The invention relates to spinal surgery. More specifically, the invention relates to placement of natural vertebral facet joints with implantable artificial facet joint replacements.
Various embodiments of the present invention will now be discussed with reference to the appended drawings. It is appreciated that these drawings depict only typical embodiments of the invention and are therefore not to be considered limiting of its scope.
The present invention advances the state of the art by providing systems and methods that can be used to replace natural vertebral facet joints with implantable artificial facet joint prostheses in a manner that provides a high degree of implant adjustability, simplicity, and ease of use.
In this application, “polyaxial” rotation is rotation that can occur about at least two axes that are not parallel to each other. “Lock-out” between two or more component parts refers to a state in which movement of any component part is prevented by frictional, compression, expansion, or other forces. A “taper-lock connector” refers to any locking mechanism that uses a taper to effect locking.
Referring to
Referring to
Referring to
The split shell 128 has a circular neck portion 132 through which passes a bore 134. The bore opening is surrounded by a radial spline 136. Adjacent to the neck portion 132 is a spherical portion 138 which comprises two expandable lobes 140, 142. An interior surface 143 of the lobes 140 may be tapered. The present embodiment of the invention includes two lobes, however it is appreciated that more lobes may be included, or other expandable portions, in other embodiments. The split shell 128 fits over the conical expander 126 such that a threaded post 146 of the conical expander passes through the bore 134. An expansion portion 148 of the conical expander 126 is forked and has two opposing flanges 150, 152 which are shaped to fit around and grip the inferior strut 104. An inner wall 153 of the flanges is curved to fit around the inferior strut, and the outer walls 154, 156 are tapered.
The split ring clamp 110 comprises an inner ring 160, an outer ring 162 and a collar 164 which joins the inner and outer rings. The collar 164 is shaped to fit around and grip the crosslink rod 108. The split ring clamp is configured such that when the inner and outer rings 160, 162 are compressed together, a diameter of the collar 164 decreases and the collar can tighten around and secure the crosslink rod. The surface of an exterior side of the inner ring 160 is a radial spline 166, which is shaped to engage with the radial spline 136 on the split shell 128.
When assembled, the split shell 128 fits over the conical expander 126, and the two parts fit within the inferior articular body 102 such that the interior cavity 112 houses the expansion portion 148 of the conical expander 126 nested inside the spherical portion 138 of the split shell 128. The conical expander 126, split shell 128 and inferior articular body 102 are oriented so that in general the flanges 150, 152 are adjacent to the lobes 140, 142, and the lobes are adjacent to the interior wall 114 of the interior cavity 112. A rod portion of the inferior strut 104 fits between the flanges 150, 152 of the conical expander.
The split ring clamp 110 fits over the threaded post 146 of the conical expander so that the radial spline 166 of the split clamp meets the radial spline 136 of the split shell 128. The crosslink rod 108 extends through the collar 164 of the split clamp. The nut 130 is threaded onto the threaded post 146 of the conical expander.
Until the attachment mechanism 106 is locked down by actuating the nut 130, the implant is adjustable in multiple ways. The crosslink rod 108 has relative angular freedom of motion about the clamp axis 111 and the inferior strut axis. The position of the crosslink rod 108 relative to the split clamp 110 may be adjusted such that a relatively longer or shorter length of the crosslink rod 108 extends through the clamp. This provides an opportunity to select the best fit to the patient's anatomy and the specific vertebral level being treated. Similarly, the position of the inferior strut 104 may be adjusted relative to the inferior articular body 102 such that a relatively longer or shorter length of the inferior strut 104 extends through the flanges 150, 152 of the conical expander 126. Also, the inferior strut 104 has relative angular freedom of motion about the clamp axis 111. The inferior articular body 102 may be polyaxially rotated about the conical expander 126 and the split shell 128. The adjustments provide relative rotation between the inferior articulation surface 122 and the inferior strut 104 about three orthogonal axes. In addition, prior to lockdown, relative translation between the inferior strut 104, the inferior articulation surface 122, and the crosslink 108 is permitted.
The attachment mechanism 106 is locked down by actuating, or turning the nut 130. As the nut is turned and its threads engage the threaded post 146, the conical expander 126 is urged “upward” through the nut 130, while the outer ring 162 of the split clamp 110 is urged “downward” toward the inner ring 160. As the conical expander 126 moves, the flanges 150, 152 push against the lobes 140, 142 of the split shell 128, and in turn the lobes expand and push against the interior wall 114 of the interior cavity 112. Simultaneously, the flanges 150, 152 are compressed around the inferior strut 104. Similarly, the collar 164 of the split clamp 110 is compressed around the crosslink rod 108 as the inner 160 and outer 162 rings of the clamp are urged together. The nut 130 may be actuated until the resulting internal compression prevents any further motion, and the mechanism is locked down.
