The present invention relates to the field of exploration and exploitation of oil deposits, or geological sites for the geological storage of gas, such as carbon dioxide (CO2) or methane. More particularly, the present invention may relate to monitoring geological gas storage sites.
The volume of the gas injected into an underground geological formation, is easily found by measuring the flow of gas at the injection well-head. However, the evolution of the gas once injected is much more difficult to control: this gas may migrate vertically out of the storage formation (into more superficial geological layers, or even up to the surface) or laterally in the host formation into areas not initially predicted.
In the case of the geological storage of CO2, the European directive 2009/31/EC requires permanent and environmentally safe storage, preventing and controlling upwellings of CO2 and ancillary substances toward the surface, while limiting the interference of the underground medium. Thus, a CO2 leakage rate of 0.01%/year above a site of geological sequestration of CO2 is the maximum tolerated according to this directive.
In order to comply with the regulations in force, and also for assisting in the societal acceptance of this technology, it appears necessary to set up tools and systems of monitoring geological gas storage sites for detecting any possible leaks, assessing their extent, and alerting whomever it concerns. These “monitoring” (“surveillance” in French) tools must be inexpensive, highly reliable, operated with minimum human involvement, and suitable for remaining installed over long periods of time.
Numerous techniques have been developed by manufacturers for tracking the evolution of injected fluids within a porous medium.
Among these techniques, repetitive seismic survey, known as 4D seismic survey, is used in the industry (oil or environmental). Such a technique consists in carrying out various seismic campaigns, at various times (in general the campaigns are spaced at least a year apart, but permanent acquisition devices exist). Thus the specialist can track the evolution of the movements and pressures of the fluids in the geological storage site. This technique has been used in the environmental field for estimating, on the basis of the seismic data, the total volume and total mass of gas in place in the subsoil. However, this method, quite lengthy to implement and suffering from a high indeterminacy at low depth, is not suitable for detecting near-surface gas leakages in real time. In addition, this technique is limited to the detection of the free, i.e. the gas, phase and not the dissolved phase.
The subject matter of patent EP 12290058 relates to a method for storing gas, such as carbon dioxide (CO2) or methane, comprising a phase of monitoring the evolution of the gas, making it possible to quantify the mass of dissolved gas, optionally the quantity of precipitated gas, and to anticipate a leakage of this gas above the storage site. The method is based on adjusting a model describing the evolution of the gas concentration as a function of time, by means of geochemical analyses in situ of rare gases contained in fluid phases of samples of the subsoil.
Patent FR 2984510 is also known, which relates to a facility for the analysis and determination of the flows of CO2 making it possible notably to discriminate the flow of CO2 of deep origin from natural biological CO2, generated close to the surface. This facility is characterized by a surface weather station provided with a chamber for collecting surface gases, with three means of sampling at three different depths in the soil, means of measuring the concentration of CO2, N2, and O2 at said three depths, and means of measuring the concentration of CO2 contained in the gas collected in the collection chamber. This facility has the advantage of taking into account a baseline, representative of the natural emissivity of CO2.
The document “STRAZISAR, B R., WELLS, A W., DIEHL, J R., 2009. Near surface monitoring for the ZERT shallow CO2 injection project. Int J Greenhouse Gas Control 3(6): 736-744.” demonstrates that a leakage of CO2 may cause a local decrease in electrical resistivity above the leakage of CO2 caused. This decrease is interpreted as being linked to a decrease in the electrical resistivity of the interstitial water, caused by the dissolution of the CO2 in this interstitial water.
Thus, the methods, devices, and facilities according to the prior art are limited to a single type of measurement (seismic, geochemical, or electric) for detecting gas leakages. In addition, none of these documents describes either means for automating these measurements or means for long term, remote monitoring, of a geological gas storage site.
The present invention describes a facility for monitoring geological gas storage sites combining, in a totally integrated way, two types of measurements, specifically geochemical and electrical measurements. In addition, the facility according to the invention is fully automated and includes a system of transmitting the information collected by said facility. The facility according to the invention may thus allow continuous and optionally remote monitoring of geological gas storage sites.
In general, the subject matter of the invention relates to a facility for monitoring a geological gas storage site for storing a gas, such as CO2 or methane. The facility comprises at least the following elements in combination:
According to one embodiment of the invention, said gas sampling probes may be installed above the vadose zone and below the biogenic gas production zone.
