1. The Field of the Invention
The present invention relates generally to systems and methods for securing orthopedic implants, and more specifically, to facet joint replacement implant crosslinking systems.
2. The Relevant Technology
Orthopedic medicine provides a wide array of implants that can be attached to bone to alleviate various pathologies. One unique challenge in orthopedics is the stabilization of implants that bear loads. For example, it has been proposed to use implants to replace the articulating surfaces of facet joints of the spine. Such articulating surfaces are subject to not only sliding articulation, but also direct pressure induced by rotation or lateral bending of the spine. Accordingly, in order to remain in their proper positions, such implants must be firmly anchored to bone. Such anchoring is particularly challenging in the spine, where there is limited bone mass available to receive fasteners.
Accordingly, there is a need for systems capable of more securely attaching implants to bone. More particularly, there is a need for such systems that do not require a large quantity of bone mass for anchoring, are easily installed in surgery, and are compatible with known minimally invasive surgical methods. Furthermore, there is a need for such systems that are capable of providing a discretely adjustable displacement between cooperating implants, and are adjustably positionable with respect to the implants they stabilize.
Various embodiments of the present invention will now be discussed with reference to the appended drawings. It is appreciated that these drawings depict only typical embodiments of the invention and are therefore not to be considered limiting of its scope.
The present invention advances the state of the art by providing systems and methods that can be used to stabilize orthopedic implants such as facet joint replacement implants. The present invention simplifies the installation and configuration of facet joint replacement systems, and enhances their longevity and reliability. The configuration and operation of various embodiments of the invention will be shown and described in greater detail with reference to
Referring to
As shown, the portion of the spine 10 illustrated in
As shown, the first vertebra 24 has a body 28 with a generally disc-like shape and two pedicles 30 that extend posteriorly from the body 28. A posterior arch, or lamina 32, extends between the posterior ends of the pedicles 30 to couple the pedicles 30 together. The first vertebra 24 also has a pair of transverse processes 34 that extend laterally from the pedicles 30 generally along the medial/lateral axis 20, and a spinous process 36 that extends from the lamina 32 along the posterior direction 18.
The first vertebra 24 also has a pair of superior facets 38, which are positioned toward the top of the first vertebra 24 and face generally medially. The natural inferior facets (not shown) of the first vertebra 24 have been resected away, and a pair of inferior facet joint implants 40, or inferior implants 40, has been attached to the first vertebra 24 to replace the natural inferior articular surfaces. Each of the inferior implants 40 is attached to a saddle point 42 of the first vertebra 24. Each saddle point 42 is positioned generally at the center of the juncture of each superior facet 38 with the adjacent transverse process 34.
Similarly, the second vertebra 26 has a body 48 from which two pedicles 50 extend posteriorly. A posterior arch, or lamina 52, extends between the posterior ends of the pedicles 50 to couple the pedicles 50 together. The second vertebra 26 also has a pair of transverse processes 54 that extend from the pedicles 50 generally along the medial/lateral axis 20, and a spinous process 56 that extends from the lamina 52 along the posterior direction 18.
The natural superior facets (not shown) of the second vertebra 26 have been resected away, and a pair of inferior facet replacement implants 58, or inferior implants 58, has been attached to the second vertebra 26 to replace the natural superior articular surfaces. Additionally, the second vertebra 26 has inferior facets 60, which are positioned toward the bottom of the second vertebra 26 and face generally outward. Each of the superior implants 58 is attached to a saddle point 62 of the corresponding pedicle 50 of the second vertebra 26. Each saddle point 62 is positioned generally at the center of the juncture of the corresponding natural superior facet (not shown) with the adjacent transverse process 54.
The inferior implants 40 on the first vertebra 24 articulate (i.e., slide and/or press) with the superior implants 58 of the second vertebra 26 to limit relative motion between the first and second vertebrae 24, 26 in a manner similar to that of the resected natural articular surfaces. The combination of each inferior implant 40 with the adjacent superior implant 58 provides a prosthetic facet joint 64. The prosthetic facet joints 64 cooperate with an intervertebral disc 66 positioned between the vertebrae 24, 26 to limit relative motion between the vertebrae 24, 26. The superior facets 38 of the first vertebra 24 and the inferior facets 60 of the second vertebra 26 are part of natural facet joints that control motion between the first and second vertebrae 24, 26 and adjacent vertebrae (not shown).
As illustrated in
Each of the superior implants 58 has a mounting portion 80 and an articulation portion 82. Each mounting portion 80 is shaped to be attached to the corresponding saddle point 62 of the second vertebra 26. Each articulation portion 82 is shaped to articulate with the articulation portion 72 of the corresponding inferior implant 40.
Each of the inferior and superior implants 40, 58 may be coupled to the corresponding saddle point 42 or 62 through the use of a fixation member such as a pedicle screw 84, and a retention member such as a castle nut 86. In
The articulation portions 72 of the inferior implants 40 are constrained to remain at a fixed displacement and orientation with respect to each other by an apparatus 90 according to the invention. The apparatus 90 may be termed a “crosslink” because it couples implants of a bilateral set together. The apparatus 90 of
The apparatus 90 serves to substantially prevent relative translation or rotation between the articulation portions 72 of the inferior implants 40. Accordingly, the inferior implants 40 combine with the apparatus 90 to define a substantially rigid structure attached at both ends to the saddle points 42 of the first vertebra 24. Such a structure is far more resistant to slippage than one attached at only one end. Accordingly, as the spine 10 moves and the superior implants 58 exert force on the inferior implants 40, the inferior implants 40 are able to remain in place with respect to the first vertebra 24 to provide optimal, natural articulation.
