Face tracking in a camera processor

Information

  • Patent Grant
  • 8155397
  • Patent Number
    8,155,397
  • Date Filed
    Wednesday, September 26, 2007
    18 years ago
  • Date Issued
    Tuesday, April 10, 2012
    13 years ago
Abstract
A method operable in a digital image acquisition system having no photographic film is provided. The method comprises receiving a relatively low resolution image of a scene from an image stream, wherein the scene potentially includes one or more faces. At least one high quality face classifier is applied to the image to identify relatively large and medium sized face regions and at least one relaxed face classifier is applied to the image to identify relatively small sized face regions. A relatively high resolution image of nominally the same scene is received and at least one high quality face classifier is applied to the identified small sized face regions in the higher resolution version of said image.
Description
FIELD OF THE INVENTION

The present invention provides an improved method and apparatus for image processing in acquisition devices. In particular, the invention provides improved face tracking in a digital image acquisition device, such as a camera phone.


BACKGROUND


FIG. 1 illustrates digital image acquisition apparatus, for example a camera phone. The apparatus 10 comprises an Image Signal Processor, ISP, 14, which is in general, a general purpose CPU with relatively limited processing power. Typically, the ISP 14 is a dedicated chip or chip-set with a sensor interface 20 having dedicated hardware units that facilitate image processing including image pipeline 22. Images acquired by an imaging sensor 16 are provided to the ISP 14 through the sensor interface 20.


The apparatus further comprises a relatively powerful host processor 12, for example, an ARM9, which is arranged to receive an image stream from the ISP 14.


The apparatus 10 is equipped with a display 18, such as an LCD, for displaying preview images, as well as any main image acquired by the apparatus. Preview images are generated automatically once the apparatus is switched on or only in a pre-capture mode in response to half pressing a shutter button. A main image is typically acquired by fully depressing the shutter button.


Conventionally, high level image processing, such as face tracking, is run on the host processor 12 which provides feedback to the pipeline 22 of the ISP 14. The ISP 14 then renders, adjusts and processes subsequent image(s) in the image stream based on the feedback provided by the host processor 12, typically through an I2C interface 24. Thus, acquisition parameters of the subsequent image in the stream may be adjusted such that the image displayed to the user is enhanced.


Such acquisition parameters include focus, exposure and white balance.


Focus determines distinctness or clarity of an image or relevant portion of an image and is dependent on a focal length of a lens and a capture area of the imaging sensor 16. Methods of determining whether an image is in-focus are well known in the art. For example, if a face region is detected in an image, then given that most faces are approximately the same size and the size of the face within an acquired image, an appropriate focal length can be chosen for a subsequent image to ensure the face will appear in focus in the image. Other methods can be based on the overall level of sharpness of an image or portion of an image, for example, as indicated by the values of high frequency DCT coefficients in the image. When these are highest in the image or a region of interest, say a face region, the image can be assumed to be in-focus. Thus, by adjusting the focal length of the lens to maximize sharpness, the focus of an image may be enhanced.


Exposure of an image relates to an amount of light falling on the imaging sensor 16 during acquisition of an image. Thus an under-exposed image appears quite dark and has an overall low luminance level, whereas an overexposed image appears quite bright and has an overall high luminance level. Shutter speed and lens aperture affect the exposure of an image and can therefore be adjusted to improve image quality and the processing of an image. For example, it is well known that face detection and recognition are sensitive to over or under exposure of an image and so exposure can be adjusted to optimize the detection of faces within an image stream.


Due to the fact that most light sources are not 100% pure white, objects illuminated by a light source will be subjected to a colour cast. For example, a halogen light source illuminating a white object will cause the object to appear yellow. In order for a digital image acquisition apparatus to compensate for the colour cast, i.e. perform white balance, it requires a white reference point. Thus, by identifying a point in an image that should be white, for example the sclera of an eye, all other colours in the image may be compensated accordingly. This compensation information may then be utilised to determine the type of illumination under which an image should be acquired.


While adjusting acquisition parameters such as those described above is useful and can improve image quality and processing, the feedback loop to the ISP 14 is relatively slow, thereby causing delays in providing the ISP 14 with the relevant information to rectify the focus, exposure and white balance of an image. This can mean that in a fast changing scene, adjustment indications provided by the host processor 12 may be inappropriate when they are made by the ISP 14 to subsequent images of the stream. Furthermore, typically most of the processing power available to the host processor 12 is required to run the face tracker application, leaving minimal processing power available for carrying out value added processing.


It is desired to have an improved method of face tracking in a digital image acquisition device.


SUMMARY OF THE INVENTION

A method is provided that is operable in a digital image acquisition system having no photographic film. A relatively low resolution image of a scene from an image stream is received. The scene includes one or more faces. At least one high quality face classifier is applied to the image to identify any relatively large sized face regions. At least one relaxed face classifier is applied to the image to identify one or more relatively small sized face regions. A relatively high resolution image of nominally the same scene is also received. At least one high quality face classifier is applied to at least one of said one or more identified small sized face regions in the higher resolution version of the image.


Steps a) to c) may be performed on a first processor, while steps d) and e) may be separately performed on a second processor. Value-added applications may be performed on the high resolution image on the separate second processor.


