The present invention generally relates to gas turbine engines, and more particularly relates to combustors for gas turbine engines.
A gas turbine engine may be used to power various types of vehicles and systems. A particular type of gas turbine engine that may be used to power aircraft is a turbofan gas turbine engine. A turbofan gas turbine engine may include, for example, five major sections: a fan section, a compressor section, a combustor section, a turbine section, and an exhaust section.
The fan section typically is positioned at the front or “inlet” section of the engine and includes a fan that induces air from the surrounding environment into the engine and accelerates a fraction of this air toward the compressor section. The remaining fraction of air induced into the fan section is accelerated into and through a bypass plenum and out the exhaust section. The compressor section raises the pressure of the air it receives from the fan section to a relatively high level.
The compressed air from the compressor section then enters the combustor section where a ring of fuel nozzles injects a steady stream of fuel. The injected fuel is ignited by a burner, which significantly increases the energy of the compressed air. The high-energy compressed air from the combustor section then flows into and through the turbine section, causing radially mounted turbine blades to rotate and generate energy.
Due to the high temperatures involved, combustor sections of gas turbine engines typically include a plurality of heat shields, which are often located near a protective dome of the combustor section. Generally, there are gaps formed between the heat shields and the protective dome, for example to allow for the passage of cooling air therethrough and/or to allow for possible thermal expansion. While such heat shields are generally flat, the protective dome disposed nearby is generally a single structure forming an annular ring. As a result, the gaps are typically not uniform throughout the protective dome. This may cause uneven heat distribution and resulting “hot spots”, and/or wear on the combustor and/or components thereof.
Accordingly, it is desirable to provide an improved dome assembly for a gas turbine engine that potentially results in more uniform gaps between the dome assembly and heat shields disposed proximate thereto, and/or that results in a more even heat distribution or in reduced wear on the combustor or components thereof. It is further desirable to provide a combustor for a gas turbine engine with an improved dome assembly that potentially results in more uniform gaps between the dome assembly and heat shields disposed proximate thereto, and/or that results in a more even heat distribution or in reduced wear on the combustor or components thereof. It is further desirable to provide a gas turbine engine with a combustor having an improved dome assembly that potentially results in more uniform gaps between the dome assembly and heat shields disposed proximate thereto, and/or that results in a more even heat distribution or in reduced wear on the combustor or components thereof. Furthermore, other desirable features and characteristics of the present invention will be apparent from the subsequent detailed description and the appended claims, taken in conjunction with the accompanying drawings and the foregoing technical field and background.
In accordance with an exemplary embodiment of the present invention, a dome assembly for a gas turbine engine is provided. The dome assembly comprises a plurality of faceted segments and a plurality of openings. The plurality of faceted segments are coupled together to form a dome structure that is configured to be disposed between an inner liner and an outer liner that circumscribes the inner liner. The plurality of openings are each formed within a respective faceted segment, and are configured to at least partially house an atomizer therein. Each faceted segment is at least substantially flat.
In accordance with another exemplary embodiment of the present invention, a combustor for a gas turbine engine is provided. The combustor comprises an inner liner, an outer liner, and a dome assembly. The outer liner circumscribes the inner liner. The dome assembly is coupled to and disposed between the inner liner and the outer liner. The dome assembly comprises a plurality of faceted segments. Each faceted segment is at least substantially flat.
In accordance with a further exemplary embodiment of the present invention, a turbine engine is provided. The turbine engine comprises a compressor, a combustor, and a turbine. The compressor has an inlet and an outlet, and is operable to supply compressed air. The combustor is coupled to receive at least a portion of the compressed air from the compressor, and is operable to supply combusted air. The combustor comprises an inner liner, an outer liner, and a dome assembly. The outer liner circumscribes the inner liner. The dome assembly is coupled to and disposed between the inner liner and the outer liner. The dome assembly comprises a plurality of faceted segments. Each faceted segment is at least substantially flat. The turbine is coupled to receive the combusted air from the combustor.
Other independent features and advantages of the preferred apparatus and methods will become apparent from the following detailed description, taken in conjunction with the accompanying drawings which illustrate, by way of example, the principles of the invention.
Before proceeding with the detailed description, it is to be appreciated that the described embodiment is not limited to use in conjunction with a particular type of turbine engine. Thus, although the present embodiment is, for convenience of explanation, depicted and described as being implemented in a multi-spool turbofan gas turbine jet engine, it will be appreciated that it can be implemented in various other types of turbines engines, and in various other systems and environments.
An exemplary embodiment of an upper portion of an annular multi-spool turbofan gas turbine jet engine 100 is depicted in
In the embodiment of
In the embodiment of
In the embodiment depicted in
As depicted in
In the depicted embodiment, the first wall 209 couples each faceted segment 208 to the inner liner 204. Likewise, the second wall 211 couples each faceted segment 208 to the outer liner 206. For example, in one preferred embodiment, the first wall 209 connects each faceted segment 208 to the inner liner 204, and the second wall 211 connects each faceted segment 208 to the outer liner 206. Also in a preferred embodiment, the first and second walls 209, 211 are at least partially conical in shape. In addition, in one preferred embodiment, the faceted segments 208 are welded together, and are also each welded to the first and second walls 209, 211, which in turn are welded to the inner and outer liners 204, 206.
As shown in
Also as shown in
Preferably, the gap 418 is uniform across the faceted segment 208. Additionally, preferably the various gaps 418 between the various heat shields 314 and their respective faceted segments 208 are uniform not only across each faceted segment 208, but are also uniform with respect to one another, for example being of a common size and shape across the entire dome assembly 202. The uniform nature of the gaps 418 is made possible due to the structure of the dome assembly 202 as described above in connection with the exemplary embodiments of
Accordingly, an improved dome assembly 202 has been provided for a gas turbine engine that potentially results in more uniform gaps 418 between the dome assembly 202 and heat shields 314 disposed proximate thereto, and that potentially results in a more even heat distribution, and in reduced wear on the combustor and components thereof. In addition, a combustor section 200 for a gas turbine engine has been provided that includes such an improved dome assembly 202. Further, a gas turbine engine 100 has been provided that includes a combustor section 200 having such an improved dome assembly 202.
While at least one exemplary embodiment has been presented in the foregoing detailed description of the invention, it should be appreciated that a vast number of variations exist. It should also be appreciated that the exemplary embodiment or exemplary embodiments are only examples, and are not intended to limit the scope, applicability, or configuration of the invention in any way. Rather, the foregoing detailed description will provide those skilled in the art with a convenient road map for implementing an exemplary embodiment of the invention, it being understood that various changes may be made in the function and arrangement of elements described in an exemplary embodiment without departing from the scope of the invention as set forth in the appended claims and their legal equivalents.
This invention was made with Government support under contract number F33615-03-D-2355-D006 awarded by the United States Air Force. The Government has certain rights in this invention.