Referring to
The implant coupling component 92 has a linking extension 120 that protrudes from the main body of the implant coupling component. The linking extension 120 has a semicylindrical interface 122 that is generally concave in shape and mates with the semicylindrical interface 114 of the corresponding crosslink coupling feature 76. If desired, the semicylindrical interfaces 122, 114 may fit relatively tightly together to restrict relative translational and rotational sliding along or about the cephalad and caudal directions 12, 14. A clocking feature (not visible in
The implant coupling component 92 also has a clocking feature 124 that is designed to restrict relative rotation between the implant coupling component 92 and the rod coupling component 96. The clocking feature 124 may take the form of a plurality of substantially ridges that extend generally radially from a bore (not shown) of the implant coupling component. The ridges cooperate with corresponding ridges (not shown) of the rod coupling component 96 to enable the implant coupling component 92 and the rod coupling component 96 to be positioned in a limited number of discrete relative orientations. The cooperation of the ridges also substantially prevents relative rotation once the implant coupling component 92 and the rod coupling component 96 are in position to abut one another, as shown in
The bolt 94 has a head 130 positioned adjacent to the implant coupling component 92 and a shank 132 that passes through (or substantially through) each of the implant coupling component 92, the rod coupling component 94, and the nut 98. The head 130 protrudes in such a manner that the head is able to cooperate with the linking extension 120 to grip the associated crosslink coupling feature 76. If desired, a portion (not visible) of the head 130 that faces the linking extension 120 may have a concave radius similar to the radius of the semicylindrical interface 122 of the linking extension 120. The shank 132 is threaded to facilitate assembly of the various components 92, 94, 96, 98, 100 of the apparatus 90.
The rod coupling component 96 has a linking extension 140, which may be configured somewhat similarly to the linking extension 120 of the implant coupling component 92. More precisely, the linking extension 140 extends from a main body of the rod coupling component 96 and has a semicylindrical interface 142 with a concave shape that faces the nut 98. The semicylindrical interface 142 is sized to receive the corresponding end of the rod 100.
The nut 98 has a torque receiver 150 and a retention flange 152. The torque receiver 150 is shaped to receive torque from a tool, and therefore may have a polygonal cross sectional shape such as the hexagonal shape illustrated in
The nut 98 has a bore 156 through which the end of the shank 132 of the bolt 94 passes. The bore 156 has threads that mate with the threads of the shank 132 to provide threaded engagement sufficiently strong to keep the nut 98 in place after the proper torque has been applied to the nut 98.
The rod 100 has a first end 160 and a second end (not shown in
Advantageously, the apparatus 90 avoids interference with the lamina 32 or the spinous process 36 of the first vertebra 24. Rather, the rod 100 passes inferiorly of the spinous process 36. If desired, the apparatus 90 could be anchored to the spinous process 36 through the use of a variety of structures such as gripping plates attached to the rod 100 to grip the left and right sides of the spinous process 36. Indeed, if desired, the rod 100 may even be positioned to pass through a portion of the spinous process 36.
According to one method of assembly, the pedicle screws 84 may first be implanted in the pedicles 30, 50 of the vertebrae 24, 26, and bone beds may be formed in the saddle points 42, 62 via reaming operations or the like. Then, the inferior and superior implants 40, 58 may be positioned such that the mounting portions 70, 80 rest within the bone beds at the saddle points 42, 62. The implants 40, 58 are then oriented as desired and coupled to the saddle points 42, 62 through the use of the castle nuts 86.
After the implants 40, 58 have been secured to the vertebrae 24, 26, respectively, the apparatus 90 may be installed. The implant coupling component 92 and the bolt 94 of each side may first be positioned to retain the corresponding crosslink coupling feature 76, but left relatively loose due to the absence of the nut 98. The rod coupling component 96 and the nut 98 may then be inserted on the shank 132 of the bolt 94. Once the components 92, 94, 96, 98 for each side are in place, the rod 100 may be positioned such that the ends 160, 162 rest within the linking extensions 140 of the rod coupling components 96. Then, the nuts 98 are tightened on the shanks 132 to secure attachment to the crosslink coupling features 76 and the rod 100, thereby providing the crosslink 90 with the rigidity needed to keep the articulation portions 72 of the inferior implants 40 in place.
The apparatus 90 of
Referring to
As mentioned previously,
The first end 172 has a mounting slot 180 having a generally elongated shape with a width sufficient to permit insertion of the proximal end of the pedicle screw 84 therethrough. The second end 174 has a pair of tines 182 that extend generally parallel to each other to define a retention groove 184 between them. The retention groove 184 has a generally rectangular shape sized to slide around the narrowest portion of the crosslink coupling feature 76, which is the necked down portion of the crosslink coupling feature 76 adjoining the articulation portion 72 of the inferior implant 40. The stem 176 is shaped to position the first and second ends 172, 174 at their necessary relative orientations.
The support strut may be relatively easily installed by first, sliding the tines 182 on either side of the crosslink coupling feature 76, and second, inserting the mounting slot 180 over the exposed proximal end of the pedicle screw 84 to rest on the castle nut 86. A fastening element such as an additional castle nut (not shown) may be coupled to the proximal end of the pedicle screw 84 and tightened over the first end 172 so that the first end 172 is held substantially rigid with respect to the pedicle screw 84.
Once in place, the support strut 170 serves to substantially prevent rotation of the corresponding inferior implant 40 that would allow the articulation portion 72 to move along the cephalad direction 12 and the posterior direction 18. Such support is beneficial because this mode of rotation tends to be induced by articulation of the inferior and superior implants 40, 58, particularly when the spine 10 is in axial rotation. Axial rotation may cause the articulation portion 82 of the superior implant 58 to press posteriorly against the articulation portion 72 of the inferior implant 40. The support strut 170 helps to keep the articulation portion 72 in place under such a posteriorly oriented force.
The support strut 170 of
According to other alternative embodiments, additional clocking features may be added to enhance the stability of the assembled crosslink. Further, alternative crosslinks may be configured to ease assembly by providing temporary connections that enable the various components to be positioned, assembled, and/or adjusted before a more permanent, rigid form of fastening is applied. One such embodiment will be shown and described in connection with
Referring to
The crosslink 190 may have two implant coupling components 192, two bolts 194, two rod coupling components 196, two nuts 198, and a rod 200. These components correspond in function to their counterparts 92, 94, 96, 98, 100 of
More precisely, each of the implant coupling components 192 is configured to serve as a resilient member capable of facilitating assembly of the crosslink 190 enabling temporary attachment of the implant coupling components 192 to the inferior facet joint implants 40. Each implant coupling component 192 has a linking extension 220 shaped to grip the crosslink coupling feature 76 of the corresponding inferior facet joint implant 40. Each linking extension 220 includes an arm 221 that is bendable toward or away from the remainder of the linking extension 220. Each linking extension 220 defines a semicylindrical interface 222, at least a portion of which is provided by the arm 221. Each of the arms 221 has two prongs 223 that may curve outward slightly from the open portion of the semicylindrical interface 222 to facilitate sliding of the crosslink coupling feature 76 into the cavity provided by the semicylindrical interface 222.