The inferior implant 100 may be delivered in an assembled, but not locked down, configuration. The crosslink rod 108 may be included in the assembly, provided separately, or excluded. The inferior implant 100 may be delivered in combination with a superior implant, in which a clip or other temporary fastener holds the inferior articular surface to a superior articular surface of the superior implant.
Referring to
The fixation assembly 300 may be delivered in a partially assembled state or be assembled from the components described above. During implantation, the fixation member 302 may be implanted in the pedicle of the vertebra using methods known in the art. The tapered base 304 is fit over the shaft of the fixation member 302. The split sphere 306 fits over the tapered portion 320 of the base 304. The ring 182 of the inferior strut 104 is placed so it encircles the split sphere 306. At this point, the ring 182 may be polyaxially adjusted around the split sphere so that the inferior strut 104 attains a desired orientation. To lock down the desired orientation, a compression lockout tool (not shown) engages the notches 324 of the tool engagement rim 322 on the base 304. The lockout tool provides compression on the split sphere 306, urging it farther onto the tapered portion 320 toward the flange 318. As the split sphere 306 moves down the tapered portion 320, it expands and engages the ring 182 of the inferior strut 104. Once all motion between the tapered portion 320, split sphere 306 and ring 182 is locked out, the tool is removed. The top nut is threaded onto the threaded attachment portion 314 of the fixation member 302, to retain the base 302, sphere 306 and ring 182 on the fixation member, and to further secure the inset portion 316 in the vertebra. Optionally, the base 304, split sphere 306, and ring 182 may be assembled and locked out independently of the fixation member 302, then dropped onto the fixation member 302 and retained with the top nut 308. The inferior implant 100 may be secured to the inferior strut 104 before or after the inferior strut 104 is locked into position with the base 304 and split sphere 306.
Referring to
Returning to
Next, the inferior implants 100, 101 are each assembled with an inferior strut 104, but not yet locked to the strut. A split sphere 306 is captured in the ring 182 of each strut 104, and each inferior implant/strut/sphere assembly is placed on a base intended for an inferior implant. At this point, the inferior articular surfaces are aligned with the superior articular surfaces, and may be temporarily clipped together to maintain the alignment. The inferior implant/strut assemblies are locked down to the fixation assemblies.
The crosslink 108 may now be inserted through the collar 164 of the split clamp 110 of one inferior implant 100 or 101 and optionally through a prepared spinous process, and through the other collar 164 on the remaining inferior implant 100 or 101. It is appreciated that as the crosslink 108 is inserted, the split clamp 110 is rotatable about the clamp axis 111. Therefore, the crosslink 108 may be positioned to pass through a spinous process, or may pass through soft tissue caudal to the spinous process. Alternatively, the crosslink 108 may be inserted before the inferior implants are locked down to the fixation assemblies. The attachment assemblies 106 of each inferior implant 100, 101 are actuated to lock down the implants, fixing the positions of the articular surfaces 122, the inferior struts 104 and the crosslink 108.
Some variation in the steps described above may occur. For example, the inferior articular body 102 may be available packaged with the superior implant 200, temporarily clipped together such that the articular surfaces 122, 202 are in a desired alignment. In this instance, the inferior articular body 102 is inserted with the superior implant 200 as the superior implant 200 is placed and locked with the fixation assembly 300. Then the inferior strut 104 and the remaining components of the inferior implant 100, including the conical expander, split shell, and split clamp are assembled with the inferior articular body 102. The ring 182 of the inferior strut 104 is assembled and locked down with the inferior fixation assembly 300. The insertion of the crosslink 108 and final lockdown is as described previously, and the clip is removed.
Alternatively, the inferior implant 100 may be available secured to a clip. The implant 100, with the attached clip, may be inserted adjacent to an already implanted and locked down superior implant, and the inferior and superior implants temporarily clipped together. The inferior strut is adjusted and locked down to its fixation assembly. The insertion of the crosslink 108 and final lockdown of the inferior implant is as described previously, and the clip is removed.
System 10, and other facet replacement components disclosed herein, may also be implanted on multiple vertebral levels to provide facet joint replacement across several levels. In a multi-level application, additional superior implants could be added to the fixation members 300 which secure the inferior struts 104, to extend the system in a cephalad direction. Similarly, to extend the system caudally, additional inferior struts coupled to inferior implants could be added to the fixation members 300 which secure the original superior implants 200. Also, fusion rods (not shown) may be secured between fixation members 300 on adjacent vertebra to provide rigid fusion at a desired vertebral level.