According to one embodiment of the invention, said gas sampling probes are connected to a gas analyzer via gas transfer means.
According to one embodiment of the invention, said gas transfer means of said geochemical measurement device may comprise a three-way solenoid valve, a first way being connected to one of said gas sampling probes, a second way leading to a purge system of said geochemical measurement device, and a third way being connected to a pump, said pump being intended for pumping said gas sampled by said sampling probes and for distributing said sampled and pumped gas to said geochemical measurement device.
According to one embodiment of the invention, said gas analyzer may comprise at least one detector of said stored gas and at least one detector of rare gas.
According to one embodiment of the invention, said resistivity meter of said electrical measurement device may send a DC electrical current into the subsoil via two of said electrodes and may record a difference of electrical potential between two others of said electrodes.
According to one embodiment of the invention, the logic controller may trigger electrical measurements via the electrical measurement device and geochemical measurements via the geochemical measurement device regularly over time.
According to one embodiment of the invention, said electrodes may be placed on the surface of the ground, and/or along the walls of an underground cavity, and/or along a well.
According to one embodiment of the invention, said weather station may provide a continuous check of at least temperature, pressure, rainfall and humidity.
According to one embodiment of the invention, the electrical power supply of said facility may be provided by a solar panel, connected to a battery.
According to one embodiment of the invention, said means of transmitting said data may be provided by a 3G modem.
Furthermore, the invention relates to a use of the facility according to the invention for monitoring a geological gas storage site for storing a gas, such as CO2 or methane.
According to one embodiment of the use of the facility according to the invention, a step of calibrating is carried out prior to the injection of gas into the geological storage site for storing a gas.
Other features and advantages of the method according to the invention will appear on reading the description below of non-restrictive embodiments, referring to the appended figures and described below.
One of the subject matters of the invention relates to a facility for monitoring geological gas storage sites for storing gas, such as carbon dioxide (CO2) or methane, allowing the detection of leakages of this gas, in a quantitative, integrated, permanent way and without human intervention.
Geological gas storage, comprises a phase of injection of said gas in a formation of the subsoil, and a phase of monitoring the evolution of the species to be stored in the subsoil. The injected gas essentially contains one species to be stored (carbon dioxide (CO2), methane, etc.), but often, at least one rare gas (helium, argon, etc.) is also present, co-injected simultaneously with the species to be stored.
When the CO2 is injected, it migrates into the formation initially mainly in gaseous form (CO2G) by gravity and/or due to an existing pressure gradient, until coming to a halt for the following reasons: disappearance of pressure gradient by flow, retention of the residual gas by capillarity, retention of the gas in a structural manner. Once the gas phase has stabilized in the pores, the plume of CO2 ultimately has a large horizontal surface area with respect to its thickness.
The second migration phenomenon that takes over is diffusion with or without gravity instability. This type of migration has its source in the gas/water interface (INT), accordingly below the plume of CO2 gas (CO2G) in the reservoir rock, but also above the plume of CO2 through the cap rock. Under this interface CO2 is therefore found in dissolved form in water (CO2D), and transported downward by diffusion (arrows in
The facility according to the invention comprises a geochemical measurement device DMG. The geochemical measurement device DMG includes a plurality of gas sampling probes SPG, the probes being connected to a gas analyzer AG. In a preferred way, the gas sampling probes SPG are connected via gas transfer means MTG to the gas analyzer AG. Preferably the gas sampling probes SPG are placed at the near surface, i.e. in the very first meters below the surface of a site. The geochemical gas measurement device DMG according to the invention allows a sampling of gas present locally, i.e. near the location of the sampling probes SPG. The gas analyzer AG allows the detection and quantification (estimate of concentration, for example) of at least one type of gas. Preferably, the gas analyzer allows the detection and quantification of gas injected into the geological storage site.
The facility according to the invention also comprises an electrical measurement device DME, this device being intended for electrical measurements in the subsoil. This device includes a plurality of electrodes ELEC connected to a resistivity meter RES. The electrodes of the electrical measurement device DME may be installed wholly or partly on the surface of the ground, along walls of an underground cavity or along a wellbore. The resistivity meter RES of the electrical measurement device DME comprises a DC electrical current (e.g. between 5 and 200 mA) generator and a voltmeter for measuring a difference in electrical potential. According to one embodiment of the present invention illustrated in
Furthermore, the facility comprises a surface weather station SM, for accessing environmental parameters (such as temperature, pressure, rainfall, wind speed, etc.) associated with the site.
