This application is a National Phase of PCT/EP2019/066241 filed on Jun. 19, 2019 which claims the benefit of priority from French Patent Application No. 18 55490, filed on Jun. 21, 2018, the entirety of which are incorporated by reference.
The present invention relates generally to the field of the treatment and coating of part surfaces by an automated installation, in particular spray printing of patterns on surfaces of complex forms, notably three-dimensional, and its subject is an installation for printing and/or coating such part surfaces, preferentially by implementing inkjet-type printing means.
The parts concerned can notably consist of automobile interior cladding parts.
As is known and as illustrated, for example, by the publications DE 10 2012 212 469 A1, US 2009/0167817 A1, EP 2 873 496 A1 and EP 0 931 649 A1, to print a part by printing means of inkjet type, the print head which ejects the coating substance, such as the ink, can be displaced by a robotized arm relative to a part which remains fixed.
However, the printing means, which more often incorporates a quadrichrome assembly, are generally bulky, and moving them is then complicated, especially at high speed. That is all the more true when these printing means are, in addition, associated with a module for at least partially drying drops of the substance deposited on the surface, disposed directly under the print head. Furthermore, the print heads can be subject to disturbances or to position variations because of the rapid displacement of the robotized arm. To limit these disturbances, it is then necessary to limit the speed of displacement of the robotized arm, which reduces the rate, and the industrial efficiency. Moreover, abrupt variations of the orientation of the print head cause the quality of the printing to be affected. Indeed, inside the print head, the air is at a slight vacuum pressure to prevent the substance from flowing through gravity. Now, abrupt variations of orientation cause the balance between atmospheric pressure and the pressure inside the print head to be modified, and therefore disturb the ejection of the substance. Finally, it is also difficult to mount the print head substance supply unit on the robotized arm.
To mitigate these drawbacks, it has been proposed, in particular by the applicant in its French patent applications no. 17 50260, no. 17 51064 and no. 18 54024, to implement installations in which the print head and the drying means are fixed, that is to say immobile and static, and only the part is displaced during the printing, by being mounted on a multi-axis robotized arm.
In these installations also, the printing means consist of a single quadrichrome color print head which, seen from the front, generally shows a configuration of the nozzles or orifices for ejection of the different colors as represented in
These orifices are arranged in rows that are superposed vertically (axis Z) with an alternation of the colors sprayed and the separation “e” between nozzles of the same color, belonging to two successive rows of nozzles of the stack, determines the resolution of the printing.
Such a quadrichrome print head does however present a certain number of drawbacks as indicated hereinbelow.
Thus, it has a significant bulk (height) in the direction Z (generally vertical direction). This characteristic leads to problems of print quality and uniformity because of the variations of speed of displacement of the part (secured to the robot arm). Furthermore, because of the colorwise alternation of the rows of nozzles, the relatively significant distances separating two successive rows delivering the same color make the mutual synchronization of these rows of nozzles of the same color difficult. Because of this, the resulting print quality on the three-dimensional surfaces is not optimal. Finally, the order of succession of the colors is imposed physically by the color assignment of the rows of nozzles and the limited resolution of the quadrichrome head requires several printing passes to be performed to obtain a good print quality, hence a significant loss of time.
Through the document U.S. Pat. No. 9,266,354, a printing installation is known that comprises a plurality of bichromatic or monochromatic print heads and drying/crosslinking means mounted according to a circular disposition on a fixed support structure.
The part being decorated is, for its part, displaced in front of the print heads and the drying/crosslinking means, by a support device comprising a first translational displacement unit and second and third units for displacement in rotation, about pivoting axes that are not parallel to one another and one of which coincides with the axis of translation of the first unit.
This installation has a complex and relatively bulky structure, with, in addition, a significant limitation in terms of varieties of forms of three-dimensional surfaces that can be treated. Finally, it offers a multitude of printing and drying positions, corresponding to the different positions of the abovementioned heads and means.