The fixation member 352 is initially implanted into the pedicle, and the tapered base 354 is inserted over the fixation member 352 and seated in the bone. The split sphere is placed over the tapered portion 364 of the tapered base 354. A ring 212 of the superior implant 210 is placed around the split sphere 356. At this point, the ring 212 may be polyaxially adjusted to attain a desired orientation of the superior implant 210. To lock the orientation and position of the superior implant 200, a lockout tool (not shown) is actuated to effect the taper lock. The lockout tool has an externally threaded inner shaft tip which is engaged in the threaded lumen 366 of the tapered base 354. The lockout tool is actuated, using tensile force to simultaneously pull on the tapered base 354 with the inner shaft, and push on the flange 368 of the split sphere 356 with an outer shaft. This force moves the split sphere 356 farther onto the tapered portion 364. The split sphere 356 expands and engages the ring 212 of the superior implant 210 until all motion ceases and the position of the ring 212 is locked down. The lockout tool is unthreaded and removed, and the capture nut 358 is threaded into the tapered lumen 366, also capturing the flange 368 of the split sphere 356. The capture nut 358 is included to ensure the long-term integrity of the lock. The top nut 360 is threaded onto the fixation member 352, and assists in holding the tapered base 362 against the bone surface. The top nut 360 and capture nut 358 may use the same driver.
Referring to
The inferior strut 404 has a first end 420 which is shaped as a rod, and a second end 422 which is shaped as a ring. The second end 422 comprises a split ring clamp 424, the split ring having an inner ring 426, an outer ring 428, and a collar 430, which connects the inner and outer rings. The collar 430 is oriented generally orthogonal to the inner and outer rings. The collar 430 is shaped to receive a split sphere 432, which has an interior shaped to receive the crosslink rod 109. A nut 440 is configured to be threaded on the threaded post 414.
The attachment mechanism 406 is locked down by actuating, or turning the nut 440. Lockdown of the attachment mechanism locks out both the position of the inferior strut relative to the inferior articulation surface, and the position of the crosslink. As the nut is turned and its threads engage the threaded post 414, the compressible member 410 is urged “upward” through the nut 440, while the outer ring 428 of the split ring clamp 424 is urged “downward” toward the inner ring 426. As the compressible member 410 moves, the tapered outer wall of the conical portion 412 engages the inner surface of the inner ring 426. Simultaneously, the interior wall of the conical portion 412 exerts compressive force against the rounded surface 408 in the interior cavity 416. Similarly, the collar 430 of the split ring clamp 424 is compressed around the split sphere 432, which compresses around the crosslink rod 109, as the inner 426 and outer 428 rings of the clamp are urged together. The nut 440 may be actuated until the resulting internal compression prevents any further motion, and the mechanism is locked down.
Returning to
With reference to
Before or after the fixation assemblies 300 are prepared, the fixation members 502 for the fixation assemblies 500, 501 are driven to a desired depth. On the left side, base 504 is placed over the fixation member 502 and secured by the top nut 506. The inferior strut 404 is assembled with the inferior articular body 402, and the attachment mechanisms 406 as set forth previously, but not locked down. The split ring clamp 508 is assembled with the split sphere 510, and together they are slid onto the inferior strut 404. The split ring clamp 508, now attached to the inferior strut 404 and the inferior implant 400, is placed on the tapered pedestal 521 of the base 504. On the right side, mirror-image duplicates of the left components are similarly assembled. The inferior implants 400, 401 are positioned so that the inferior articular surfaces are aligned with the superior articular surfaces, and the inferior and superior articular bodies on each side may be temporarily clipped together to maintain the alignment. The inferior implant/strut assemblies are locked down to the fixation assemblies by actuating the set screws 512.
The crosslink 109 may now be inserted through the collar 530 of the split clamp 508 of one inferior implant 400 or 401 and through a prepared spinous process, and through the other collar 530 on the remaining inferior implant 400 or 401. Alternatively, the crosslink 109 may be inserted before the inferior implants are locked down to the fixation assemblies. The attachment mechanisms 406 of each inferior implant 400, 401 are actuated to lock down the implants, fixing the positions of the articular surfaces 403, the inferior struts 404 and the crosslink 109.
Some variation in the steps described above may occur. For example, as seen in
Another alternative inferior strut (not pictured) may include separate polyaxially adjustable attachment mechanisms for a crosslink and an inferior articular body. Such an alternative strut may include a first ring positioned and shaped to receive a polyaxially adjustable crosslink rod, while a second ring is positioned and shaped to receive a polyaxially adjustable connection to an inferior articular body. Each ring may have an independent lockout mechanism such as a nut or screw.