Due to the resiliency of the arm 221, the semicylindrical interface 222 may be urged into a wider configuration to permit insertion of the corresponding crosslink coupling feature 76 through the open portion of the semicylindrical interface 222. Once the crosslink coupling feature 76 is within the hollow interior of the semicylindrical interface 222, the arm 221 is able to “snap” back to an undeflected or less deflected state to retain the crosslink coupling feature 76. In this application, “snapping into engagement” refers to deflection of a resilient member, followed by a return of the resilient member to an undeflected or less deflected state to provide at least temporary retention of another member. Once the implant coupling component 192 has snapped into engagement with the crosslink coupling feature 76, friction between the semicylindrical interface 222 and the semicylindrical interface 114 of the crosslink coupling feature 76 tends to resist relative motion between the inferior facet joint implant 40 and the crosslink coupling feature 192.
The clocking feature 164 of the crosslink coupling feature 76 may help to provide additional friction that tends to prevent relative rotation between the crosslink coupling feature 76 and the implant coupling component 192. However, since the grooves and ridges of the clocking feature 164 extend generally parallel to the axis of the semicylindrical interface 114, the clocking feature 164 may not significantly inhibit motion of the implant coupling component 192 along the axis of the crosslink coupling feature 76. Accordingly, after the linking extension 220 of the crosslink coupling component 192 has snapped into engagement with the crosslink coupling feature 76, the implant coupling component 192 may optionally still be repositionable relative to the crosslink coupling feature 76 along an axis extending generally along the cephalad/caudal direction. However, knurling, circumferential grooves, or other features may be used as an alternative to the clocking feature 164 to prevent such adjustability, if desired.
Each implant coupling component 192 also has a clocking feature 124 like that of the implant coupling component 92 of the previous embodiment. The clocking feature 124 may thus take the form of a plurality of radially arrayed grooves and/or ridges. The grooves and/or ridges may mesh with similar features on the opposing surface of the corresponding rod coupling component 196, as will be described subsequently.
The implant coupling component 192 also has a bore 226 through which the bolt 194 may be inserted to provide stronger and more rigid attachment of the implant coupling component 192 to the crosslink coupling feature 76. The manner in which stronger and more rigid attachment may be carried out will be set forth subsequently.
Each bolt 194 has a configuration similar to that of the bolts 94 of the previous embodiment. Each bolt 194 may have a head 230 and a shank 232 extending from the head 230. The shank 232 is threaded, and the head 230 has a gripping extension 234 that extends asymmetrically from the axis of the shank 232 to press against the crosslink coupling feature 76 when the bolt 194 is under tension. Upon insertion of the shank 232 through the bore 226, the gripping extension 234 fits between the prongs 223 of the arm 221 of the linking extension 220. Thus, the gripping extension 234 is able to press directly against the crosslink coupling feature 76 without interference from the arm 221.
Each rod coupling component 196 has a linking extension 240 designed to receive the corresponding end of the rod 200. Each linking extension 240 has a semicylindrical interface 242 that receives the rod 200 in a manner that permits slidable adjustment of the rod 200 within semicylindrical interface 242 until the rod 200 is locked in place with respect to the linking extension 240. Each rod coupling component 196 is substantially U-shaped, with the linking extension 240 as the curved portion of the U-shape. When the free ends of the U-shape are compressed, the rod coupling component 196 is compressed to decrease the radius of the semicylindrical interface 242, thereby gripping the rod 200 to prevent further sliding motion of the rod 200 within the semicylindrical interface 242.
As indicated previously, each rod coupling component 196 also has a clocking feature 244 that is similar in configuration to the clocking features 124 of the implant coupling components 192. Accordingly, each clocking feature 244 may have ridges and/or grooves in a radial arrangement that enables them to mesh with the ridges and/or grooves of the clocking feature 124. Thus, the clocking features 124, 244 may cooperate to limit the relative orientations of each rod coupling component 196 and its corresponding implant coupling component 192 to a discrete number of selections. Additionally, the clocking features 124, 244 cooperate to prevent rotational slippage between each rod coupling component 196 and its corresponding implant coupling component 192 when the crosslink 190 has been fully assembled and tightened.
Each rod coupling component 196 also has a bore 246 that receives the shank 232 of the bolt 194. Each bore 246 has a semispherical countersink 248 that receives the corresponding nut 198. Tightening the nut 198 on the bolt 194 compresses the free ends of the U-shape of the rod coupling component 196 together to grip the rod 200. The semispherical countersink 248 enables polyaxial rotation of the nut 198 relative to the rod coupling component 196 to maintain significant surface contact between the nut 198 and the rod coupling component 196 when the rod coupling component 196 compresses. This helps to prevent binding of the nut 198 as the bolt 194 and the nut 198 are tightened.
The nut 198 has a torque receiver 250 designed to interface with a torquing instrument (not shown) such as a hex driver. The torque receiver 250 has a corresponding shape such as a hexagonal shape. The nut 198 also has a semispherical surface 252 with a radius substantially the same as that of the semispherical countersink 248 of the bore 246 of the rod coupling component 196. Thus, the semispherical surface 252 fits into the semispherical countersink 248 and the surface contact between the nut 198 and the semispherical countersink 248 is maintained despite variations in relative orientation between the nut 198 and the semispherical countersink 248. The nut 198 has a bore 256 with threads that engage the threads of the shank 232 of the bolt 194 to permit the nut 198 to be advanced, or tightened, along the shank 232 by rotating it with the torquing instrument.
As shown, the rod 200 has a first end 260 and a second end 262. Each of the ends 260, 262 may have a clocking feature 264 designed to restrict relative rotation between the ends 260, 262 and the corresponding rod coupling components 196 and/or limit the relative orientations of the rod coupling components 196 to set of discrete angular offsets about the axis of the rod 200. Each clocking feature 264 may take the form of a plurality of grooves and/or ridges oriented parallel to the axis of the rod 200 and arrayed about the circumference of the corresponding end 260 or 262.
