The subject disclosure relates to determining compliance between documents, and more specifically, to mapping of control policies to regulatory documents for compliance determination.
The following presents a summary to provide a basic understanding of one or more embodiments of the invention. This summary is not intended to identify key or critical elements, or delineate any scope of the particular embodiments or any scope of the claims. Its sole purpose is to present concepts in a simplified form as a prelude to the more detailed description that is presented later. In one or more embodiments described herein, systems, processes, methods, and products which facilitate mapping control policy to regulatory documents to check for compliance are described.
According to an embodiment, a computer-implemented method is provided. The computer-implemented method can comprise: determining, by a system operatively coupled to a processor, an information input, a control framework, and a document from a first group consisting of a regulatory document and a policy document, wherein the information input is a corpora from a second group consisting of a domain corpora and a global corpora; and mapping, by the system, the regulatory document or the policy document to the control framework using a supervised machine learning technique.
In another embodiment, another computer-implemented method can comprise: determining, by a system operatively coupled to a processor, a regulatory document, a policy document, a control framework, an information input, and an expert mapping input, wherein the information input is from a first group consisting of a domain corpora and a global corpora; and mapping, by the system, the regulatory document and the policy document via the control framework using a supervised machine learning technique.
In another embodiment, a system is provided. The system can comprise: a memory that stores computer executable components; and a processor that executes the computer executable components stored in the memory. The computer executable components can comprise: a reception component that receives a control framework, an information input and one of a regulatory document or a policy document, wherein the information input comprises corpora from a first group consisting of domain corpora and global corpora; an extraction component that extracts one or more features from the information input and one of the regulatory document or the policy document; and a modeling component that maps the one or more features to the control framework using a supervised machine learning technique.
In another embodiment, another system is provided. The system can comprise: a memory that stores computer executable components; and a processor that executes the computer executable components stored in the memory. The computer executable components can comprise: a reception component that receives a regulatory document, a policy document, a control framework, and an information input, wherein the information input comprises a corpora from a group consisting of domain corpora and global corpora; an extraction component that extracts one or more features from the regulatory document, the policy document, and the information input; and a mapping component that maps the one or more features to the control framework using a supervised machine learning technique.
In another embodiment, a computer program product for determining compliance between documents is provided. The computer program product can comprise a computer readable storage medium having program instructions embodied therewith, the program instructions executable by a processing component to cause the processing component to: determine a regulatory document, a policy document, a control framework, an information input, and an expert mapping input, wherein the information input comprises a corpora from a first group consisting of a domain corpora and a global corpora; generate a regulatory model by mapping one or more first features from the regulatory document one or more obligations and one or more second features from the information input to the control framework; generate a control model by mapping the one or more second features and one or more third features from the policy document to the control framework; and combine the regulatory model and the control model.
The following detailed description is merely illustrative and is not intended to limit embodiments and/or application or uses of embodiments. Furthermore, there is no intention to be bound by any expressed or implied information presented in the preceding Background or Summary sections, or in the Detailed Description section.
One or more embodiments are now described with reference to the drawings, wherein like referenced numerals are used to refer to like elements throughout. In the following description, for purposes of explanation, numerous specific details are set forth in order to provide a more thorough understanding of the one or more embodiments. It is evident, however, in various cases, that the one or more embodiments can be practiced without these specific details.
Companies often institute control policies in view of regulatory documents to ensure their practices are in compliance with governing laws and regulations. Regulatory documents can be extensive, complex, and subject to change. As used herein, the term “regulatory document” can refer to a document or collection of documents, in any medium (e.g., paper or electronic) that describes one or more obligations governing a subject matter (e.g., the finance field). Also, as used herein, the term “obligation” can refer to text or data that describes a requirement of law, rule, regulation, guideline, or the like concerning a given topic.
The subject disclosure is directed to computer processing systems, computer-implemented methods, apparatus and/or computer program products that facilitate efficient, effective, and automatic (e.g., without direct human involvement) mapping of control policies to one or more regulatory documents. For example, mapping control policies to a regulatory document can include: identifying relevant obligations in the regulatory document, recognizing key words or phrases in the obligations, determining how the obligations relate to each other, and determining whether there is a section in the control policy that properly meets the obligations in view of the meaning of the obligation and context in the regulatory document.
The computer processing systems, computer-implemented methods, apparatus and/or computer program products described herein can employ hardware and/or software to solve problems that are highly technical in nature such as the automated and detailed electronic mapping of control policies to regulatory documents given an understanding of meaning and context of obligations described in the regulatory document. Thus, the systems, methods, and products described herein should not be considered abstract as they cannot be practiced via the mental acts of a human. For example, a single human, or even hundreds of humans, cannot analyze a global corpus (e.g., the Internet) to provide supplemental context to obligations described in a regulatory document. One or more embodiments of the present invention can enable the automated mapping of control policies to regulatory documents in a highly accurate and efficient manner.