The plug 570 comprises a handle 572 and two prongs 574 which are sized to extend through the bores 560 of the inferior pins 558 of the clip 550. When the plug 570 is inserted fully into the inferior pins 558, the prongs 574 urge apart the split ends 562 from a narrow first configuration to an expanded second configuration in which the slots 564 are widened, and the flanges 566 on each pin are farther apart. When the plug 570 is removed, the split ends 562 return from the expanded second configuration to the narrow first configuration.
Returning to
Referring to
As seen in
Referring to
Referring to
The present invention includes variances of the system herein described. Alternative embodiments may include different geometries and intermediate parts. Changes in the geometry, especially on the ends of the inferior strut, could be made to facilitate instrumentation or overall function. Applications of the present invention may include single- or multi-level facet joint replacement, or other iterations in which a rod or rod-like member is fixed to a second member to attain spinal fusion.
The present invention may be embodied in other specific forms without departing from its spirit or essential characteristics. It is appreciated that various features of the above-described examples can be mixed and matched to form a variety of other alternatives. As such, the described embodiments are to be considered in all respects only as illustrative and not restrictive. The scope of the invention is, therefore, indicated by the appended claims rather than by the foregoing description. All changes which come within the meaning and range of equivalency of the claims are to be embraced within their scope.
This application is a continuation-in-part of the following, which is incorporated herein by reference: pending U.S. application Ser. No. 11/972,158, filed Jan. 10, 2008, which carries Applicants' docket no. FSI-19, and is entitled TAPER-LOCKING FIXATION SYSTEM, which claims the benefit of the following, which are also incorporated herein by reference: pending U.S. Provisional Patent Application No. 60/884,233, filed Jan. 10, 2007, which carries Applicants' docket no. FSI-19 PROV, and is entitled TAPER-LOCKING ROD FIXATION SYSTEM; pending U.S. Provisional Application No. 60/912,323, filed Apr. 17, 2007, which carries Applicants' docket no. FSI-20 PROV, and is entitled AFRS MULTI-LEVEL IMPLANT SYSTEM; pending U.S. Provisional Application No. 60/950,012, filed Jul. 16, 2007, which carries Applicants' docket no. FSI-22 PROV, and is entitled INFERIOR FACET IMPLANT HOLDER; pending U.S. Provisional Application No. 60/950,021, filed Jul. 16, 2007, which carries Applicants' docket no. FSI-23 PROV, and is entitled MONORAIL INSTRUMENT GUIDANCE SYSTEM FOR LUMBAR SPINAL SURGERY; pending U.S. Provisional Application No. 60/950,031, filed Jul. 16, 2007, which carries Applicants' docket no. FSI-24 PROV, and is entitled LINEAR POLYAXIAL LOCKING MECHANISM WITH TOOL; pending U.S. Provisional Application No. 60/950,038, filed Jul. 16, 2007, which carries Applicants' docket no. FSI-25 PROV, and is entitled MOBILE INFERIOR FACET BEARING WITH SUPERIOR CLIP; pending U.S. Provisional Application No. 60/957,505, filed Aug. 23, 2007, which carries Applicants' docket no. FSI-26 PROV, and is entitled DYNAMIC STABILIZATION AND STATIC FIXATIO OPTIONS FOR FACET REPLACEMENT PROSTHESIS; pending U.S. Provisional Application No. 60/968,324, filed Aug. 27, 2007, which carries Applicants' docket no. FSI-21 PROV, and is entitled INTERVERTEBRAL DISC IMPLANT WITH FACET MOTION CONSTRAINTS; pending U.S. Provisional Application No. 60/968,925, filed Aug. 30, 2007, which carries Applicants' docket no. FSI-27 PROV, and is entitled SYSTEMS AND METHODS FOR LESS INVASIVE FACET JOINT REPLACEMENT; pending U.S. Provisional Application No. 60/975,731, filed Sep. 28, 2007, which carries Applicants' docket no. FSI-30 PROV, and is entitled MONOLITHIC INFERIOR