Moreover, the geochemical DMG and electrical DME measurement devices are controlled by a logic controller AUT. This logic controller AUT may thus be used to preprogram the measurements to be carried out, whether they are electrical or geochemical. The logic controller AUT may, for example, be used to define a sequencing of the geochemical measurements, by triggering, successively over time, according to a given periodicity, the sampling of gas probe after probe, as well as the transfer and analysis of this gas. Similarly, the logic controller AUT may be used to trigger electrical measurements with a certain periodicity, according to certain parameters (number of electrodes involved in the measurement, injected electrical current, etc.).
Furthermore, the geochemical measurement device DMG, the electrical measurement device DME and the weather station SM are connected to a data collector COLL. The data collector COLL makes it possible to collect, centralize and store all of the measurements carried out by the facility according to the invention.
In addition, said collector COLL is itself connected to means of transmitting said data MTD. The means of transmitting said data MTD allow a transfer of information collected by the collector COLL.
The facility according to the invention may be placed directly above the geological gas storage site. Advantageously, the sampling probes SPG of the geochemical measurement device DMG and the electrodes ELEC of the electrical measurement device DME are distributed according to results of predictive modeling of the evolution (evolution in size, but also in lateral and vertical displacement) of the gas plume. Such predictive modeling may be carried out with the aid of a numerical simulator of flow in a porous medium.
Thus, the facility according to the invention makes it possible, inter alia, to take, automatically and preprogrammed via the logic controller AUT, samples of gas via probes SPG, and to analyze the sampled gas. When the probes are placed at the surface or near surface of the geological gas storage site, the facility according to the invention makes it possible to detect the arrival of gas at the (near) surface of a geological storage site, to qualify and to quantify this gas. By performing such geochemical measurements repeatedly over time via the logic controller AUT, the geochemical measurement device DMG allows the monitoring over time of possible leakages of CO2 arriving at the (near) surface.
Furthermore, the facility according to the invention makes it possible to automatically carry out preprogrammed electrical measurements, via the logic controller AUT. In general, the electrical measurements provide, in a non-invasive manner, a mapping of the electrical response of the subsoil above which an electrical device is arranged. The investigation depth of electrical methods varies from ten to one hundred meters, according to the parameters of the electrical measurement devices implemented. By performing such electrical measurements repeatedly over time via the logic controller AUT, the electrical measurement device makes it possible to detect the changes in electrical properties in the investigated subsoil. By combining these changes with other types of information, these changes can be interpreted by the specialist as due or not due to a leakage of the gas stored in the geological gas storage site.
According to the invention, the weather station may be used to provide a continuous check over time of environmental parameters (e.g. temperature, wind speed and direction, humidity, pressure, sunshine index, rainfall). These parameters make it possible to take into account climatic events occurring at the surface of a geological gas storage site during the interpretation of the measurements from the electrical and geochemical devices. For example, thanks to these measurements, the specialist may take into account the rainfall measurement for correcting the measurements of the electrical properties of the subsoil for a rise or a deficit in the quantity of water in the near subsoil. Similarly, an increase of water in the near subsoil will have an impact on the concentration of gases sampled in the (near) surface, an impact that the specialist is able to quantify. In general, the continuous measurements of environmental parameters carried out by the weather station according to the invention may enable the specialist to establish a baseline representative of the climatic effects on the geochemical measurements and the electrical measurements. In case of gas leakage, the effects due to this leakage on the electrical measurements and on the geochemical measurements will be added to the baseline representative of the climatic effects on the geochemical measurements and on the electrical measurements.
According to one embodiment of the present invention, said weather station provides a continuous check of at least temperature, pressure, humidity and rainfall.
According to the invention, the data collector COLL makes it possible to collect all the data measured automatically and periodically by the geochemical measurement device DMG, the electrical measurement device DME and the weather station SM. These data are then transmitted in real time by a data transmission system MTD.