According to alternative embodiments, other types of clocking features may be used to confine the relative positions and/or orientations of the inferior facet joint implants 40 to discrete increments and/or reduce slippage in the tightened crosslink 190. If desired, circumferential grooves and ridges may be used in place of, or in addition to, the grooves and/or ridges of the clocking features 264 of
After exposure of the operating site, the implants 40, 58 and the crosslink 190 may be installed and assembled according to a wide variety of methods. According to one method, the operating site is first exposed and the implants 40, 58 are attached to the vertebrae 24, 26 in the desired positions and orientations. This attachment may be strong enough to keep the implants 40, 58 in place during assembly and attachment of the crosslink 190, but need not be strong enough to bear the loads associated with articulation of the implants 40, 58.
The crosslink 190 may then be loosely assembled and movably secured to the inferior facet joint implants 40. This may be accomplished by, first, mating the clocking features 124, 244 of the implant coupling component 192 and the rod coupling component 196 with each other, and then inserting the shank 232 of the bolt 194 through the aligned bores 226, 246 of the implant coupling component 192 and the rod coupling component 196. The nut 198 may then be inserted onto the exposed end of the shank 232 and rotated so that the threads of the bore 256 of the nut 198 engage those of the shank 232. The nut 198 is not, however, tightened into the semispherical countersink 248. Thus, relative rotation between the implant coupling component 192 and the rod coupling component 196 is still possible.
The ends 260, 262 of the rod 200 may then be inserted into the linking extensions 240 of the rod coupling components 196. Since the nuts 198 have not been tightened, the ends 260, 262 can still rotate and slide within the linking extensions 140. Thus, the implant coupling components 192 can move toward or away from each other, and can rotate relative to each other about two orthogonal axes. The implant coupling components 192 can therefore both be positioned to engage the crosslink coupling features 76 of their corresponding inferior facet joint implants 40 without disassembling the crosslink 190. The arms 221 of the linking extensions 220 of the implant coupling components 192 are deflected to push the crosslink coupling features 76 into the semicylindrical interfaces 222 of the linking extensions 220, and are then allowed to snap back to undeflected or less deflected configurations to provide temporary attachment of the crosslink 190 to the inferior facet joint implants 40.
The crosslink 190 is then attached to the inferior facet joint implants 40, but is still reconfigurable and adjustable. The implant coupling components 192 can slide along the crosslink coupling features 76 to permit cephalad/caudal adjustment of the position of the crosslink 190 to most effectively avoid interference with portions of the spine 10, such as the spinous process 36 of the first vertebra 24. Furthermore, if reorientation of the inferior facet joint implants 40 is needed, this can be carried out without detaching the crosslink 190.
Once the inferior facet joint implants 40 and the crosslink 190 have been positioned as desired, the torquing instrument (not shown) may be used to tighten the nuts 198 so that they press into the semispherical countersinks 248. If desired, the torquing instrument may be used to tighten the nuts 198 to a predefined torque. The torquing instrument may optionally be designed to be capable of applying only the appropriate maximum torque to the nuts 198.
Tightening the nuts 198 also advances the gripping extension 234 of each bolt 194 toward the facing portion of the corresponding semicylindrical interface 222 to securely retain the corresponding crosslink coupling feature 76 between the prongs 223 of the associated arm 221. Additionally, tightening the nuts 198 compresses and deflects the rod coupling components 192 to cause the semicylindrical interfaces 242 to grip the ends 260, 262 of the rod 200. Furthermore, tightening the nuts 198 causes the clocking features 124, 244 of the implant coupling components 192 and the rod coupling components 196 to tightly engage each other to prevent relative rotation between the implant coupling components 192 and the rod coupling components 196. Hence, tightening the nuts 198 locks the crosslink 190 to prevent at least three different modes of relative motion between the inferior facet joint implants 40. Advantageously, no other fastening elements need be tightened to place the crosslink 190 in a rigid configuration.
Referring to
Notably, the rod coupling components 196 may be attached to the implant coupling components 192 in two different ways.
Although the foregoing description focuses on crosslinking of facet joint replacement implants, those of skill in the art will recognize that the principles taught herein could be applied to a wide variety of orthopedic implants. The present invention may be particularly useful for bilateral implants that are placed close enough together to permit crosslinking.
The present invention may be embodied in other specific forms without departing from its spirit or essential characteristics. As such, the described embodiments are to be considered in all respects only as illustrative and not restrictive. The scope of the invention is, therefore, indicated by the appended claims rather than by the foregoing description. All changes which come within the meaning and range of equivalency of the claims are to be embraced within their scope.
This application claims the benefit of the following: U.S. Provisional Patent Application Ser. No. 60/666,201 filed Mar. 28, 2005 and is entitled FACET JOINT IMPLANT CROSSLINKING APPARATUS AND METHOD.
