol. 2, Aug. 2006, pp. 259-262. |
Smeraldi, F. et al., “Facial Feature Detection by Saccatic Exploration of the Gabor Decomposition,” Image Processing, 1998 Intl. Conf., Oct. 4, 1998, pp. 163-167. |
European Patent Office, “Oral Proceedings” in application No. 07765248.5-1901, dated Jun. 6, 2014, 4 pages. |
Current Claims in European application No. 077625248.5-1901, dated Jun. 2014, 4 pages. |
Number | Date | Country | |
---|---|---|---|
20150169941 A1 | Jun 2015 | US |
Number | Date | Country | |
---|---|---|---|
60892883 | Mar 2007 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14177212 | Feb 2014 | US |
Child | 14579773 | US | |
Parent | 12374040 | US | |
Child | 14177212 | US |