Step b) and/or step c) may include providing information including face size, face location, and/or an indication of a probability of the image including a face at or in the vicinity of the face region. A weighting may be generated based on the information. Image acquisition parameters of a subsequent image in the image stream may be adjusted based on the information. The adjusted image acquisition parameters may include focus, exposure and/or white balance. The subsequent image may be a preview image or a main acquired image, and it may be displayed to a user.


A high quality face classifier may include a relatively long cascade classifier or a classifier with a relatively high threshold for accepting a face, or both. The relaxed classifier may include a relatively short cascade classifier or a classifier with a relatively low threshold for accepting a face, or both.


A digital image acquisition apparatus is also provided. A first processor is operably connected to an imaging sensor. A second processor is operably connected to the first processor. The first processor is arranged to provide an acquired image to the second processor and the second processor is arranged to store the image. The first processor is arranged to apply at least one high quality face classifier to a relatively low resolution image of a scene from an image stream, the scene including one or more faces, to identify any relatively large sized face regions, and to apply at least one relaxed face classifier to the image to identify one or more relatively small sized face regions. The second processor is arranged to receive a relatively high resolution image of nominally the same scene and to apply at least one high quality face classifier to at least one identified small sized face region in the higher resolution version of the image.


One or more processor-readable storage devices are provided with program code embodied therein for programming one or more processors to perform any of the methods described herein above or below.





BRIEF DESCRIPTION OF DRAWINGS

Embodiments of the invention will now be described, by way of example, with reference to the accompanying drawings, in which:



FIG. 1 is a block diagram of a conventional digital image acquisition apparatus. However, certain embodiments of the invention may be combined with one or more features illustrated at FIG. 1.



FIG. 2 is a workflow illustrating a preferred embodiment.





DETAILED DESCRIPTION OF THE EMBODIMENTS

Face tracking for digital image acquisition devices include methods of marking human faces in a series of images such as a video stream or a camera preview. Face tracking can be used to indicate to a photographer, locations of faces in an image or to allow post processing of the images based on knowledge of the locations of the faces. Also, face tracker applications can be used in adaptive adjustment of acquisition parameters of an image, such as, focus, exposure and white balance, based on face information in order to produce improved the quality of acquired images.


In general, face tracking systems employ two principle modules: (i) a detection module for locating new candidate face regions in an acquired image or a sequence of images; and (ii) a tracking module for confirming face regions.


A well-known method of fast-face detection is disclosed in US 2002/0102024, incorporated by reference, hereinafter Viola-Jones. In Viola-Jones, a chain (cascade) of 32 classifiers based on rectangular (and increasingly refined) Haar features are used with an integral image, derived from an acquired image, by applying the classifiers to a sub-window within the integral image. For a complete analysis of an acquired image, this sub-window is shifted incrementally across the integral image until the entire image has been covered.


In addition to moving the sub-window across the entire integral image, the sub window is also scaled up/down to cover the possible range of face sizes. It will therefore be seen that the resolution of the integral image is determined by the smallest sized classifier sub-window, i.e. the smallest size face to be detected, as larger sized sub-windows can use intermediate points within the integral image for their calculations.


A number of variants of the original Viola-Jones algorithm are known in the literature, such as disclosed in U.S. patent application Ser. No. 11/464,083, which is assigned to the same assignee and in incorporated by reference.


In the present embodiment, a face tracking process runs on the ISP 14 as opposed to the host processor 12. Thus, more processing power of the host processor is available for further value added applications, such as face recognition. Furthermore, parameters of an acquired image, such as focus, exposure and white balance, can be adaptively adjusted more efficiently by the ISP 14.


As will be appreciated, face tracking applications carried out on high resolution images will generally achieve more accurate results than on relatively lower resolution images. Furthermore, tracking relatively small size faces within an image generally requires proportionally more processing than for larger faces.


The processing power of the ISP 14 is of course limited, and so the arrangement of face tracking application according to the present invention is optimized to run efficiently on the ISP 14.


In the preferred embodiment, a typical input frame resolution is 160 by 120, and face sizes are categorised as small, medium or large. Medium sized and large sized faces in an image are detected by applying 14×14 and 22×22 high quality classifiers respectively, e.g. relatively long cascade classifiers or classifiers with a relatively high threshold for accepting a face.


The distance of a subject face from the acquisition apparatus determines a size of the subject face in an image. Clearly, a first subject face located at a greater distance from the acquisition device than a second subject face will appear smaller. Smaller sized faces comprise fewer pixels and thus less information may be derived from the face. As such, detection of smaller sized faces is inherently less reliable even given the proportionally more processing required than for larger faces.


In the preferred embodiment, small sized faces are detected with a relaxed 7×7 classifier, e.g. a short-cascade classifier or classifier with a lower threshold for accepting a face. Using a more relaxed classifier reduces the processing power which would otherwise be required to detect small sized faces.


Nonetheless, it is appreciated that the application of such a relaxed classifier results in a larger number of false positives, i.e. non-face regions being classified as faces. As such, the adjustment of image acquisition parameters is applied differently in response to detection of small faces and the further processing of images is different for small faces than medium or large faces as explained below in more detail.



FIG. 2 shows a workflow illustrating a preferred embodiment.