The system 100 can comprise: a server device 102, one or more networks 104, and one or more digital sources 106. The server device 102 can include a compliance component 108 which can comprising: a reception component 110; a modeling component 112 that can further comprise an extraction component 113; and a mapping component 114. Further, the server device 102 can comprise at least one memory 116 and at least one processor 118. The memory 116 can store computer executable components (e.g., the compliance component 108 and associated components). The processor 118 can execute the computer executable components stored in the memory 116. Moreover, the server device 102 can further comprise a system bus 120. The system bus 120 can couple the various features of the server device 102 including, but not limited to, the compliance component 108, memory 116, and/or processor 118. While a server device 102 is shown in
The digital sources 106 can comprise one or more regulatory documents 121, one or more policy documents 122, a control framework 123, one or more expert mapping inputs 125, and/or one or more information inputs 124. The regulatory document(s) 121 can include one or more sources relating to obligations governing a given subject matter. The policy documents 122 can include one or more sources relating to an entity operating procedures. The topic of the regulatory document 121 and the topic of the policy document 122 can be the same or different in various embodiments. The control framework 123 can comprise a classification architecture relating to the topic and/or field of the regulatory document 121 or the control document 123 (e.g. a taxonomy).
The compliance component 108 can facilitate determining whether one or more policy documents 122 are in compliance with one or more governing obligations. In particular, the compliance component 108 can map the policy documents 122 to the control framework 123 to generate a model, and map the regulatory documents 121 to the control framework 123 to generate a second model. By combining the models, the system 100 can determine whether or not the policy documents 122 are missing a requirement described by the regulatory documents 121.
The reception component 110 can receive the digital sources 106 for processing by the compliance component 108 to construct models comprising obligations or control policies governing a particular topic to check for compliance between the models. For example, the reception component 110 can receive the regulatory documents 121, policy documents 122, control framework 123, expert mapping inputs 125, and information inputs 124
The digital sources 106 can be accessible to the server device 102 directly or via one or more networks 104. The networks 104 can comprise at least one of internal networks (e.g., an intranet) or external networks (e.g., the Internet). For example, the digital sources 106 can be received by the reception component 110 via an intranet such as a company corporate network. Also, one or more of the digital sources 106 can be received by the reception component 110 via download from a website (e.g., the regulatory document 121 can be received from a website maintained by a governing body).
In some embodiments, the reception component 110 can receive the one or more of the digital sources 106 that are uploaded to the server device 102 from a client device. For example, a human (e.g., a subject expert) can manually upload a regulatory document 121 and/or a policy document 122 from a computerized device via the network 104. In another example, a subject expert can annotate one or more of the digital sources 106 to facilitate formation of a model, and upload the annotations via the network 104. In various embodiments, one or more of the uploading and/or annotation and/or analysis can be performed automatically by a specialized computer configured to perform such functions.
In some embodiments, the reception component 110 can scan the networks 104 for missing digital sources 106 and/or new digital sources 106. For example, the reception component 110 can scan at least one of numerous websites, applications, or network accessible storage devices for regulatory documents 121 that can be utilized to construct a model comprising obligations governing a given topic. In various embodiments, the reception component 110 can comprise hardware (e.g., a central processing unit (CPU), a transceiver, a decoder), and/or software (e.g., a set of threads, a set of processes, software in execution) that facilitates receiving text from one or more digital sources 106.
The various components (e.g., server device 102, compliance component 108 and associated components, digital sources 106) of system 100 can be connected either directly or via one or more networks 104. Such networks 104 can include wired and wireless networks, including, but not limited to, a cellular network, a wide area network (WAN) (e.g., the Internet) or a local area network (LAN). For example, the server device 102 can communicate with one or more digital sources 106 (and vice versa) using virtually any desired wired or wireless technology, including, for example, cellular, WAN, wireless fidelity (Wi-Fi), Wi-Max, WLAN, and etc. Further, although in the embodiment shown the compliance component 108 is provided on a server device 102, it should be appreciated that the architecture of system 100 is not so limited. For example, the compliance component 108 or one or more components of the compliance component 108 can be located at another device, such as another server device, a client device, etc.
In various embodiments, the modeling component 112 can generate a new regulatory model 201 comprising one or more obligations governing a given topic by utilizing one or more digital sources 106. The regulatory model 201 can comprise one or more language models 202 containing content extracted from the digital sources 106. The regulatory model 201 can be structured in any manner which facilitates organizing the one more or language models 202 to indicate the extraction location and content of features from the digital sources 106. For example, the regulatory model 201 can be a spreadsheet, a table, and/or an annotated tree diagram.
The modeling component 112 can receive the digital sources 106 as inputs via the reception component 110. For example, the inputs can include the expert mapping inputs 125, the information inputs 124, and the regulatory documents 121. The expert mapping inputs 125 can comprise annotations made by subject experts regarding the control framework 123. The information inputs 124 can comprise at least one of a global corpora 203 or a domain corpora (e.g., specialized-term dictionary 206). The global corpora 203 can comprise a general internet-based collection of texts derived from various sources (e.g., GUTENBERG®, REUTERS®, COMMON CRAWL®, and/or GOOGLE NEWS®). The regulatory document 204 can comprise one or more documents which describe obligations regarding a given topic (e.g., financial regulations, information technology, the Security Exchange Commission, etc.), such as: statutes, law codifications, government regulations, and the like. An example of a domain corpora included in the information inputs 124 can include the specialized-term dictionary 206, which can comprise particular definitions for terms relating to the topic and/or field of the regulatory document 204. In an embodiment of the present invention, the modeling component 112 utilizes the regulatory document(s) 121, the global corpora 203, and the expert mapping input(s) 125 in constructing a new regulatory model 201. In another embodiment, the modeling component 112, in generating a new regulatory model 201, can utilize the regulatory document(s) 121, the specialized-term dictionary 206, and the expert mapping input(s) 125. In another embodiment, the modeling component 112, in generating a new regulatory model 201, can utilize two of the regulatory document(s) 121, the global corpora 203, the specialized-term dictionary 206, and the expert mapping input(s) 125.