Number | Name | Date | Kind |
---|---|---|---|
2677369 | Knowles | May 1954 | A |
3247000 | Taylor | Apr 1966 | A |
3298372 | Feinberg | Jan 1967 | A |
3426364 | Lumb | Feb 1969 | A |
3486505 | Morrison | Dec 1969 | A |
3508954 | White et al. | Apr 1970 | A |
3648691 | Lumb et al. | Mar 1972 | A |
3857642 | Miller | Dec 1974 | A |
3867728 | Stubstad et al. | Feb 1975 | A |
3875595 | Froning | Apr 1975 | A |
4003376 | McKay | Jan 1977 | A |
4092078 | Klotz et al. | May 1978 | A |
4289123 | Dunn | Sep 1981 | A |
4349921 | Kuntz | Sep 1982 | A |
4369769 | Edwards | Jan 1983 | A |
4479491 | Martin | Oct 1984 | A |
4483334 | Murray | Nov 1984 | A |
4501269 | Bagby | Feb 1985 | A |
4554914 | Kapp et al. | Nov 1985 | A |
4599086 | Doty | Jul 1986 | A |
4604995 | Stephens et al. | Aug 1986 | A |
4611581 | Steffee | Sep 1986 | A |
4641636 | Cotrel | Feb 1987 | A |
4653481 | Howland et al. | Mar 1987 | A |
4657550 | Daher | Apr 1987 | A |
4696290 | Steffee | Sep 1987 | A |
4743260 | Burton | May 1988 | A |
4759769 | Hedman et al. | Jul 1988 | A |
4772287 | Ray et al. | Sep 1988 | A |
4790303 | Steffee | Dec 1988 | A |
4800874 | David et al. | Jan 1989 | A |
4805602 | Puno et al. | Feb 1989 | A |
4827918 | Olerud | May 1989 | A |
4863476 | Shepperd | Sep 1989 | A |
4863477 | Monson | Sep 1989 | A |
4892545 | Day et al. | Jan 1990 | A |
4904260 | Ray et al. | Feb 1990 | A |
4911718 | Lee et al. | Mar 1990 | A |
4946458 | Harms et al. | Aug 1990 | A |
4955908 | Frey et al. | Sep 1990 | A |
5011484 | Breard | Apr 1991 | A |
5015255 | Kuslich | May 1991 | A |
5047055 | Bao et al. | Sep 1991 | A |
5071437 | Steffee | Dec 1991 | A |
5092866 | Breard et al. | Mar 1992 | A |
5092867 | Harms et al. | Mar 1992 | A |
5092893 | Smith | Mar 1992 | A |
5127912 | Ray et al. | Jul 1992 | A |
5129900 | Asher et al. | Jul 1992 | A |
5147361 | Ojima et al. | Sep 1992 | A |
5147404 | Downey | Sep 1992 | A |
5171279 | Mathews | Dec 1992 | A |
5171280 | Baumgartner | Dec 1992 | A |
5180393 | Commarmond | Jan 1993 | A |
5192326 | Bao et al. | Mar 1993 | A |
5236460 | Barber | Aug 1993 | A |
5246458 | Graham | Sep 1993 | A |
5258031 | Salib et al. | Nov 1993 | A |
5261910 | Warden et al. | Nov 1993 | A |
5263953 | Bagby | Nov 1993 | A |
5276502 | Ohi | Jan 1994 | A |
5282863 | Burton | Feb 1994 | A |
5304178 | Stahurski | Apr 1994 | A |
5306275 | Bryan | Apr 1994 | A |
5306308 | Gross et al. | Apr 1994 | A |
5306309 | Wagner et al. | Apr 1994 | A |
5313962 | Obenchain | May 1994 | A |
5318567 | Vichard | Jun 1994 | A |
5360430 | Lin | Nov 1994 | A |
5366455 | Dove et al. | Nov 1994 | A |
5370697 | Baumgartner | Dec 1994 | A |
5375823 | Navas | Dec 1994 | A |
5387213 | Breard et al. | Feb 1995 | A |
5391168 | Sanders et al. | Feb 1995 | A |
5401269 | Buttner-Janz et al. | Mar 1995 | A |
5415661 | Holmes | May 1995 | A |
5437669 | Yuan et al. | Aug 1995 | A |
5437672 | Alleyne | Aug 1995 | A |
5439464 | Shapiro | Aug 1995 | A |
5443516 | Albrektsson et al. | Aug 1995 | A |
5456722 | McLeod et al. | Oct 1995 | A |
5458641 | Ramirez Jimenez | Oct 1995 | A |
5458642 | Beer et al. | Oct 1995 | A |
5458643 | Oka et al. | Oct 1995 | A |
5464439 | Gendler | Nov 1995 | A |
5470333 | Ray | Nov 1995 | A |
5476463 | Boachie-Adjei et al. | Dec 1995 | A |
5480401 | Navas | Jan 1996 | A |
5489308 | Kuslich et al. | Feb 1996 | A |
5496318 | Howland et al. | Mar 1996 | A |
5507745 | Logroscino et al. | Apr 1996 | A |
5507813 | Dowd et al. | Apr 1996 | A |
5514180 | Heggeness et al. | May 1996 | A |
5522899 | Michelson | Jun 1996 | A |
5527312 | Ray | Jun 1996 | A |
5531745 | Ray | Jul 1996 | A |
5531747 | Ray | Jul 1996 | A |
5534028 | Bao et al. | Jul 1996 | A |
5534030 | Navarro et al. | Jul 1996 | A |
5534031 | Matsuzaki et al. | Jul 1996 | A |
5540688 | Navas | Jul 1996 | A |
5545166 | Howland | Aug 1996 | A |
5545229 | Parsons et al. | Aug 1996 | A |
5549607 | Olson et al. | Aug 1996 | A |
5556431 | Buttner-Janz | Sep 1996 | A |
5556687 | McMillin | Sep 1996 | A |
5562735 | Margulies | Oct 1996 | A |
5562736 | Ray et al. | Oct 1996 | A |
5562737 | Graf | Oct 1996 | A |
5569248 | Mathews | Oct 1996 | A |
5571189 | Kuslich | Nov 1996 | A |
5571191 | Fitz | Nov 1996 | A |
5572191 | Lundberg | Nov 1996 | A |
5582612 | Lin | Dec 1996 | A |
5584832 | Schlapfer | Dec 1996 | A |
5603713 | Aust et al. | Feb 1997 | A |
5609634 | Voydeville | Mar 1997 | A |
5645597 | Krapiva | Jul 1997 | A |