On activation, the apparatus 10 automatically captures and stores a series of images at close intervals so that sequential images are nominally of the same scene. Such a series of images may include a series of preview images, post-view images, or a main acquired image.


In preview mode, the imaging sensor 16 provides the ISP 14 with a low resolution image e.g. 160 by 120 from an image stream, step 100.


The ISP 14 applies at least one high quality classifier cascade to the image to detect large and medium sized faces, step 110. Preferably, both 14×14 and 22×22 face classifier cascades are applied to the image.


The ISP 14 also applies at least one relaxed face classifier to the image to detect small faces, step 120. Preferably, a 7×7 face classifier is applied to the image.


Based on knowledge of the faces retrieved from the classifiers, image acquisition parameters for a subsequent image in the stream may be adjusted to enhance the image provided to the display 18 and/or to improve processing of the image. In the preferred embodiment, knowledge of the faces retrieved from the classifiers is utilised to adjust one or more of focus, exposure and/or white balance of a next image in the image stream, step 130.


Knowledge of the faces received from the classifiers comprises information relating to the location of the faces, the size of the faces and the probability of the identified face actually being a face. U.S. patent application Ser. Nos. 11/767,412 and 60/892,883 (FN182/FN232/FN214), which are assigned to the same assignee and the present application and incorporated by reference, discusses determining a confidence level indicating the probability of a face existing at the given location. This information may be utilised to determine a weighting for each face to thereby facilitate the adjustment of the acquisition parameters.


In general, a large face will comprise more information than a relatively smaller face. However, if the larger face has a greater probability of being falsely identified as a face, and/or is positioned at non-central position of the image, it could be allocated a lower weighting even than that of a relatively smaller face, positioned at a centre of the image and comprising a lower probability of being a false positive. Thus, the information derived from the smaller face could be used to adjust the acquisition parameters in preference to the information derived from the large face.


In the embodiment, where only small sized faces are detected in the image, knowledge of the small faces is utilised only to adjust exposure of the next image in the stream. It will be appreciated that although the relaxed classifier passes some false positives, these do not severely adversely influence the adjustment of the exposure.


Focus adjustment is not performed on the next image based on small faces, due to the fact that a lens of the apparatus will be focused at infinity for small faces and there is little to be gained from such adjustment. White balance is not adjusted for small faces because they are considered too small to retrieve any significant white balance information. Nonetheless, each of focus and white balance can be usefully adjusted based on detection of medium and large sized faces.


In the preferred embodiment, once a user acquires a full-sized main image, e.g. by clicking the shutter, and this is communicated to the host, step 150, the detected/tracked face regions are also communicated to the host processor 12, step 140.


In alternative embodiments full-sized images may be acquired occasionally without user intervention either at regular intervals (e.g. every 30 preview frames, or every 3 seconds), or responsive to an analysis of the preview image stream—for example where only smaller faces are detected it may be desirable to occasionally re-confirm the information deduced from such images.


After acquisition of a full-sized main image the host processor 12 retests the face regions identified by the relaxed small face classifier on the larger (higher resolution) main image, typically having a resolution of 320×240, or 640×480, with a high quality classifier, step 160. This verification mitigates or eliminates false positives passed by the relaxed face classifier on the lower resolution image. Since the retesting phase is carried out on a higher resolution version of the image, the small sized faces comprise more information and are thereby detectable by larger window size classifiers. In this embodiment, both 14×14 and 22×22 face classifiers are employed for verification.


Based on the verification, the main image can be adjusted for example, by adjusting the luminance values of the image to more properly illuminate a face or by adjusting the white balance of the image. Other corrections such as red-eye correction or blur correction are also improved with improved face detection.


In any case, the user is then presented with a refined image on the display 18, enhancing the user experience, step 170.


The verification phase requires minimal computation, allowing the processing power of the host processor 12 to be utilised for further value added applications, for example, face recognition applications, real time blink detection and prevention, smile detection, and special real time face effects such as morphing.


In the preferred embodiment, a list of verified face locations is provided back to the ISP 14, indicated by the dashed line, and this information can be utilised to improve face tracking or image acquisition parameters within the ISP 14.


In an alternative embodiment, the verification phase can be carried out on the ISP 14 as although verification is carried out on a higher resolution image, the classifiers need not be applied to the whole image, and as such little processing power is required.


The present invention is not limited to the embodiments described above herein, which may be amended or modified without departing from the scope of the present invention as set forth in the appended claims, and structural and functional equivalents thereof.


In methods that may be performed according to preferred embodiments herein and that may have been described above and/or claimed below, the operations have been described in selected typographical sequences. However, the sequences have been selected and so ordered for typographical convenience and are not intended to imply any particular order for performing the operations.


In addition, all references cited above herein, in addition to the background and summary of the invention sections themselves, and FIGS. 1 and 2, are hereby incorporated by reference into the detailed description of the preferred embodiments as disclosing alternative embodiments and components.