The extraction component 113 can analyze at least one of the specialized term dictionary 206 or the expert mapping input(s) 125 and perform an unsupervised feature extraction 210. The unsupervised feature extraction 210 can involve automatically identifying features described by the specialized term dictionary 206 and/or expert mapping input(s) 125 which can be sorted into a language model 202 or utilized to create a language model 202 without requiring the supervision of a subject expert. A language model 202 can comprise an organized body of data containing one or more extracted features categorized to readily depict the content of the feature(s) and the feature(s) relation to the digital sources 106. Language models 202 can have various structures, such as but not limited to, spreadsheets, tables, and/or annotated diagrams (e.g., tree diagrams). Features extracted during the unsupervised feature extraction 210 can include, but are not limited to: headings, sub-headings, section references, section nomenclature, terminology, definitions, terminology synonyms, terminology representations, terminology paraphrases, segment-taxonomy tree, semantic similarity between terms and/or segments, and the like.
In some embodiments, the unsupervised feature extraction 210 can analyze at least one of the specialized term dictionary 206 or the expert mapping input(s) 125 utilizing neural network (NN) attention techniques. In other embodiments, the unsupervised extraction 210 can analyze at least one of the specialized term dictionary 206 or the expert mapping input(s) 125 utilizing term frequency-inverse document frequency (TFIDF) extraction techniques. TFIDF extraction can be used to extract key features from a document by considering a document (e.g., the taxonomy 208) in conjunction with a larger corpus regarding the document (e.g., the global corpus 203). For example, TFIDF can determine a ratio of a feature's occurrence in the taxonomy 208 in conjunction with the inverse of the share of documents in the global corpus 203 in which the regarded feature can be found. Further, the density (e.g., disbursement in a document) of a feature can be considered in determining the relevance of the feature.
The extraction component 113 can further analyze at least one of the regulatory documents 121 or the global corpora 203 to perform a supervised feature extraction 212.
At 302, the received digital sources 106 (e.g., the regulatory documents 121) can be analyzed to identify one or more obligations. Features (e.g., content) of each of the identified obligations can be extracted in regards to at least one of three categories: the paragraph from which the obligation is located 304; the section from which the obligation is located 306; or the context of the obligation 308. For example, at 304 features regarding the obligation's paragraph can include, but are not limited to: number, title, structure, content, topic, and the like. At 306 features regarding the obligation's section can also include, but are not limited to: number, title, structure, content, topic, and the like. Further, at 308 the content of text surrounding the obligation, the content of the obligation, and the global corpora 203 can be considered to determine features which relate a context of the subject obligation. For each of the categories, features can be extracted regarding the identified obligation via at least one word embedding technique, such as but not limited to: TFIDF, TFIDF based cosine, word to vector, word to vector based cosine, and NN attention similarity to label. Each of the word embedding techniques can extract a feature as a vector which can be incorporated into the language model(s) 202. Additionally, each vector can vary in size. Incorporation of the extracted features into the language model(s) 202 can be supervised by a subject expert.
The number of features extracted for each obligation is dependent on the number of categories and word embedding techniques employed. In an embodiment, all variations of one to three categories and one to five word embedding techniques are envisaged. For example, the supervised feature extraction 212 can extract features in regards to all three categories described above (e.g., 304, 306, and 308) of the identified obligation. Also, the supervised extraction 212 can utilize five different word embedding techniques (e.g., TFIDF, TFIDF based cosine, word to vector, word to vector based cosine, and NN attention similarity to label) to extract features (e.g., create vectors) for incorporation into the language models 202. Thus, the supervised feature extraction 212 can extract fifteen features for each identified obligation. In another example, the supervised feature extraction 212 can comprise two categories (e.g., 304 and 306; 306 and 308; or 304 and 308) along with four word embedding techniques to extract eight features for each identified obligation.
The supervised feature extraction 212 can result in the extraction of features from the regulatory document(s) 121 which can include, but are not limited to, the content of governing obligations and context of the obligations. Features relating the context of the identified obligations can describe how obligations relate to each other and to the regulatory document(2) 121 as a whole. In some embodiments, the global corpora 203 is used in conjunction with one or more of the word embedding techniques to provide a context in view of modern discussions and expert opinion. At least consideration of the global corpora 203 and incorporation of numerous features for each identified obligation, enables the supervised feature extraction 212 to provide a more accurate context for identified obligations than conventional systems.
Thus, features can be extracted from the expert mapping input(s) 125 and specialized-term dictionary 206 (in reference to the global corpora 203) to create language models 202 via the unsupervised feature extraction 210, and additional features can be extracted from the regulatory document(s) 121 and the global corpora 203 to further populate the language model(s) 202, and/or create new language model(s) 202, with obligation content and context via the supervised feature extraction 212. In an embodiment, the extraction component 113 can further perform an unsupervised extraction 210 on the control framework 123 using embedding techniques, such as NN attention modeling and TFIDF, to create language models 202 for the control framework 123 that can be combined to create a model of the control framework 123.