5645599 | Samani | Jul 1997 | A |
5649926 | Howland | Jul 1997 | A |
5653762 | Pisharodi | Aug 1997 | A |
5666243 | Brent | Sep 1997 | A |
5672175 | Martin | Sep 1997 | A |
5674295 | Ray et al. | Oct 1997 | A |
5674296 | Bryan | Oct 1997 | A |
5676701 | Yuan et al. | Oct 1997 | A |
5681310 | Yuan et al. | Oct 1997 | A |
5683464 | Wagner et al. | Nov 1997 | A |
5683465 | Shinn et al. | Nov 1997 | A |
5688272 | Montague et al. | Nov 1997 | A |
5690629 | Asher et al. | Nov 1997 | A |
5702392 | Wu et al. | Dec 1997 | A |
5702450 | Bisserie | Dec 1997 | A |
5702453 | Rabbe et al. | Dec 1997 | A |
5704936 | Mazel | Jan 1998 | A |
5713900 | Benzel et al. | Feb 1998 | A |
5716415 | Steffee | Feb 1998 | A |
5725582 | Bevan et al. | Mar 1998 | A |
5728097 | Mathews | Mar 1998 | A |
5735899 | Schwartz et al. | Apr 1998 | A |
5749873 | Fairley | May 1998 | A |
5755796 | Ibo et al. | May 1998 | A |
5772661 | Michelson | Jun 1998 | A |
5797909 | Michelson | Aug 1998 | A |
5814046 | Hopf | Sep 1998 | A |
5824093 | Ray et al. | Oct 1998 | A |
5824094 | Serhan et al. | Oct 1998 | A |
5836948 | Zucherman et al. | Nov 1998 | A |
5860977 | Zucherman et al. | Jan 1999 | A |
5865846 | Bryan et al. | Feb 1999 | A |
5868745 | Alleyne | Feb 1999 | A |
5876404 | Zucherman et al. | Mar 1999 | A |
5888223 | Bray, Jr. | Mar 1999 | A |
5893889 | Harrington | Apr 1999 | A |
RE36221 | Breard et al. | Jun 1999 | E |
5916267 | Tienboon | Jun 1999 | A |
5951555 | Rehak et al. | Sep 1999 | A |
5961516 | Graf | Oct 1999 | A |
5986169 | Gjunter | Nov 1999 | A |
6001130 | Bryan et al. | Dec 1999 | A |
6004322 | Bernstein | Dec 1999 | A |
6014588 | Fitz | Jan 2000 | A |
6019759 | Rogozinski | Feb 2000 | A |
6019792 | Cauthen | Feb 2000 | A |
6039761 | Li et al. | Mar 2000 | A |
6039763 | Shelokov | Mar 2000 | A |
6048342 | Zucherman et al. | Apr 2000 | A |
6063088 | Winslow | May 2000 | A |
6063121 | Xavier et al. | May 2000 | A |
6066325 | Wallace et al. | May 2000 | A |
6068630 | Zucherman et al. | May 2000 | A |
RE36758 | Fitz | Jun 2000 | E |
6074390 | Zucherman et al. | Jun 2000 | A |
6080157 | Cathro et al. | Jun 2000 | A |
6090112 | Zucherman et al. | Jul 2000 | A |
6093205 | McLeod et al. | Jul 2000 | A |
6113637 | Gill et al. | Sep 2000 | A |
6113639 | Ray et al. | Sep 2000 | A |
6132464 | Martin | Oct 2000 | A |
6132465 | Ray et al. | Oct 2000 | A |
6146421 | Gordon et al. | Nov 2000 | A |
6149652 | Zucherman et al. | Nov 2000 | A |
6151934 | Chong et al. | Nov 2000 | A |
6152926 | Zucherman et al. | Nov 2000 | A |
6156038 | Zucherman et al. | Dec 2000 | A |
6156067 | Bryan et al. | Dec 2000 | A |
6176861 | Bernstein et al. | Jan 2001 | B1 |
6179838 | Fiz | Jan 2001 | B1 |
6183471 | Zucherman et al. | Feb 2001 | B1 |
6189422 | Stihl | Feb 2001 | B1 |
6190387 | Zucherman et al. | Feb 2001 | B1 |
6190414 | Young et al. | Feb 2001 | B1 |
6206882 | Cohen | Mar 2001 | B1 |
6206922 | Zdeblick et al. | Mar 2001 | B1 |
6228118 | Gordon | May 2001 | B1 |
6235030 | Zucherman et al. | May 2001 | B1 |
6238397 | Zucherman et al. | May 2001 | B1 |
6241730 | Alby | Jun 2001 | B1 |
6264655 | Pisharodi | Jul 2001 | B1 |
6267764 | Elberg | Jul 2001 | B1 |
6280444 | Zucherman et al. | Aug 2001 | B1 |
6290700 | Schmotzer | Sep 2001 | B1 |
6293949 | Justis et al. | Sep 2001 | B1 |
6312469 | Gielen et al. | Nov 2001 | B1 |
6314325 | Fitz | Nov 2001 | B1 |
6332882 | Zucherman et al. | Dec 2001 | B1 |
6332883 | Zucherman et al. | Dec 2001 | B1 |
6379355 | Zucherman et al. | Apr 2002 | B1 |
6402750 | Atkinson et al. | Jun 2002 | B1 |
6413259 | Lyons et al. | Jul 2002 | B1 |
6419676 | Zucherman et al. | Jul 2002 | B1 |
6419677 | Zucherman et al. | Jul 2002 | B2 |
6419703 | Fallin et al. | Jul 2002 | B1 |
6419704 | Ferree | Jul 2002 | B1 |
6440169 | Elberg et al. | Aug 2002 | B1 |
6447546 | Bramlet et al. | Sep 2002 | B1 |
6451019 | Zucherman et al. | Sep 2002 | B1 |
6451020 | Zucherman et al. | Sep 2002 | B1 |
6458131 | Ray | Oct 2002 | B1 |
6461359 | Tribus et al. | Oct 2002 | B1 |
6471704 | Gertzbein et al. | Oct 2002 | B2 |
6475219 | Shelokov | Nov 2002 | B1 |
6478796 | Zucherman et al. | Nov 2002 | B2 |
6481440 | Gielen et al. | Nov 2002 | B2 |
6485518 | Cornwall et al. | Nov 2002 | B1 |
6500178 | Zucherman et al. | Dec 2002 | B2 |
6514256 | Zucherman et al. | Feb 2003 | B2 |
6527806 | Ralph et al. | Mar 2003 | B2 |
6540747 | Marino | Apr 2003 | B1 |
6540785 | Gill et al. | Apr 2003 | B1 |
6565605 | Goble et al. | May 2003 | B2 |