Claims
  • 1. A method operable in a digital image acquisition system having no photographic film, comprising: using a processor in performing the following:a) receiving a relatively low resolution image of a scene from an image stream, said scene including one or more faces;b) applying at least one relatively long face classifier to said image to identify any relatively large sized face regions;c) applying at least one relatively short face classifier to said image to identify one or more relatively small sized face regions;d) receiving a relatively high resolution image of approximately the same scene; ande) applying at least one relatively long face classifier to at least one of said one or more identified small sized face regions in said relatively high resolution image.
  • 2. The method according to claim 1, further comprising performing steps a) to c) on a first processor and performing steps d) and e) on a separate second processor.
  • 3. The method according to claim 2, further comprising performing value added applications on said high resolution image on said separate second processor.
  • 4. The method of claim 1 wherein each of steps b) and c) include providing information including face size, face location, and an indication of a probability of said image including a face at or in the vicinity of said face region.
  • 5. The method of claim 1, wherein step b) or step c), or both, include providing information including face size, face location, or an indication of a probability of said image including a face at or in the vicinity of said face region, or combinations thereof.
  • 6. The method of claim 5 further comprising generating a weighting based on said information.
  • 7. The method according to claim 5 comprising adjusting one or more image acquisition parameters of a subsequent image in said image stream based on said information.
  • 8. The method according to claim 7 wherein said one or more image acquisition parameters that are adjusted include focus, exposure or white balance, or combinations thereof.
  • 9. The method according to claim 7 wherein said subsequent image in said stream is a preview image.
  • 10. The method according to claim 7 wherein said subsequent image in said stream is a main acquired image.
  • 11. The method according to claim 7 further comprising displaying said subsequent image to a user.
  • 12. The method according to claim 1, wherein said at least one relatively long face classifier comprises a classifier with a relatively high threshold for accepting a face, or said relatively short classifier comprises a classifier with a relatively low threshold for accepting a face, or both.
  • 13. A digital image acquisition apparatus, comprising a first processor coupled to an imaging sensor, and a second processor coupled to said first processor, wherein said first processor is arranged to provide an acquired image to said second processor and said second processor is arranged to store said image, and wherein said first processor is arranged to apply at least one relatively long face classifier to a relatively low resolution image of a scene from an image stream, said scene including one or more faces, to identify any relatively large sized face regions, and to apply at least one relatively short face classifier to said image to identify one or more relatively small sized face regions; andwherein said second processor is arranged to receive a relatively high resolution image of approximately the same scene and to apply at least one relatively long face classifier to at least one of said one or more identified small sized face regions in said relatively high resolution image.
  • 14. One or more non-transitory processor-readable storage devices having program code embodied therein for programming one or more processors to perform a method operable in a digital image acquisition system having no photographic film, wherein the method comprises: a) receiving a relatively low resolution image of a scene from an image stream, said scene including one or more faces;b) applying at least one relatively long face classifier to said image to identify any relatively large sized face regions;c) applying at least one relatively short face classifier to said image to identify one or more relatively small sized face regions;d) receiving a relatively high resolution image of approximately the same scene; ande) applying at least one relatively long face classifier to at least one of said one or more identified small sized face regions in said relatively high resolution image.