Referring back to
The modeling component 112 can combine the mappers together and with the control framework 123, thereby mapping the language model(s) 202 to the control framework 123, via one or more ensemble learning techniques. Types of ensemble learning techniques which can be used to create the regulatory model 201 can include, but are not limited to: Bayes optimal classifier, bootstrap aggregating (aka “bagging”), boosting, Bayesian parameter averaging, Bayesian model combination, stacking, and NN attention techniques. In an embodiment, stacking is used as the ensemble learning technique. Stacking (aka “stacked generalization”) can comprise combining algorithms created by each of the mappers into a single algorithm. Once the mappers are combined, the regulatory model 201 can comprise all (or, in some embodiments, one or more of) the identified obligations, including content and context, in an organizational structure which conveys each obligation's relation to each other and the regulatory document(s) 121. As a result, features are extracted from the regulatory document(s) 121, one or more of the information input(s) 124, and the expert mapping input(s) 125, and the features are mapped to the control framework 123 to generate a regulatory model 201. Also, the ensemble learning technique can generate one or more confidence scores associated with one or more of the features comprising the regulatory model 201 to show the regulatory model's 201 confidence regarding the placement and description accuracy of the subject feature.
In an embodiment, the mapping component 114 can map the policy document(s) 122 to the regulatory model 201. For example, the mapping component 114 can extract one or more features from the policy document(s) 122 and match them to corresponding features in the regulatory model 201. The mapping component 114 can extract features from the policy document(s) 122 using the same techniques described herein in regards to the unsupervised extraction 210 or the supervised extraction 212. By matching the extracted policy document(s) 122 features to the regulatory model 201 the compliance component 108 can determine whether the policy document(s) 122 comply with all (or, in some embodiments, one or more) the obligations of the regulatory document(s) 121. For example, the occurrence of segments of the regulatory model 201 without a matched policy document 122 feature can indicate a gap in the policy document(s)'s 122 coverage (e.g., the policy document(s) 122 does not describe a feature which meets the requirements of one or more obligations from the regulatory document(s) 121) which may result in non-compliance. In contrast, if each segment of the regulatory model 201 (e.g., each feature comprising the regulatory model 201) has a corresponding policy document 122 feature, then the policy document(s) 122 can be consider compliant with the obligations of the regulatory document(s) 121.
Features extracted from the policy document 122 can be matched to the regulatory model 201 based on content and/or context of the features comprising the regulatory model 201 and the subject policy document(s) 122 feature. In one embodiment, the mapping component 114 can identify an obligation from the policy document(s) 122, extract features regarding the identified policy document(s) 122 obligation, and match the features to the regulatory model 201. For example, the mapping component 114 can identify a segment of text in the policy document(s) 122 which directs substantive documents in connection with audits and reviews to be retained for at least 28 quarters as an obligation. Further, the mapping component 114 can extract features regarding the obligation from the policy document(s) 122, including but not limited to: the section number, label, and title from which the obligation originates (e.g., “Section 10: Document Retention”); the paragraph number, label, and title from which the obligation originates (e.g., “II. Documents Regarding Audits”), and the obligation text (e.g., “retain substantive documents in connection with audits and review for at least 28 quarters”). The mapping component 114 can then utilize one or more of the techniques described herein (e.g., ICC/NLC) to match the extracted policy document(s) 122 features to features in the regulatory model 201 (e.g., the example control framework 123 features can be matched to “Retention of Records Relevant to Audits and Reviews”/“Summary”/“We are adopting rules requiring accounting firms to retain for seven years certain records to their audits and reviews of issuers' financial statements” in the regulatory model 201). Additionally, the mapping component 114 can match an extracted policy document(s) 122 feature to more than one feature in the regulatory model 201.
As explained above, the modeling component 112 considers a plethora of various types of digital sources 106 so as to provide a context for each identified obligation. For example, the modeling component 112 can recognize synonyms and paraphrases for words and/or terms in the identified obligation (e.g., via the specialized term dictionary 206 or the global corpora 203) which can be included in the language model(s) 202, and/or the mappers, and thus the regulatory model 201. Analyzing the various digital sources 106 creates a robust regulatory model 201. For example, if a regulatory document 121 describes “records” in relation to an identified obligation, the modeling component 112 can include terms such as “papers” or “documents” in the extracted features and language model(s) 202. By including synonyms and paraphrases in the creation of the regulatory model 201, the modeling component 112 can create a model that does not solely rely of the textual confines of the regulatory document(s) 121 (e.g., use of the word “record”), but rather encompasses a larger context (e.g., the model can also include “papers” or “documents” where the word “documents” is used). As such, an obligation identified from the policy document(s) 122 that recites “documents” can be matched by the mapping component 114 to an appropriate section of the regulatory model 201 despite the section being built based on an obligation identified from a regulatory document 121 that only recited “records.”