6579319 | Goble et al. | Jun 2003 | B2 |
6582433 | Yun | Jun 2003 | B2 |
6585769 | Muhanna et al. | Jul 2003 | B1 |
6610091 | Reiley | Aug 2003 | B1 |
6616669 | Ogilvie et al. | Sep 2003 | B2 |
6626909 | Chin | Sep 2003 | B2 |
6626944 | Taylor | Sep 2003 | B1 |
6652527 | Zucherman et al. | Nov 2003 | B2 |
6652534 | Zucherman et al. | Nov 2003 | B2 |
6652585 | Lange | Nov 2003 | B2 |
6669729 | Chin | Dec 2003 | B2 |
6695842 | Zucherman et al. | Feb 2004 | B2 |
6699246 | Zucherman et al. | Mar 2004 | B2 |
6699247 | Zucherman et al. | Mar 2004 | B2 |
6733534 | Sherman | May 2004 | B2 |
6761719 | Justis et al. | Jul 2004 | B2 |
6761720 | Senegas | Jul 2004 | B1 |
6783527 | Drewry et al. | Aug 2004 | B2 |
6796983 | Zucherman et al. | Sep 2004 | B1 |
6811567 | Reiley | Nov 2004 | B2 |
6835205 | Atkinson et al. | Dec 2004 | B2 |
6835207 | Zacouto et al. | Dec 2004 | B2 |
20010007073 | Zucherman et al. | Jul 2001 | A1 |
20010012938 | Zucherman et al. | Aug 2001 | A1 |
20010016743 | Zucherman et al. | Aug 2001 | A1 |
20010021850 | Zucherman et al. | Sep 2001 | A1 |
20010031965 | Zucherman et al. | Oct 2001 | A1 |
20010039452 | Zucherman et al. | Nov 2001 | A1 |
20020029039 | Zucherman et al. | Mar 2002 | A1 |
20020065557 | Goble et al. | May 2002 | A1 |
20020072800 | Goble et al. | Jun 2002 | A1 |
20020091446 | Zucherman et al. | Jul 2002 | A1 |
20020099384 | Scribner et al. | Jul 2002 | A1 |
20020116000 | Zucherman et al. | Aug 2002 | A1 |
20020123806 | Reiley | Sep 2002 | A1 |
20020143331 | Zucherman et al. | Oct 2002 | A1 |
20020151895 | Soboleski et al. | Oct 2002 | A1 |
20020183746 | Zucherman et al. | Dec 2002 | A1 |
20030004572 | Goble et al. | Jan 2003 | A1 |
20030009226 | Graf | Jan 2003 | A1 |
20030028250 | Reiley et al. | Feb 2003 | A1 |
20030040797 | Fallin et al. | Feb 2003 | A1 |
20030055427 | Graf | Mar 2003 | A1 |
20030065330 | Zucherman et al. | Apr 2003 | A1 |
20030073998 | Pagliuca et al. | Apr 2003 | A1 |
20030109880 | Shirado et al. | Jun 2003 | A1 |
20030153912 | Graf | Aug 2003 | A1 |
20030191470 | Ritland | Oct 2003 | A1 |
20030212398 | Jackson | Nov 2003 | A1 |
20030220642 | Freudiger | Nov 2003 | A1 |
20030220643 | Ferree | Nov 2003 | A1 |
20040006341 | Shaolian et al. | Jan 2004 | A1 |
20040006343 | Sevrain | Jan 2004 | A1 |
20040006391 | Reiley | Jan 2004 | A1 |
20040024458 | Senegas et al. | Feb 2004 | A1 |
20040049189 | Le Couedic et al. | Mar 2004 | A1 |
20040049190 | Biedermann et al. | Mar 2004 | A1 |
20040049272 | Reiley | Mar 2004 | A1 |
20040049273 | Reiley | Mar 2004 | A1 |
20040049274 | Reiley | Mar 2004 | A1 |
20040049275 | Reiley | Mar 2004 | A1 |
20040049276 | Reiley | Mar 2004 | A1 |
20040049277 | Reiley | Mar 2004 | A1 |
20040049278 | Reiley | Mar 2004 | A1 |
20040049281 | Reiley | Mar 2004 | A1 |
20040073215 | Carli | Apr 2004 | A1 |
20040078082 | Lange | Apr 2004 | A1 |
20040082954 | Teitelbaum et al. | Apr 2004 | A1 |
20040087950 | Teitelbaum | May 2004 | A1 |
20040106995 | Le Couedic et al. | Jun 2004 | A1 |
20040111154 | Reiley | Jun 2004 | A1 |
20040116927 | Graf | Jun 2004 | A1 |
20040117017 | Pasquet et al. | Jun 2004 | A1 |
20040127989 | Dooris et al. | Jul 2004 | A1 |
20040133203 | Young et al. | Jul 2004 | A1 |
20040143264 | McAfee | Jul 2004 | A1 |
20040147928 | Landry et al. | Jul 2004 | A1 |
20040153071 | Zucherman et al. | Aug 2004 | A1 |
20040158245 | Chin | Aug 2004 | A1 |
20040167520 | Zucherman et al. | Aug 2004 | A1 |
20040172025 | Drewry et al. | Sep 2004 | A1 |
20040181282 | Zucherman et al. | Sep 2004 | A1 |
20040181285 | Simonson | Sep 2004 | A1 |
20040186475 | Falahee | Sep 2004 | A1 |
20040220568 | Zucherman et al. | Nov 2004 | A1 |
20040225289 | Biedermann et al. | Nov 2004 | A1 |
20040230192 | Graf | Nov 2004 | A1 |
20040230201 | Yuan et al. | Nov 2004 | A1 |
20040230304 | Yuan et al. | Nov 2004 | A1 |
20040236327 | Paul et al. | Nov 2004 | A1 |
20040236328 | Paul et al. | Nov 2004 | A1 |
20040236329 | Panjabi | Nov 2004 | A1 |
20040243239 | Taylor | Dec 2004 | A1 |
20050010291 | Stinson et al. | Jan 2005 | A1 |
20050010293 | Zucherman et al. | Jan 2005 | A1 |
20050010298 | Zucherman et al. | Jan 2005 | A1 |
20050027361 | Reiley | Feb 2005 | A1 |
20050043797 | Lee | Feb 2005 | A1 |
20050043799 | Reiley | Feb 2005 | A1 |
20050070899 | Doubler | Mar 2005 | A1 |
20050119748 | Reiley et al. | Jun 2005 | A1 |
20050131406 | Reiley et al. | Jun 2005 | A1 |
20050137705 | Reiley | Jun 2005 | A1 |