  • 15. The one or more storage devices of claim 14, wherein the method further comprises performing steps a) to c) on a first processor and performing steps d) and e) on a separate second processor.
  • 16. The one or more storage devices of claim 15, wherein the method further comprises performing value added applications on said high resolution image on said separate second processor.
  • 17. The one or more storage devices of claim 14, wherein each of steps b) and c) include providing information including face size, face location, and an indication of a probability of said image including a face at or in the vicinity of said face region.
  • 18. The one or more storage devices of claim 14, wherein step b) or step c), or both, include providing information including face size, face location, or an indication of a probability of said image including a face at or in the vicinity of said face region, or combinations thereof.
  • 19. The one or more storage devices of claim 18, wherein the method further comprises generating a weighting based on said information.
  • 20. The one or more storage devices of claim 18, wherein the method further comprises adjusting image acquisition parameters of a subsequent image in said image stream based on said information.
  • 21. The one or more storage devices of claim 20, wherein said adjusted image acquisition parameters include focus, exposure or white balance, or combinations thereof.
  • 22. The one or more storage devices according to claim 20, wherein said subsequent image in said stream comprises a preview image.
  • 23. The one or more storage devices of claim 20, wherein said subsequent image in said stream comprises a main acquired image.
  • 24. The one or more storage devices of claim 20, wherein the method further comprises displaying said subsequent image to a user.
  • 25. The one or more storage devices of claim 14, wherein said at least one relatively long face classifier comprises a classifier with a relatively high threshold for accepting a face, or said relatively short classifier comprises a classifier with a relatively low threshold for accepting a face, or both.
US Referenced Citations (393)
Number Name Date Kind
4047187 Mashimo et al. Sep 1977 A
4317991 Stauffer Mar 1982 A
4367027 Stauffer Jan 1983 A
RE31370 Mashimo et al. Sep 1983 E
4448510 Murakoshi May 1984 A
4638364 Hiramatsu Jan 1987 A
4796043 Izumi et al. Jan 1989 A
4970663 Bedell et al. Nov 1990 A
4970683 Harshaw et al. Nov 1990 A
4975969 Tal Dec 1990 A
5008946 Ando Apr 1991 A
5018017 Sasaki et al. May 1991 A
RE33682 Hiramatsu Sep 1991 E
5051770 Cornuejols Sep 1991 A
5063603 Burt Nov 1991 A
5111231 Tokunaga May 1992 A
5150432 Ueno et al. Sep 1992 A
5161204 Hutcheson et al. Nov 1992 A
5164831 Kuchta et al. Nov 1992 A
5164992 Turk et al. Nov 1992 A
5227837 Terashita Jul 1993 A
5278923 Nazarathy et al. Jan 1994 A
5280530 Trew et al. Jan 1994 A
5291234 Shindo et al. Mar 1994 A
5305048 Suzuki et al. Apr 1994 A
5311240 Wheeler May 1994 A
5331544 Lu et al. Jul 1994 A
5353058 Takei Oct 1994 A
5384615 Hsieh et al. Jan 1995 A
5384912 Ogrinc et al. Jan 1995 A
5430809 Tomitaka Jul 1995 A
5432863 Benati et al. Jul 1995 A
5450504 Calia Sep 1995 A
5465308 Hutcheson et al. Nov 1995 A
5488429 Kojima et al. Jan 1996 A
5493409 Maeda et al. Feb 1996 A
5496106 Anderson Mar 1996 A
5543952 Yonenaga et al. Aug 1996 A
5576759 Kawamura et al. Nov 1996 A
5633678 Parulski et al. May 1997 A
5638136 Kojima et al. Jun 1997 A
5638139 Clatanoff et al. Jun 1997 A
5652669 Liedenbaum Jul 1997 A
5680481 Prasad et al. Oct 1997 A
5684509 Hatanaka et al. Nov 1997 A
5706362 Yabe Jan 1998 A
5710833 Moghaddam et al. Jan 1998 A
5715325 Bang et al. Feb 1998 A
5724456 Boyack et al. Mar 1998 A
5745668 Poggio et al. Apr 1998 A
5748764 Benati et al. May 1998 A
5764790 Brunelli et al. Jun 1998 A