As another example of the robustness of the regulatory model 201 that results from considering the input from the various digital sources 106, the modeling component 112 can also consider unit conversions in building the regulatory model 201. For example, the modeling component 112 can extract as a feature from the specialized term dictionary 206 that, in financial terms, “quarter” refers to ¼ of a fiscal year. Thus, the definition of “quarter” in regards to the regulatory document(s) 121 can be included in the language model(s) 202 and therefore the regulatory model 201. As a result, if the regulatory document(s) 121 describes “years” in relation to an identified obligation, the modeling component 112 can include terms such as “quarters” and the necessary unit conversion (e.g., 1 year equals four quarters) in the extracted features and language model(s) 202. Therefore, an obligation identified from the policy document(s) 122 that recites “quarters” can be matched by the mapping component 114 to an appropriate section of the regulatory model 201 despite the section being built based on an obligation identified from a regulatory document 121 that only recited “years.”
In another embodiment, the modeling component 112 creates a control model 401 in addition to the regulatory model 201.
In various embodiments, the modeling component 112 can generate a new control model 401 comprising one or more features performed by an entity as the entity designated operating procedures. The control model 401 can comprise one or more language model(s) 202 containing content extracted from the policy document(s) 122, one or more of the information input(s) 124, and the expert mapping input(s) 125. The control model 401 can be structured in any manner that facilitates organizing the one more or language models 202 to indicate the extraction location and content of the extracted features. For example, the control model 401 can be a spreadsheet, a table, and/or an annotated tree diagram.
The modeling component 112 can receive digital sources 106 as inputs via the reception component 110. For example, the inputs can include policy document(s) 122, one or more of the information input(s) 124, and the expert mapping input(s) 125. The policy document(s) 122 can comprise control policies, control guidelines, control protocols, and/or the like that describe the entity (e.g., a company) operating procedures regarding a topic (e.g., procedures regarding financial recordings and transactions). The specialized term control dictionary 406 can comprise particular definitions for terms relating to the topic and/or field of the control document 404. In an embodiment of the present invention, the modeling component 112 utilizes the policy document(s) 122, the global corpora 203, and the expert mapping input(s) 125. In another embodiment, the modeling component 112, in generating a new control model 401, can utilize policy document(s) 122, the specialized-term dictionary 206, and the expert mapping input(s) 125. In another embodiment, the modeling component 112, in generating a new control model 401, can utilize policy document(s) 122, the global corpora 203, the specialized-term dictionary 206, and the expert mapping input(s) 125.
The extraction component 113 can analyze at least one of the specialized-term dictionary 206 or the expert mapping input(s) 125 and perform the unsupervised feature extraction 210. The unsupervised feature extraction 210 can involve automatically identifying features described by the specialized-term dictionary 206 and/or expert mapping input(s) 125 that can be sorted into a language model(s) 202 or utilized to create a language model(s) 202 without requiring the supervision of a subject expert. A language model 202 in the control model building process 400 can comprise an organized body of data containing one or more extracted features categorized to readily depict the content of the feature(s) and the feature(s) relation to the policy document(s) 122. Language models 202 can have various structures, such as but not limited to, spreadsheets, tables, and/or annotated diagrams (e.g., tree diagrams).
In some embodiments, the unsupervised feature extraction 210 can analyze at least one of the specialized-term dictionary 206 or the expert mapping input(s) 125 utilizing NN attention techniques. In other embodiments, the unsupervised extraction 210 can analyze at least one of the specialized-term dictionary 206 or the expert mapping input(s) 125 utilizing TFIDF extraction techniques.
The extraction component 113 can further analyze at least one of the policy document(s) 122 or the global corpus 203 to perform the supervised feature extraction 212. Referring to
The supervised feature extraction 212 can result in the extraction of features from the policy document(s) 122 that can include, but are not limited to, the content of policy document(s) 122 obligations and context of the obligations. Features relating the context of the identified obligations can describe how obligations relate to each other and to the policy document(s) 122 as a whole. In some embodiments, the global corpora 203 is used in conjunction with one or more of the word embedding techniques to provide a context in view of modern discussions and expert opinion. At least consideration of the global corpora 203 and incorporation of numerous features for each identified obligation, enables the supervised feature extraction 212 to provide a more accurate context for identified policy document(s) 122 obligations than conventional systems.
Thus, features can be extracted from the expert mapping input(s) 125 and specialized-term dictionary 206 (in reference to the global corpora 203) to create language models 202 via the unsupervised feature extraction 210, and additional features can be extracted from the policy document(s) 122 and the global corpora 203 to further populate the language models 202, and/or create new language models 202, with obligation content and context via the supervised feature extraction 212. In an embodiment, the extraction component 113 can further perform an unsupervised extraction 210 on the control framework 123 using embedding techniques, such as NN attention modeling and TFIDF, to create language models 202 for the control framework 123 that can be combined to create a model of the control framework 123.
Referring back to
The modeling component 112 can combine the mappers together and with the control framework 123, thereby mapping the language model(s) 202 to the control framework 123, via one or more ensemble learning techniques. Once the language model(s) 202 are combined, the control model 401 can comprise all the identified obligations, including content and context, in an organizational structure that conveys each obligation's relation to each other and the control document 404. Also, the ensemble learning technique can generate one or more confidence scores associated with one or more of the features comprising the control model 401 to show the control model's 401 confidence regarding the placement and description accuracy of the subject feature.