Thus, the facility according to the invention allows, inter alia, the coupling of different measuring devices (electrical, geochemical and meteorological) into one single coherent system. In addition, the facility according to the invention is fully automated, which includes the automation of the measurements as well as the transmission of the collected information. This automation of such a coupled system allows a synchronization of the different types of measurements, which is not feasible for a non-integrated system or a non-automated system. Generally, such a facility allows a reliable detection of gas leakages that may occur as a result of an injection of gas into a geological gas storage site. The reliability of the detection is ensured by the fact that the different types of information (electrical, geochemical, and weather) may be collected coordinatedly (inter alia, the facility according to the invention allows the synchronization of the different types of measurements), at the same location (the coverage area of the geochemical measurement device DMG may cover the coverage area of the electrical measurement device DME), regularly (allowing a continuous tracking of a site), and automatedly (thus avoiding human errors). In addition, since the facility according to the invention makes it possible to provide the specialist with different types of information (electrical, geochemical and weather), the latter may be able, after cross-analysis of said information, to discern whether or not measurement anomalies detected by one or more of said devices are related to a leakage of the injected gas.
According to one embodiment of the present invention, the gas sampling probes SPG are installed above the vadose zone (so that the samples are in the form of free gas and not in the form of dissolved gas) and below the biogenic gas production zone (so that the gas measurements are not polluted by natural gas production, related to the degradation of organic matter in the near surface). In the case where the gas injected into the geological storage site is CO2, this notably allows the gas samplings to be carried out below the zone of biogenic production of CO2. Indeed, the bacterial and plant biological activity that develops in the near surface of the subsoil is a CO2 emission system. By being placed below the zone of biogenic production of CO2, the measurements carried out by the gas sampling probes SPG are less affected by the natural emission of CO2 and are therefore more reliable.
According to one embodiment of the present invention, the gas transfer means MTG of said geochemical measurement device DMG comprise a three-way solenoid valve, a first way being connected to one of said gas sampling probes SPG, a second way leading to a purge system of the geochemical gas measurement device DMG assembly, and a third way being connected to a pump. The use of a solenoid valve allows the flows of gas sampled by the probes SPG to be controlled by the logic controller AUT. The pump in turn allows the sampled gas to be pumped and distributed toward the gas analyzer AG. The purge system consists, for example, in letting the gas present within the gas transfer means MTG escape, into an ancillary system for a few minutes. According to another embodiment of the present invention, the purge system consists in injecting (under pressure) a neutral gas into the geochemical measurement device DMG assembly. According to one embodiment of the present invention, the neutral gas is atmospheric air. According to one embodiment of the present invention, the neutral gas is nitrogen. In general, the purge system ensures that the next measurement is not affected by gas residues from the previous measurement.
According to another embodiment of the present invention, the gas transfer means MTG of said geochemical measurement device DMG comprise a two-way solenoid valve, a first way being connected to one of said gas sampling probes SPG, a second way being connected to a pump for the distribution of the sampled gas to the gas analyzer AG.
According to one embodiment of the present invention, a flow restriction valve is placed between the pump of one of the means of transfer and the gas analyzer. The flow restriction valve makes it possible to ensure a low and constant flow of gas at the inlet of the gas analyzer AG.
According to one embodiment of the present invention, the gas analyzer comprises at least one detector (for detection and quantification) of the gas stored in the geological storage site and at least one detector (for detection and quantification) of a rare gas.
According to one embodiment of the present invention, the rare gas detector is a detector of radon, helium, neon, argon, krypton, or xenon.
According to a particular implementation of the invention, the number of gas sampling probes SPG is between 20 and 40. Advantageously, the gas sampling probes SPG are equally distributed so as to cover a surface area of the order of 1000 m2. The gas sampling probes SPG may be also distributed according to results of predictive modeling of the evolution of the gas plume. Thus, by multiplying the number of sampling probes SPG and by distributing same over a large surface area of the geological CO2 storage site, the monitoring of the site is improved.