5764803 Jacquin et al. Jun 1998 A
5771307 Lu et al. Jun 1998 A
5774129 Poggio et al. Jun 1998 A
5774591 Black et al. Jun 1998 A
5774747 Ishihara et al. Jun 1998 A
5774754 Ootsuka Jun 1998 A
5781650 Lobo et al. Jul 1998 A
5802208 Podilchuk et al. Sep 1998 A
5812193 Tomitaka et al. Sep 1998 A
5818975 Goodwin et al. Oct 1998 A
5835616 Lobo et al. Nov 1998 A
5842194 Arbuckle Nov 1998 A
5844573 Poggio et al. Dec 1998 A
5850470 Kung et al. Dec 1998 A
5852669 Eleftheriadis et al. Dec 1998 A
5852823 De Bonet Dec 1998 A
RE36041 Turk et al. Jan 1999 E
5870138 Smith et al. Feb 1999 A
5905807 Kado et al. May 1999 A
5911139 Jain et al. Jun 1999 A
5912980 Hunke Jun 1999 A
5966549 Hara et al. Oct 1999 A
5978514 Yamaguchi et al. Nov 1999 A
5978519 Bollman et al. Nov 1999 A
5990973 Sakamoto Nov 1999 A
5991456 Rahman et al. Nov 1999 A
6009209 Acker et al. Dec 1999 A
6016354 Lin et al. Jan 2000 A
6028960 Graf et al. Feb 2000 A
6035074 Fujimoto et al. Mar 2000 A
6053268 Yamada Apr 2000 A
6061055 Marks May 2000 A
6072094 Karady et al. Jun 2000 A
6097470 Buhr et al. Aug 2000 A
6101271 Yamashita et al. Aug 2000 A
6108437 Lin Aug 2000 A
6115052 Freeman et al. Sep 2000 A
6128397 Baluja et al. Oct 2000 A
6128398 Kuperstein et al. Oct 2000 A
6134339 Luo Oct 2000 A
6148092 Qian Nov 2000 A
6151073 Steinberg et al. Nov 2000 A
6173068 Prokoski Jan 2001 B1
6188777 Darrell et al. Feb 2001 B1
6192149 Eschbach et al. Feb 2001 B1
6240198 Rehg et al. May 2001 B1
6246779 Fukui et al. Jun 2001 B1
6246790 Huang et al. Jun 2001 B1
6249315 Holm Jun 2001 B1
6252976 Schildkraut et al. Jun 2001 B1
6263113 Abdel-Mottaleb et al. Jul 2001 B1
6268939 Klassen et al. Jul 2001 B1
6278491 Wang et al. Aug 2001 B1
6282317 Luo et al. Aug 2001 B1
6292575 Bortolussi et al. Sep 2001 B1
6301370 Steffens et al. Oct 2001 B1
6301440 Bolle et al. Oct 2001 B1
6332033 Qian Dec 2001 B1
6334008 Nakabayashi Dec 2001 B2
6349373 Sitka et al. Feb 2002 B2
6351556 Loui et al. Feb 2002 B1
6393148 Bhaskar May 2002 B1
6400830 Christian et al. Jun 2002 B1
6404900 Qian et al. Jun 2002 B1
6407777 DeLuca Jun 2002 B1
6421468 Ratnakar et al. Jul 2002 B1
6426779 Noguchi et al. Jul 2002 B1
6438234 Gisin et al. Aug 2002 B1
6438264 Gallagher et al. Aug 2002 B1
6441854 Fellegara et al. Aug 2002 B2
6445810 Darrell et al. Sep 2002 B2
6456732 Kimbell et al. Sep 2002 B1
6459436 Kumada et al. Oct 2002 B1
6463163 Kresch Oct 2002 B1
6473199 Gilman et al. Oct 2002 B1
6501857 Gotsman et al. Dec 2002 B1
6502107 Nishida Dec 2002 B1
6504942 Hong et al. Jan 2003 B1
6504951 Luo et al. Jan 2003 B1
6516154 Parulski et al. Feb 2003 B1
6526156 Black et al. Feb 2003 B1
6526161 Yan Feb 2003 B1
6529630 Kinjo Mar 2003 B1
6549641 Ishikawa et al. Apr 2003 B2
6556708 Christian et al. Apr 2003 B1
6564225 Brogliatti et al. May 2003 B1
6567983 Shiimori May 2003 B1
6587119 Anderson et al. Jul 2003 B1
6606398 Cooper Aug 2003 B2
6633655 Hong et al. Oct 2003 B1
6661907 Ho et al. Dec 2003 B2
6697503 Matsuo et al. Feb 2004 B2
6697504 Tsai Feb 2004 B2
6700999 Yang Mar 2004 B1
6714665 Hanna et al. Mar 2004 B1
6747690 Molgaard Jun 2004 B2
6754368 Cohen Jun 2004 B1
6754389 Dimitrova et al. Jun 2004 B1
6760465 McVeigh et al. Jul 2004 B2
6760485 Gilman et al. Jul 2004 B1
6765612 Anderson et al. Jul 2004 B1
6778216 Lin Aug 2004 B1
6792135 Toyama Sep 2004 B1
6798834 Murakami et al. Sep 2004 B1
6801250 Miyashita Oct 2004 B1
6801642 Gorday et al. Oct 2004 B2
6816611 Hagiwara et al. Nov 2004 B1
6829009 Sugimoto Dec 2004 B2
6850274 Silverbrook et al. Feb 2005 B1
6876755 Taylor et al. Apr 2005 B1
6879705 Tao et al. Apr 2005 B1
6900840 Schinner et al. May 2005 B1
6937773 Nozawa et al. Aug 2005 B1
6940545 Ray et al. Sep 2005 B1
6947601 Aoki et al. Sep 2005 B2
6959109 Moustafa Oct 2005 B2
6965684 Chen et al. Nov 2005 B2
6967680 Kagle et al. Nov 2005 B1
6977687 Suh Dec 2005 B1
6980691 Nesterov et al. Dec 2005 B2
6993157 Oue et al. Jan 2006 B1
7003135 Hsieh et al. Feb 2006 B2
7020337 Viola et al. Mar 2006 B2
7027619 Pavlidis et al. Apr 2006 B2
7027621 Prokoski Apr 2006 B1
7034848 Sobol Apr 2006 B2
7035456 Lestideau Apr 2006 B2
7035462 White et al. Apr 2006 B2
7035467 Nicponski Apr 2006 B2
7038709 Verghese May 2006 B1
7038715 Flinchbaugh May 2006 B1
7039222 Simon et al. May 2006 B2