In an embodiment, the mapping component 114 can combine the control model 401 with the regulatory model 201 to facilitate an analysis of any discrepancy that may exist between the control model 401 and the regulatory model 201 which may indicate that the policy document(s) 122 are non-compliant with the regulatory document(s) 121. For example, the mapping component 114 can analyze the features comprising the regulatory model 201 (e.g., a section entitled “Retention of Records Relevant to Audits and Reviews”) and search the control model 401 for a corresponding feature that may regard similar content (e.g., a section entitled “Document Retention”). Each of the models created by the modeling component 112 (e.g., the regulatory model 201 and the control model 401) can comprise features that are not merely confined to the text from that the feature originates (e.g., the regulatory documents 204 or the control documents 404), rather include context derived from additional digital sources 106 such as to facilitate combination of the models without necessitating each model be built upon the same obligation wording, phrasing, or structure.
In an embodiment, the memory 116 can store a language model(s) database 126. The language model(s) database 126 can comprise the language model(s) 202 created to generate a regulatory model 201 or a control model 401. In another embodiment, the memory 116 can store a model database 128 in addition to the language model(s) database 126. The model database 128 can comprise regulatory models 201 and control models 401 previously generated by the system 100.
One or more of the computer-implemented methods of
At 902, the computer-implemented method 900 can comprise receiving, by the system 100, an information input 124, an expert mapping input 125, a control framework 123, and one of a policy document 122 or a regulatory document 121. The information input 124 can comprise at least one of a domain corpora (e.g., specialized-term dictionary 206) or a global corpora 203. At 904, one or more first features can be extracted from at least one of the information input 124, the expert mapping input 125, and the control framework 123 via an unsupervised extraction 210. At 906, one or more second features can be extracted from the regulatory document 121 regarding one or more obligations via a supervised extraction 212. The supervised extraction can utilize word embedding techniques. The one or more second features can be relevant to at least one of: a paragraph from which the one or more obligations originate; a section from which the one or more obligations originate; or a context of the one or more obligations. At 908, the system 100 can extract one or more third features from the policy document 122 (e.g., via a supervised extraction 212). At 910 a regulatory model 201 can be generated by mapping the one or more first features and the one or more second features to the control framework 123. At 912 a control model 401 can be generated by mapping the one or more first features and the one or more third features to the control framework 123. At 914, the system 100 can combine the regulatory model 201 and the control model 401.
For simplicity of explanation, the computer-implemented methodologies are depicted and described as a series of acts. It is to be understood and appreciated that the subject innovation is not limited by the acts illustrated and/or by the order of acts, for example acts can occur in various orders and/or concurrently, and with other acts not presented and described herein. Furthermore, not all illustrated acts can be required to implement the computer-implemented methodologies in accordance with the disclosed subject matter. In addition, those skilled in the art will understand and appreciate that the computer-implemented methodologies could alternatively be represented as a series of interrelated states via a state diagram or events. Additionally, it should be further appreciated that the computer-implemented methodologies disclosed hereinafter and throughout this specification are capable of being stored on an article of manufacture to facilitate transporting and transferring such computer-implemented methodologies to computers. The term article of manufacture, as used herein, is intended to encompass a computer program accessible from any computer-readable device or storage media.
In order to provide a context for the various aspects of the disclosed subject matter,
With reference to
Computer 1012 can also include removable/non-removable, volatile/non-volatile computer storage media.
Computer 1012 can operate in a networked environment using logical connections to one or more remote computers, such as remote computer(s) 1044. The remote computer(s) 1044 can be a computer, a server, a router, a network PC, a workstation, a microprocessor based appliance, a peer device or other common network node and the like, and typically can also include many or all of the elements described relative to computer 1012. For purposes of brevity, only a memory storage device 1046 is illustrated with remote computer(s) 1044. Remote computer(s) 1044 is logically connected to computer 1012 through a network interface 1048 and then physically connected via communication connection 1050. Network interface 1048 encompasses wire and/or wireless communication networks such as local-area networks (LAN), wide-area networks (WAN), cellular networks, etc. LAN technologies include Fiber Distributed Data Interface (FDDI), Copper Distributed Data Interface (CDDI), Ethernet, Token Ring and the like. WAN technologies include, but are not limited to, point-to-point links, circuit switching networks like Integrated Services Digital Networks (ISDN) and variations thereon, packet switching networks, and Digital Subscriber Lines (DSL). Communication connection(s) 1050 refers to the hardware/software employed to connect the network interface 1048 to the system bus 1018. While communication connection 1050 is shown for illustrative clarity inside computer 1012, it can also be external to computer 1012. The hardware/software for connection to the network interface 1048 can also include, for exemplary purposes only, internal and external technologies such as, modems including regular telephone grade modems, cable modems and DSL modems, ISDN adapters, and Ethernet cards.
Embodiments of the present invention may be a system, a method, an apparatus and/or a computer program product at any possible technical detail level of integration. The computer program product can include a computer readable storage medium (or media) having computer readable program instructions thereon for causing a processor to carry out aspects of the present invention. The computer readable storage medium can be a tangible device that can retain and store instructions for use by an instruction execution device. The computer readable storage medium can be, for example, but is not limited to, an electronic storage device, a magnetic storage device, an optical storage device, an electromagnetic storage device, a semiconductor storage device, or any suitable combination of the foregoing. A non-exhaustive list of more specific examples of the computer readable storage medium can also include the following: a portable computer diskette, a hard disk, a random access memory (RAM), a read-only memory (ROM), an erasable programmable read-only memory (EPROM or Flash memory), a static random access memory (SRAM), a portable compact disc read-only memory (CD-ROM), a digital versatile disk (DVD), a memory stick, a floppy disk, a mechanically encoded device such as punch-cards or raised structures in a groove having instructions recorded thereon, and any suitable combination of the foregoing. A computer readable storage medium, as used herein, is not to be construed as being transitory signals per se, such as radio waves or other freely propagating electromagnetic waves, electromagnetic waves propagating through a waveguide or other transmission media (e.g., light pulses passing through a fiber-optic cable), or electrical signals transmitted through a wire.