According to the invention, the electrical measurement device DME may be used to estimate the resistivity of the subsoil. The electrical resistivity of the subsoil essentially depends on the water content of the rock (a function of porosity and saturation), the salinity of the interstitial water (and therefore the quantity of gas dissolved in this interstitial water) and the clay content of the rocks. The principle of the method is based on the measurement of differences in electrical potential associated with the injection of a DC electrical current. The “apparent” electrical resistivity, a function of the geometrical characteristics of the electrical device DME, can be calculated via Ohm's law. This value is the result of the contribution of all the portions of the medium that are traversed by the current transmitted at the surface. Thus, the measurement represents a value which integrates the resistivities over a certain volume of the subsoil. The acquisition technique consists in carrying out measurements (along multiple 1D acquisition profiles, or according to 2D acquisition devices) by regularly increasing the space between the electrodes. The field measurements thus make it possible to obtain an image (2D or 3D, where one of the dimensions is the depth) of the apparent electrical resistivity of the subsoil. On the basis of data inversion software (then the term used is resistivity tomography), e.g. based on the method of least squares, an image (2D or 3D, where one of the dimensions is the depth) of the true electrical resistivity of the subsoil may be acquired. Conventionally, the investigation depth of electrical methods is of the order of ten to one hundred meters, according to the parameters of the electrical measurement devices implemented (lengths of the profiles, injected electrical current, etc.).
According to the invention, the electrical measurement device DME may further be used to estimate the chargeability of the subsoil. To do this, a DC electrical current is injected into the subsoil via the resistivity meter RES, and the decay is measured, via the resistivity meter RES, of the evolution of the voltage in the subsoil over time, once the current injection has stopped. In the same way as for electrical resistivity, an inversion process is necessary in order to obtain a 2D or 3D image of the chargeability of the medium.
According to one embodiment of the present invention, said electrodes ELEC are connected to the resistivity meter RES via a multiplexer. The multiplexer makes it possible to reference each of the electrodes and to select, among all of the deployed electrodes, the electrodes required for a given measurement. The multiplexer also makes it possible to communicate to the resistivity meter a sequence of measurements to be carried out.
According to one embodiment of the present invention, the resistivity meter used is the TERRAMETER SAS4000 model marketed by ABEM.
According to the invention, an acquisition configuration of the electrical device DME may be selected that is suited to a given objective. Selected acquisition configuration according to the present invention, means the number of electrodes ELEC required for a given measurement, the number of electrodes ELEC deployed, the spacing between the electrodes ELEC and their spatial arrangement. According to one embodiment of the present invention, the electrodes ELEC deployed for a measurement are arranged in a straight line (this is referred to as a 1D acquisition profile), on the surface of the ground (this is referred to as a 2D acquisition profile) or along at least two wellbores (this is referred to as a well acquisition). Moreover, the specialist will favor a quadrupole configuration (two transmitting electrodes and two receiving electrodes, known as a Wenner-Schlumberger configuration) in the case of a 1D acquisition profile, a dipole-dipole and pole-pole acquisition profile (with 2 electrodes at infinity) in the case of 2D acquisition profiles. The number of deployed electrodes ELEC and the spacing between these electrodes are determined by the specialist according to the desired depth of penetration, the expected resolution and ambient electrical background noise. Thus, if D is the spacing between the electrodes and N the number of electrodes, then the investigation depth of such a device is about (N−1)*D/5 (it also depends on the device used and the resistivity of the rocks), and the resolution of the image that may be obtained by surface resistivity tomography is equal to D.
According to one embodiment of the present invention for which the electrodes ELEC of the electrical measurement device DME are placed on the surface of the ground, on the basis of these measurements and after performing a resistivity tomography, an image is obtained of the resistivity beneath the surface of the ground and down to a depth that varies according to the configuration of the electrical measurement device.
According to another embodiment of the present invention for which the electrodes ELEC of the electrical measurement device DME are distributed into at least two wells, on the basis of these measurements and after performing a resistivity tomography, an image may be obtained of the resistivity between the wells in which the electrodes are placed.
According to one embodiment of the present invention, the logic controller AUT triggers an electrical measurement by the electrical measurement device DME every 3 hours. In this way, it is possible to track the temporal evolution of the resistivity and the chargeability of the investigated subsoil.
According to a particular implementation of the invention, the number of electrodes ELEC is 64 and the electrodes are spaced 25 cm apart.
According to a preferred implementation of the present invention, the data collector COLL corresponds to the model DT85GLM marketed by DIMELCO.