7042501 Matama May 2006 B1
7042505 DeLuca May 2006 B1
7042511 Lin May 2006 B2
7043056 Edwards et al. May 2006 B2
7043465 Pirim May 2006 B2
7050607 Li et al. May 2006 B2
7057653 Kubo Jun 2006 B1
7064776 Sumi et al. Jun 2006 B2
7082212 Liu et al. Jul 2006 B2
7099510 Jones et al. Aug 2006 B2
7106374 Bandera et al. Sep 2006 B1
7106887 Kinjo Sep 2006 B2
7110569 Brodsky et al. Sep 2006 B2
7110575 Chen et al. Sep 2006 B2
7113641 Eckes et al. Sep 2006 B1
7119838 Zanzucchi et al. Oct 2006 B2
7120279 Chen et al. Oct 2006 B2
7146026 Russon et al. Dec 2006 B2
7151843 Rui et al. Dec 2006 B2
7158680 Pace Jan 2007 B2
7162076 Liu Jan 2007 B2
7162101 Itokawa et al. Jan 2007 B2
7171023 Kim et al. Jan 2007 B2
7171025 Rui et al. Jan 2007 B2
7190829 Zhang et al. Mar 2007 B2
7194114 Schneiderman Mar 2007 B2
7200249 Okubo et al. Apr 2007 B2
7218759 Ho et al. May 2007 B1
7227976 Jung et al. Jun 2007 B1
7254257 Kim et al. Aug 2007 B2
7269292 Steinberg Sep 2007 B2
7274822 Zhang et al. Sep 2007 B2
7274832 Nicponski Sep 2007 B2
7289664 Enomoto Oct 2007 B2
7295233 Steinberg et al. Nov 2007 B2
7315630 Steinberg et al. Jan 2008 B2
7315631 Corcoran et al. Jan 2008 B1
7317815 Steinberg et al. Jan 2008 B2
7321670 Yoon et al. Jan 2008 B2
7324670 Kozakaya et al. Jan 2008 B2
7324671 Li et al. Jan 2008 B2
7336821 Ciuc et al. Feb 2008 B2
7336830 Porter et al. Feb 2008 B2
7352394 DeLuca et al. Apr 2008 B1
7362210 Bazakos et al. Apr 2008 B2
7362368 Steinberg et al. Apr 2008 B2
7403643 Ianculescu et al. Jul 2008 B2
7430369 Fukui Sep 2008 B2
7437998 Burger et al. Oct 2008 B2
7440593 Steinberg et al. Oct 2008 B1
7460695 Steinberg et al. Dec 2008 B2
7469055 Corcoran et al. Dec 2008 B2
7515740 Corcoran et al. Apr 2009 B2
7616233 Steinberg et al. Nov 2009 B2
7809162 Steinberg et al. Oct 2010 B2
7844076 Corcoran et al. Nov 2010 B2
20010005222 Yamaguchi Jun 2001 A1
20010028731 Covell et al. Oct 2001 A1
20010031142 Whiteside Oct 2001 A1
20010038712 Loce et al. Nov 2001 A1
20010038714 Masumoto et al. Nov 2001 A1
20020105662 Patton et al. Aug 2002 A1
20020106114 Yan et al. Aug 2002 A1
20020114535 Luo Aug 2002 A1
20020118287 Grosvenor et al. Aug 2002 A1
20020136433 Lin Sep 2002 A1
20020141640 Kraft Oct 2002 A1
20020150662 Dewis et al. Oct 2002 A1
20020168108 Loui et al. Nov 2002 A1
20020172419 Lin et al. Nov 2002 A1
20020181801 Needham et al. Dec 2002 A1
20020191861 Cheatle Dec 2002 A1
20030012414 Luo Jan 2003 A1
20030023974 Dagtas et al. Jan 2003 A1
20030025812 Slatter Feb 2003 A1
20030035573 Duta et al. Feb 2003 A1
20030044070 Fuersich et al. Mar 2003 A1
20030044177 Oberhardt et al. Mar 2003 A1
20030048950 Savakis et al. Mar 2003 A1
20030052991 Stavely et al. Mar 2003 A1
20030059107 Sun et al. Mar 2003 A1
20030059121 Savakis et al. Mar 2003 A1
20030071908 Sannoh et al. Apr 2003 A1
20030084065 Lin et al. May 2003 A1
20030095197 Wheeler et al. May 2003 A1
20030107649 Flickner et al. Jun 2003 A1
20030118216 Goldberg Jun 2003 A1
20030123713 Geng Jul 2003 A1
20030123751 Krishnamurthy et al. Jul 2003 A1
20030142209 Yamazaki et al. Jul 2003 A1
20030151674 Lin Aug 2003 A1
20030174773 Comaniciu et al. Sep 2003 A1
20030202715 Kinjo Oct 2003 A1
20040022435 Ishida Feb 2004 A1
20040041121 Yoshida et al. Mar 2004 A1
20040095359 Simon et al. May 2004 A1
20040114904 Sun et al. Jun 2004 A1
20040120391 Lin et al. Jun 2004 A1
20040120399 Kato Jun 2004 A1
20040125387 Nagao et al. Jul 2004 A1
20040170397 Ono Sep 2004 A1
20040175021 Porter et al. Sep 2004 A1
20040179719 Chen et al. Sep 2004 A1
20040218832 Luo et al. Nov 2004 A1
20040223063 DeLuca et al. Nov 2004 A1
20040228505 Sugimoto Nov 2004 A1
20040233301 Nakata et al. Nov 2004 A1
20040234156 Watanabe et al. Nov 2004 A1
20050013479 Xiao et al. Jan 2005 A1
20050013603 Ichimasa Jan 2005 A1
20050018923 Messina et al. Jan 2005 A1
20050031224 Prilutsky et al. Feb 2005 A1
20050041121 Steinberg et al. Feb 2005 A1
20050068446 Steinberg et al. Mar 2005 A1
20050068452 Steinberg et al. Mar 2005 A1
20050069208 Morisada Mar 2005 A1
20050089218 Chiba Apr 2005 A1
20050104848 Yamaguchi et al. May 2005 A1
20050105780 Ioffe May 2005 A1
20050128518 Tsue et al. Jun 2005 A1
20050140801 Prilutsky et al. Jun 2005 A1
20050185054 Edwards et al. Aug 2005 A1