Computer readable program instructions described herein can be downloaded to respective computing/processing devices from a computer readable storage medium or to an external computer or external storage device via a network, for example, the Internet, a local area network, a wide area network and/or a wireless network. The network can comprise copper transmission cables, optical transmission fibers, wireless transmission, routers, firewalls, switches, gateway computers and/or edge servers. A network adapter card or network interface in each computing/processing device receives computer readable program instructions from the network and forwards the computer readable program instructions for storage in a computer readable storage medium within the respective computing/processing device. Computer readable program instructions for carrying out operations of various aspects of the present invention can be assembler instructions, instruction-set-architecture (ISA) instructions, machine instructions, machine dependent instructions, microcode, firmware instructions, state-setting data, configuration data for integrated circuitry, or either source code or object code written in any combination of one or more programming languages, including an object oriented programming language such as Smalltalk, C++, or the like, and procedural programming languages, such as the “C” programming language or similar programming languages. The computer readable program instructions can execute entirely on the user's computer, partly on the user's computer, as a stand-alone software package, partly on the user's computer and partly on a remote computer or entirely on the remote computer or server. In the latter scenario, the remote computer can be connected to the user's computer through any type of network, including a local area network (LAN) or a wide area network (WAN), or the connection can be made to an external computer (for example, through the Internet using an Internet Service Provider). In some embodiments, electronic circuitry including, for example, programmable logic circuitry, field-programmable gate arrays (FPGA), or programmable logic arrays (PLA) can execute the computer readable program instructions by utilizing state information of the computer readable program instructions to customize the electronic circuitry, in order to perform aspects of the present invention.
Aspects of the present invention are described herein with reference to flowchart illustrations and/or block diagrams of methods, apparatus (systems), and computer program products according to embodiments of the invention. It will be understood that each block of the flowchart illustrations and/or block diagrams, and combinations of blocks in the flowchart illustrations and/or block diagrams, can be implemented by computer readable program instructions. These computer readable program instructions can be provided to a processor of a general purpose computer, special purpose computer, or other programmable data processing apparatus to produce a machine, such that the instructions, which execute via the processor of the computer or other programmable data processing apparatus, create means for implementing the functions/acts specified in the flowchart and/or block diagram block or blocks. These computer readable program instructions can also be stored in a computer readable storage medium that can direct a computer, a programmable data processing apparatus, and/or other devices to function in a particular manner, such that the computer readable storage medium having instructions stored therein comprises an article of manufacture including instructions which implement aspects of the function/act specified in the flowchart and/or block diagram block or blocks. The computer readable program instructions can also be loaded onto a computer, other programmable data processing apparatus, or other device to cause a series of operational acts to be performed on the computer, other programmable apparatus or other device to produce a computer implemented process, such that the instructions which execute on the computer, other programmable apparatus, or other device implement the functions/acts specified in the flowchart and/or block diagram block or blocks.
The flowchart and block diagrams in the Figures illustrate the architecture, functionality, and operation of possible implementations of systems, methods, and computer program products according to various embodiments of the present invention. In this regard, each block in the flowchart or block diagrams can represent a module, segment, or portion of instructions, which comprises one or more executable instructions for implementing the specified logical function(s). In some alternative implementations, the functions noted in the blocks can occur out of the order noted in the Figures. For example, two blocks shown in succession can, in fact, be executed substantially concurrently, or the blocks can sometimes be executed in the reverse order, depending upon the functionality involved. It will also be noted that each block of the block diagrams and/or flowchart illustration, and combinations of blocks in the block diagrams and/or flowchart illustration, can be implemented by special purpose hardware-based systems that perform the specified functions or acts or carry out combinations of special purpose hardware and computer instructions.
While the subject matter has been described above in the general context of computer-executable instructions of a computer program product that runs on a computer and/or computers, those skilled in the art will recognize that this disclosure also can or can be implemented in combination with other program modules. Generally, program modules include routines, programs, components, data structures, etc. that perform particular tasks and/or implement particular abstract data types. Moreover, those skilled in the art will appreciate that the inventive computer-implemented methods can be practiced with other computer system configurations, including single-processor or multiprocessor computer systems, mini-computing devices, mainframe computers, as well as computers, hand-held computing devices (e.g., PDA, phone), microprocessor-based or programmable consumer or industrial electronics, and the like. The illustrated aspects can also be practiced in distributed computing environments where tasks are performed by remote processing devices that are linked through a communications network. However, some, if not all aspects of this disclosure can be practiced on stand-alone computers. In a distributed computing environment, program modules can be located in both local and remote memory storage devices.