20050137706 | Reiley | Jun 2005 | A1 |
20050143818 | Yuan et al. | Jun 2005 | A1 |
20050149190 | Reiley | Jul 2005 | A1 |
20050154467 | Peterman et al. | Jul 2005 | A1 |
20050177166 | Timm | Aug 2005 | A1 |
20050228400 | Chao et al. | Oct 2005 | A1 |
20050240266 | Kuiper et al. | Oct 2005 | A1 |
20060079903 | Wong | Apr 2006 | A1 |
20060217718 | Chervitz | Sep 2006 | A1 |
20080200918 | Spitler et al. | Aug 2008 | A1 |
20080282846 | Sharifi-Mehr et al. | Nov 2008 | A1 |
20090163963 | Berrevoets | Jun 2009 | A1 |
Number | Date | Country |
---|---|---|
408489 | Jan 1991 | EP |
322334 | Feb 1992 | EP |
667127 | Aug 1995 | EP |
767637 | Nov 1998 | EP |
768843 | Feb 1999 | EP |
669109 | May 1999 | EP |
1239785 | Sep 2004 | EP |
1343424 | Sep 2004 | EP |
1399078 | Dec 2004 | EP |
2721501 | Aug 1996 | FR |
10179622 | Jul 1998 | JP |
10277070 | Oct 1998 | JP |
1468543 | Mar 1989 | SU |
1517953 | Oct 1989 | SU |
WO8707827 | Dec 1987 | WO |
WO9421185 | Sep 1994 | WO |
WO9505783 | Mar 1995 | WO |
WO9505784 | Mar 1995 | WO |
WO9505785 | Mar 1995 | WO |
WO9505786 | Mar 1995 | WO |
WO9600049 | Jan 1996 | WO |
WO9822033 | May 1998 | WO |
WO9848707 | Nov 1998 | WO |
WO9848717 | Nov 1998 | WO |
WO9856301 | Dec 1998 | WO |
WO9905995 | Feb 1999 | WO |
WO9921500 | May 1999 | WO |
WO9921501 | May 1999 | WO |
WO9923963 | May 1999 | WO |
WO9965412 | Dec 1999 | WO |
WO9960957 | May 2000 | WO |
WO0038582 | Jul 2000 | WO |
WO0062684 | Oct 2000 | WO |
WO0130248 | May 2001 | WO |
WO0145576 | Jun 2001 | WO |
WO0149192 | Jul 2001 | WO |
WO0156489 | Aug 2001 | WO |
WO0164142 | Sep 2001 | WO |
WO0164144 | Sep 2001 | WO |
WO0191657 | Dec 2001 | WO |
WO0191658 | Dec 2001 | WO |
WO0197721 | Dec 2001 | WO |
WO0197721 | Dec 2001 | WO |
WO0200124 | Jan 2002 | WO |
WO0203882 | Jan 2002 | WO |
WO0207621 | Jan 2002 | WO |
WO0207622 | Jan 2002 | WO |
WO0207623 | Jan 2002 | WO |
WO0213732 | Feb 2002 | WO |
WO0230336 | Apr 2002 | WO |
WO0234120 | May 2002 | WO |
WO0243603 | Jun 2002 | WO |
WO02067792 | Sep 2002 | WO |
WO02067793 | Sep 2002 | WO |
WO02089712 | Nov 2002 | WO |
WO02089712 | Nov 2002 | WO |
WO02102259 | Dec 2002 | WO |
WO03009737 | Feb 2003 | WO |
WO03011147 | Feb 2003 | WO |
WO03015646 | Feb 2003 | WO |
WO03045262 | Jun 2003 | WO |
WO03077806 | Sep 2003 | WO |
WO2004017817 | Mar 2004 | WO |
WO2004019762 | Mar 2004 | WO |
WO2004024010 | Mar 2004 | WO |
WO2004032794 | Apr 2004 | WO |
WO2004032794 | Apr 2004 | WO |
WO2004039239 | May 2004 | WO |
WO2004039239 | May 2004 | WO |
WO2004039243 | May 2004 | WO |
WO2004039243 | May 2004 | WO |
WO2004041066 | May 2004 | WO |
WO2004041066 | May 2004 | WO |
WO2004073533 | Sep 2004 | WO |
WO2004098423 | Nov 2004 | WO |
WO2004098452 | Nov 2004 | WO |
WO2004105577 | Dec 2004 | WO |
WO2004105580 | Dec 2004 | WO |
WO2005013864 | Feb 2005 | WO |
WO2005037149 | Apr 2005 | WO |
WO2005044152 | May 2005 | WO |
Entry |
---|
Goh JC, et al., “Influence of PLIF cage size on lumbar spine stability”, Spine, Jan. 2000 25:1, PubMed abstract. |
Head WC, Wagner surface replacement arthroplasty of the hip. Analysis of fourteen failures in forty-one hips:, J Bone Joint Surg. [Am], Mar. 1981 63:3, PubMed Abstract. |
Kotani Y, et al., “The effects of spinal fixation and destabilization on the biomechanical and histologic properties of spinal ligaments. An in vivo study.”, Spine, Mar. 15, 1998 23:6, PubMed abstract. |
Lemaire JP, et al., “Intervertebral Disc Prosthesis: Results and Prospects for the Year 2000”, Clinical Orthopaedics and Related Research, PubMed abstract. |
Nagata H, et al., “The effects of immobilization of long segments of the spine on the adjacent and distal facet force and lumbrosacral motion”, Spine Dec. 1993 18:16. PubMed abstract. |
Nibu K, et al., Multidirectional stabilizing potential of BAK interbody spinal fusion system for anterior surgery, J Spinal Discord, Aug. 1997 10:4, PubMed abstract. |
Tsantrizos A, et al., “Segmental stability and compressive strength of posterior lumbar interbody fusion implants”, Spine, Aug. 1, 2000 25:15, PubMed abstract. |
Todd Anres; Facet Joint Arthroplasty: A Glimpse of the Future of Spine Technology, Othopaedic Product News, Sep./Oct. 2005 p. 38,40. |
IPRP and Written Opinion in matter PCT/US2009/066761. |
ISR in matter PCT/US2009/066761. |
Number | Date | Country | |
---|---|---|---|
20060217718 A1 | Sep 2006 | US |
Number | Date | Country | |
---|---|---|---|
60666201 | Mar 2005 | US |