20050275721 Ishii Dec 2005 A1
20060006077 Mosher et al. Jan 2006 A1
20060008152 Kumar et al. Jan 2006 A1
20060008171 Petschnigg et al. Jan 2006 A1
20060008173 Matsugu et al. Jan 2006 A1
20060018517 Chen et al. Jan 2006 A1
20060029265 Kim et al. Feb 2006 A1
20060039690 Steinberg et al. Feb 2006 A1
20060050933 Adam et al. Mar 2006 A1
20060056655 Wen et al. Mar 2006 A1
20060093212 Steinberg et al. May 2006 A1
20060093213 Steinberg et al. May 2006 A1
20060093238 Steinberg et al. May 2006 A1
20060098875 Sugimoto May 2006 A1
20060098890 Steinberg et al. May 2006 A1
20060120599 Steinberg et al. Jun 2006 A1
20060133699 Widrow et al. Jun 2006 A1
20060140455 Costache et al. Jun 2006 A1
20060147192 Zhang et al. Jul 2006 A1
20060153472 Sakata et al. Jul 2006 A1
20060177100 Zhu et al. Aug 2006 A1
20060177131 Porikli Aug 2006 A1
20060187305 Trivedi et al. Aug 2006 A1
20060203106 Lawrence et al. Sep 2006 A1
20060203107 Steinberg et al. Sep 2006 A1
20060204034 Steinberg et al. Sep 2006 A1
20060204055 Steinberg et al. Sep 2006 A1
20060204056 Steinberg et al. Sep 2006 A1
20060204058 Kim et al. Sep 2006 A1
20060204110 Steinberg et al. Sep 2006 A1
20060210264 Saga Sep 2006 A1
20060227997 Au et al. Oct 2006 A1
20060257047 Kameyama et al. Nov 2006 A1
20060268150 Kameyama et al. Nov 2006 A1
20060269270 Yoda et al. Nov 2006 A1
20060280380 Li Dec 2006 A1
20060285754 Steinberg et al. Dec 2006 A1
20060291739 Li et al. Dec 2006 A1
20070047768 Gordon et al. Mar 2007 A1
20070053614 Mori et al. Mar 2007 A1
20070070440 Li et al. Mar 2007 A1
20070071347 Li et al. Mar 2007 A1
20070091203 Peker et al. Apr 2007 A1
20070098303 Gallagher et al. May 2007 A1
20070110305 Corcoran et al. May 2007 A1
20070110417 Itokawa May 2007 A1
20070116379 Corcoran et al. May 2007 A1
20070116380 Ciuc et al. May 2007 A1
20070154095 Cao et al. Jul 2007 A1
20070154096 Cao et al. Jul 2007 A1
20070160307 Steinberg et al. Jul 2007 A1
20070189748 Drimbarean et al. Aug 2007 A1
20070189757 Steinberg et al. Aug 2007 A1
20070201724 Steinberg et al. Aug 2007 A1
20070201725 Steinberg et al. Aug 2007 A1
20070201726 Steinberg et al. Aug 2007 A1
20070263104 DeLuca et al. Nov 2007 A1
20070273504 Tran Nov 2007 A1
20070296833 Corcoran et al. Dec 2007 A1
20080002060 DeLuca et al. Jan 2008 A1
20080013798 Ionita et al. Jan 2008 A1
20080013799 Steinberg et al. Jan 2008 A1
20080013800 Steinberg et al. Jan 2008 A1
20080019565 Steinberg Jan 2008 A1
20080037827 Corcoran et al. Feb 2008 A1
20080037838 Ianculescu et al. Feb 2008 A1
20080037839 Corcoran et al. Feb 2008 A1
20080043121 Prilutsky et al. Feb 2008 A1
20080043122 Steinberg et al. Feb 2008 A1
20080049970 Ciuc et al. Feb 2008 A1
20080055433 Steinberg et al. Mar 2008 A1
20080075385 David et al. Mar 2008 A1
20080144966 Steinberg et al. Jun 2008 A1
20080175481 Petrescu et al. Jul 2008 A1
20080186389 DeLuca et al. Aug 2008 A1
20080205712 Ionita et al. Aug 2008 A1
20080219517 Blonk et al. Sep 2008 A1
20080240555 Nanu et al. Oct 2008 A1
20080267461 Ianculescu et al. Oct 2008 A1
20090002514 Steinberg et al. Jan 2009 A1
20090003652 Steinberg et al. Jan 2009 A1
20090003708 Steinberg et al. Jan 2009 A1
20090052749 Steinberg et al. Feb 2009 A1
20090087030 Steinberg et al. Apr 2009 A1
20090087042 Steinberg et al. Apr 2009 A1
20090208056 Corcoran et al. Aug 2009 A1
20100210410 Kaltenbach et al. Aug 2010 A1
Foreign Referenced Citations (33)
Number Date Country
578508 Jan 1994 EP
984386 Mar 2000 EP
1128316 Aug 2001 EP
1391842 Feb 2004 EP
1398733 Mar 2004 EP
1626569 Feb 2006 EP
1 785 914 May 2007 EP
2370438 Jun 2002 GB
5260360 Oct 1993 JP
2005128628 May 2005 JP
2005129070 May 2005 JP
25164475 Jun 2005 JP
26005662 Jan 2006 JP
26254358 Sep 2006 JP
2007135115 May 2007 JP
2010500836 Jan 2010 JP
2010520542 Jun 2010 JP
WO-0133497 May 2001 WO
WO-02052835 Jul 2002 WO
WO-03028377 Apr 2003 WO
WO-2006045441 May 2006 WO
WO-2007095477 Aug 2007 WO
WO-2007095483 Aug 2007 WO
WO-2007095553 Aug 2007 WO
WO-2007142621 Dec 2007 WO
WO-2008015586 Feb 2008 WO
WO-2008017343 Feb 2008 WO
WO-2008018887 Feb 2008 WO
WO-2008023280 Feb 2008 WO
WO-2008104549 Sep 2008 WO
WO2008120932 Oct 2008 WO
WO2009004901 Jan 2009 WO
WO2009039876 Apr 2009 WO
Related Publications (1)
Number Date Country
20090080713 A1 Mar 2009 US