According to a preferred implementation of the present invention, the facility comprises three gas detectors: a CO2 detector (e.g. the detector LI-820 marketed by LI-COR), a radon detector (e.g. the aerosol sampler EAS 70K marketed by ALGADE), and a rare gas detector (a mass spectrometer). Preferably, the rare gas detector allows the detection and quantification of the quantity of radon, helium, neon, argon, krypton, or xenon present in the atmosphere.
According to one embodiment of the present invention, the means of transmitting data MTD allow the transmission of the collected data to in situ means of analyzing the collected data. This may thus be a wired connection or a wireless connection (Bluetooth, Wi-Fi, etc.), allowing, for example, an in situ connection of a computer to the facility and thus the analysis of the collected data by a specialist.
According to one embodiment of the present invention, the means of transmitting the collected data MTD are remote transmission means (a modem allowing an Internet connection, for example). Preferably, the means of transmitting the data MTD collected by the collector COLL are provided by a 3G modem.
Thus, the facility according to the invention makes it possible for the data collected on the site to be transmitted automatically and in real time to a specialist, who may thus be able to take ad hoc decisions in case of detection of gas leakage.
According to one embodiment of the present invention, the data collector COLL makes it possible to take into account alert trigger thresholds and is able to trigger an alert. Thus, if a quantity of CO2 greater than a certain threshold set by the specialist is detected in at least one sampling probe, the data collector is able to launch an alert, e.g. to a specialist or to the public authorities, via an e-mail message, a sound alert, etc.
According to one embodiment of the present invention, once the quantification of gas has been carried out by the gas detector (DG), the resulting information is processed via software for converting the measurement (e.g. in mV) into a digital value, and is then recorded by the data collector. The software may be simple spreadsheet software, or be specific to the gas analyzer.
According to one embodiment of the present invention, the electrical power supply of said facility is provided by a solar panel, and is connected to a battery.
According to another embodiment of the present invention, the logic controller AUT, the gas analyzer AG, the data collector and the resistivity meter are protected in a waterproof shelter.
According to one embodiment of the present invention, the facility may comprise a means of measuring the soil moisture. Such measurements may indeed make it possible to correct the electrical measurements carried out with the electrical measurement device DME for the effects caused by variations of the moisture level in the ground.
Thus, the present invention describes a facility based on the coupling of multiple types of measurement device in a single coherent facility, controlled by a logic controller, allowing automatic, permanent and reliable monitoring of geological gas storage sites.
The invention also relates to the use of the facility according to the invention for monitoring a geological gas storage site for storing gas, such as carbon dioxide (CO2) or methane, in order to detect possible leakages of this gas.
Preferably, the use of the facility according to the invention for monitoring a geological gas storage site may require carrying out a step of calibrating the facility prior to the monitoring phase per se. Alternatively, the facility according to the invention may be used for monitoring a geological storage site into which the gas is already injected.
According to one implementation of the present invention, the calibration of the facility according to the invention is carried out prior to the injection of the gas into the geological gas storage site.
According to one implementation of the present invention, the calibration of the facility according to the invention consists in carrying out measurements for a predefined period via the facility according to the invention. More precisely, measurements are performed for a predefined period with said electrical DME and geochemical DMG devices prior to the injection of gas into said geological storage site, so as to establish
Preferably, the measurements performed for the calibration of said facility are carried out over a period of between one year and three years.
According to one implementation of the present invention, the electrical device DME of the facility may be calibrated according to the invention via experiments conducted in the laboratory on rock samples from the geological gas storage site in question. Thus, according to a particular implementation of the present invention, after the sample is dried, it is saturated under vacuum with water containing 1 g/l of NaCl then placed in a “Hassler” cell (e.g. Ergotech Mk4). This equipment makes it possible both to progressively desaturate the rock sample by applying a capillary pressure and to carry out measurements of the electrical resistivity between 20 Hz and 2 MHz using an impedance meter (e.g. Agilent E4980A). The desaturation may be carried out by using two different gases, whereof the gas to be injected is, for example, an inert gas such as nitrogen, in order to highlight the influence of the gas to be injected on the electrical parameters (resistivity index, critical frequency, spontaneous potential). More precisely, the resistivity values obtained in these experiments conducted in the laboratory make it possible to determine a threshold beyond which a change in resistivity measured by the electrical measurement device DME may be interpreted as being due to the presence, at the electrical measurement device DME, of the injected gas.