IMPLANT STRUT WITH INTEGRAL CROSS LINK CLAMP; pending U.S. Provisional Application No. 60/984,434, filed Nov. 1, 2007, which carries Applicants' docket no. FSI-34 PROV, and is entitled SUPERIOR INSTRUMENTS; pending U.S. Provisional Application No. 60/984,428, filed Nov. 1, 2007, which carries Applicants' docket no. FSI-35 PROV, and is entitled CROSS LINK CLAMP; pending U.S. Provisional Application No. 60/984,594, filed Nov. 1, 2007, which carries Applicants' docket no. FSI-36 PROV, and is entitled LOW PROFILE POLYAXIAL FACET IMPLANT; pending U.S. Provisional Application No. 60/984,798, filed Nov. 2, 2007, which carries Applicants' docket no. FSI-31 PROV, and is entitled LOW PROFILE POLYAXIAL FACET IMPLANT; pending U.S. Provisional Application No. 60/984,814, filed Nov. 2, 2007, which carries Applicants' docket no. FSI-32 PROV, and is entitled HINGED EYELET SCREW; pending U.S. Provisional Application No. 60/984,983, filed Nov. 2, 2007, which carries Applicants' docket no. FSI-33 PROV, and is entitled ADJUSTABLE FACET IMPLANT BASE PIECE; pending U.S. Provisional Application No. 61/014,344, filed Dec. 17, 2007, which carries Applicants' docket no. FSI-37 PROV, and is entitled INFERIOR STRUT UPDATE; pending U.S. Provisional Application No. 61/015,866, filed Dec. 21, 2007, which carries Applicants' docket no. FSI-28 PROV, and is entitled INTERVERTEBRAL DISC IMPLANT WITH FACET MOTION CONSTRAINTS INCLUDING POSTERIOR COMBINATION; pending U.S. Provisional Application No. 61/015,876, filed Dec. 21, 2007, which carries Applicants' docket no. FSI-29 PROV, and is entitled INTERVERTEBRAL DISC IMPLANT WITH FACET MOTION CONSTRAINTS AND METHODS FOR IMPLANT ALIGNMENT; pending U.S. Provisional Application No. 61/015,886, filed Dec. 21, 2007, which carries Applicants' docket no. FSI-38 PROV, and is entitled EYELET PEDICLE SCREW WITH MULTI-AXIAL FIXATION; and pending U.S. Provisional Application No. 61/015,840, filed Dec. 21, 2007, which carries Applicants' docket no. FSI-39 PROV, and is entitled CERVICAL PLATE WITH FACET MOTION CONTROL. This application also claims the benefit of the following, which are incorporated herein by reference: pending U.S. Provisional Application No. 61/023,927, filed Jan. 28, 2008, which carries Applicants' docket no. FSI-40 PROV, and is entitled AFRS GENERATION II INSTRUMENTS; pending U.S. Provisional Application No. 61/033,473, filed Mar. 4, 2008, which carries Applicants' docket no. FSI-41 PROV, and is entitled TOP LOADING RECEIVER FOR AN ADJUSTABLE FACET REPLACEMENT; pending U.S. Provisional Application No. 61/040,041, filed Mar. 27, 2008, which carries Applicants' docket no. FSI-42 PROV, and is entitled FACET JOINT REPLACEMENT; pending U.S. Provisional Application No. 61/042,896, filed Apr. 7, 2008, which carries Applicants' docket no. FSI-43 PROV, and is entitled SPINAL FIXATION ON AN IMPLANT BASE; and pending U.S. Provisional Application No. 61/045,526, filed Apr. 16, 2008, which carries Applicants' docket no. FSI-44 PROV, and is entitle INFERIOR BASE-SPLIT CLAMP AND MULTI-LEVEL SPLIT CLAMP.
Number | Date | Country | |
---|---|---|---|
60884233 | Jan 2007 | US | |
60912323 | Apr 2007 | US | |
60950012 | Jul 2007 | US | |
60950021 | Jul 2007 | US | |
60950031 | Jul 2007 | US | |
60950038 | Jul 2007 | US | |
60957505 | Aug 2007 | US | |
60968324 | Aug 2007 | US | |
60968925 | Aug 2007 | US | |
60975731 | Sep 2007 | US | |
60984434 | Nov 2007 | US | |
60984428 | Nov 2007 | US | |
60984594 | Nov 2007 | US | |
60984798 | Nov 2007 | US | |
60984814 | Nov 2007 | US | |
60984983 | Nov 2007 | US | |
61014344 | Dec 2007 | US | |
61015866 | Dec 2007 | US | |
61015876 | Dec 2007 | US | |
61015886 | Dec 2007 | US | |
61015840 | Dec 2007 | US | |
61023927 | Jan 2008 | US | |
61033473 | Mar 2008 | US | |
61040041 | Mar 2008 | US | |
61042896 | Apr 2008 | US | |
61045526 | Apr 2008 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11972158 | Jan 2008 | US |
Child | 12104855 | US |