As used in this application, the terms “component,” “system,” “platform,” “interface,” and the like, can refer to and/or can include a computer-related entity or an entity related to an operational machine with one or more specific functionalities. The entities disclosed herein can be either hardware, a combination of hardware and software, software, or software in execution. For example, a component can be, but is not limited to being, a process running on a processor, a processor, an object, an executable, a thread of execution, a program, and/or a computer. By way of illustration, both an application running on a server and the server can be a component. One or more components can reside within a process and/or thread of execution and a component can be localized on one computer and/or distributed between two or more computers. In another example, respective components can execute from various computer readable media having various data structures stored thereon. The components can communicate via local and/or remote processes such as in accordance with a signal having one or more data packets (e.g., data from one component interacting with another component in a local system, distributed system, and/or across a network such as the Internet with other systems via the signal). As another example, a component can be an apparatus with specific functionality provided by mechanical parts operated by electric or electronic circuitry, which is operated by a software or firmware application executed by a processor. In such a case, the processor can be internal or external to the apparatus and can execute at least a part of the software or firmware application. As yet another example, a component can be an apparatus that provides specific functionality through electronic components without mechanical parts, wherein the electronic components can include a processor or other means to execute software or firmware that confers at least in part the functionality of the electronic components. In an aspect, a component can emulate an electronic component via a virtual machine, e.g., within a cloud computing system.
As it is employed in the subject specification, the term “processor” can refer to substantially any computing processing unit or device comprising, but not limited to, single-core processors; single-processors with software multithread execution capability; multi-core processors; multi-core processors with software multithread execution capability; multi-core processors with hardware multithread technology; parallel platforms; and parallel platforms with distributed shared memory. Additionally, a processor can refer to an integrated circuit, an application specific integrated circuit (ASIC), a digital signal processor (DSP), a field programmable gate array (FPGA), a programmable logic controller (PLC), a complex programmable logic device (CPLD), a discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. Further, processors can exploit nano-scale architectures such as, but not limited to, molecular and quantum-dot based transistors, switches and gates, in order to optimize space usage or enhance performance of user equipment. A processor can also be implemented as a combination of computing processing units. In this disclosure, terms such as “store,” “storage,” “data store,” data storage,” “database,” and substantially any other information storage component relevant to operation and functionality of a component are utilized to refer to “memory components,” entities embodied in a “memory,” or components comprising a memory. It is to be appreciated that memory and/or memory components described herein can be either volatile memory or nonvolatile memory, or can include both volatile and nonvolatile memory. By way of illustration, and not limitation, nonvolatile memory can include read only memory (ROM), programmable ROM (PROM), electrically programmable ROM (EPROM), electrically erasable ROM (EEPROM), flash memory, or nonvolatile random access memory (RAM) (e.g., ferroelectric RAM (FeRAM). Volatile memory can include RAM, which can act as external cache memory, for example. By way of illustration and not limitation, RAM is available in many forms such as synchronous RAM (SRAM), dynamic RAM (DRAM), synchronous DRAM (SDRAM), double data rate SDRAM (DDR SDRAM), enhanced SDRAM (ESDRAM), Synchlink DRAM (SLDRAM), direct Rambus RAM (DRRAM), direct Rambus dynamic RAM (DRDRAM), and Rambus dynamic RAM (RDRAM). Additionally, the disclosed memory components of systems or computer-implemented methods herein are intended to include, without being limited to including, these and any other suitable types of memory.
The description of the various embodiments of the present invention have been presented for purpose of illustration, but are not intended to be exhaustive or limited to the embodiments disclosed. Many modifications and variations will be apparent to those of ordinary skill in the art without departing from the scope and spirit of the described embodiments. The terminology used herein was chosen to best explain the principles of the embodiments, the practical application or technical improvement over technologies found in the marketplace, or to enable others of ordinary skill in the art to understand the embodiments disclosed herein.
In addition, the term “or” is intended to mean an inclusive “or” rather than an exclusive “or.” That is, unless specified otherwise, or clear from context, “X employs A or B” is intended to mean any of the natural inclusive permutations. That is, if X employs A; X employs B; or X employs both A and B, then “X employs A or B” is satisfied under any of the foregoing instances. Moreover, articles “a” and “an” as used in the subject specification and annexed drawings should generally be construed to mean “one or more” unless specified otherwise or clear from context to be directed to a singular form. As used herein, the terms “example” and/or “exemplary” are utilized to mean serving as an example, instance, or illustration. For the avoidance of doubt, the subject matter disclosed herein is not limited by such examples. In addition, any aspect or design described herein as an “example” and/or “exemplary” is not necessarily to be construed as preferred or advantageous over other aspects or designs, nor is it meant to preclude equivalent exemplary structures and techniques known to those of ordinary skill in the art.
What has been described above include mere examples of systems and computer-implemented methods. It is, of course, not possible to describe every conceivable combination of components or computer-implemented methods for purposes of describing this disclosure, but one of ordinary skill in the art can recognize that many further combinations and permutations of this disclosure are possible. Furthermore, to the extent that the terms “includes,” “has,” “possesses,” and the like are used in the detailed description, claims, appendices and drawings such terms are intended to be inclusive in a manner similar to the term “comprising” as “comprising” is interpreted when employed as a transitional word in a claim.
Number | Date | Country | |
---|---|---|---|
Parent | 15349766 | Nov 2016 | US |
Child | 17135384 | US |