According to one implementation of the present invention, the calibration of the facility according to the invention includes measurements carried out in situ by the facility according to the invention by simulating one or more gas leakages. These simulations of gas leakages may be carried out by injecting the gas into a wellbore, e.g. between 3 and 5 m deep. It is possible, for example, to simulate a sudden leakage (by injecting the gas under high pressure) or a diffuse leakage. The measurements carried out by the geochemical DMG and electrical DME measurement devices in the course of these leakage tests make it possible on the one hand to calibrate the electrical measurements with respect to the geochemical measurements, but also, to define gas leakage detection thresholds, with respect to the previously established reference levels.
The calibration between the geochemical measurements and the electrical measurements consists in determining the law of correlation between the quantities of gas measured by the geochemical measurement device DMG and the variations in electrical resistivity measured by the electrical measurement device DME. According to one embodiment of the present invention, a graph is drawn up representing the quantities of gas measured by the geochemical measurement device DMG on the abscissa and the variations in electrical resistivity measured by the electrical measurement device DME on the ordinate. Then, e.g. by linear regression, an experimental law is determined representative of the correlation between these two types of measurement. The experimental law thus defined between these two groups of data makes it possible to carry out a cross-check on the measurements of the two devices. Thus, if one of the devices detects an abnormal measurement and if the measurement carried out by the other device is below the prediction obtained by the experimental law, it is probable that the abnormal measurement is a one-off anomaly, unrelated to a gas leakage.
According to one embodiment of the present invention, the gas leakage detection thresholds thus defined are supplied to the data collector in order to trigger a remote alert in case of a gas leakage.
According to one embodiment of the present invention, the step of calibrating the facility according to the invention is continued during the injection phase and during the first years after the injection of gas.
In the course of the step of monitoring a geological gas storage site via the facility according to the invention, the evolution of the measurements carried out by the facility according to the invention should be monitored. The facility according to the invention allows time tracking of the electrical, geochemical and environmental characteristics of a geological gas storage site.
According to one embodiment of the present invention, the step of monitoring a geological gas storage site by the facility according to the invention is implemented by using the facility according to the invention so as to carry out automatic, regular and remote measurements.
On the basis notably of the measurements carried out by the electrical measurement device DME of the facility according to the invention, the specialist can determine, by resistivity tomography, an imaging (in 2D, or 3D according to the acquisition configuration) of the diffusion of the gas injected into the subsoil. In addition, since the measurements can be repeated over time, the specialist can obtain the temporal evolution of this resistivity. The changes in resistivity observed over time may be an indicator of movements of the injected gas. When these changes in resistivity measured by the electrical measurement device DME are correlated with changes in gas concentration measured by the geochemical measurement device DMG, then the probability of a gas leakage is high. An alert may then be launched by the specialist. When changes in resistivity measured by the electrical measurement device DME are not correlated with a change in gas concentration measured by the geochemical measurement device DMG, and the changes in resistivity are observed at the investigation depth of the geochemical measurement device DMG, then the specialist may, for example, conclude from this that it is a one-off measurement anomaly. When changes in resistivity measured by the electrical measurement device DME are not correlated with a change in gas concentration measured by the geochemical measurement device DMG, and the changes in resistivity are observed at an investigation depth greater than that of the geochemical measurement device DMG, then the specialist may surmise that a gas leakage is forthcoming or imminent, and is optionally able to alert whomever it concerns.
Thus, the present invention notably makes it possible to combine, into a single, coherent and integrated facility, the information obtained by a geochemical measurement device DMG with information obtained by an electrical measurement device DME and therefore to carry out reliable monitoring of a geological gas storage site. Indeed, this cross-checked information allows better detection of gas leakages that may occur as a result of an injection of gas into a geological gas storage site, or even these leakages to be anticipated thanks to the different investigation depths of the two types of measurements. In addition, the facility according to the invention may be fully automated and remote controlled, which allows permanent monitoring of a geological gas storage site.
Thus, the correlation between the geochemical measurements and the electrical measurements observed in
Number | Date | Country | Kind |
---|---|---|---|
1553999 | May 2015 | FR | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2016/059316 | 4/26/2016 | WO | 00 |