The aim of the present invention is to mitigate at least the main drawbacks stated above.
To this end, its subject is an installation for printing and/or coating surfaces of parts, in particular three-dimensional surfaces, this installation essentially comprising:
the printing means, the sensor means and the possible drying means being arranged side-by-side, for example superposed, on a fixed support structure, such as a baseplate, an upright, a boom or the like,
the displacement device and the support structure being disposed mutually facing one another and a spatial reference frame being assigned to said fixed support structure, with a first axis determining the distance between the displacement device and said support structure, a second axis corresponding to the direction of stacking of the printing, sensor and possibly drying means and a third axis at right angles to the preceding two axes,
said printing installation being characterized in that the printing means consist of at least two monochromatic or bichromatic print heads that are movable, in rotation and/or in translation, with at least one degree of freedom, said heads being able to be displaced selectively, one by one, to a determined spatial position allowing the printing of the surface of the part, this being done under the control of the computation, management and control means, and in accordance with preprogrammed data, for example a printing program, also determining the displacement of the part relative to the support structure and to the determined spatial position.
The invention will be better understood, from the description hereinbelow, which relates to preferred embodiments, given as nonlimiting examples, and explained with reference to the attached schematic drawings, in which:
The printing means 7, the sensor means 8 and the possible drying means 9 are arranged side-by-side, for example superposed, on a fixed support structure 11, such as a baseplate, an upright, a boom or the like.
The displacement device 4 and the support structure 11 are disposed mutually facing one another and a spatial reference X, Y, Z is assigned to said fixed support structure 11, with a first axis X determining the distance between the displacement device 4 and said support structure 11, a second axis Z corresponding to the direction of stacking of the printing, sensor and possibly drying means 5, 8, 9, and a third axis Y at right angles to the preceding two axes X and Z.
In accordance with the invention and as emerges from
By virtue of the abovementioned provisions, the invention makes it possible to dispense with drawbacks associated with a multicolor print head that is very bulky on the axis of stacking of the means 5, 8, 9 (axis Z in the figures) and in which the rows of nozzles of the same color are spaced apart accordingly.
Furthermore, the definition, for the different heads 6, 7 of the means 5, of a single spatial position PSD allowing the printing makes it possible to simplify and make more accurate the kinematic of relative displacement and positioning of the different heads 6, 7 with respect to the part 2 in motion while the printing is in progress.
Finally, by allowing the rows of similar nozzles or ejection orifices 30, allocated to the same color, to be brought closer together, the resolution obtained will be significantly higher (see
In the embodiment of
In accordance with a first variant embodiment and as illustrated in
The different monochrome heads 6 can form part of one and the same module forming a multiple head 5 in bar form, and be arranged in a row in a horizontal direction (axis Y in the figures), therefore with a minimal vertical bulk (axis Z in the figures). The guiding of the block of heads 6 in translation can be done using a rail, a runner or the like forming part of the structure 11.
The sensor means 8 and drying means 9 are normally fixedly mounted on said structure 11, but can also be provided to be movable, like the print heads 6, to even further increase the processing accuracy.
In the first step (
The drying/crosslinking means 9 ensure the fixing and the at least partial solidifying of the deposited drops.
Under the control of the means 10, the multiple head 5 in bar form is then displaced by one notch, driven via a linear actuator (not represented), so that the head 6, 7 assigned to the color magenta is in the position PSD. Once again, ink is sprayed according to a predefined program while the part 2 is displaced in front of the active head 6, 7 (magenta head) and the drops are dried by the means 9. These steps are then repeated for the other two colors, to complete the printing cycle.
Possibly, all of the printing cycle can be repeated with a very low deliberate offset of the print heads 6, 7 (with respect to their position during the preceding printing cycle), in order to obtain an even better resolution.
According to a second variant embodiment, illustrated in
Like the abovementioned variant, the printing process is performed in successive steps by pivoting the module combining the different heads 6 by a fraction of a turn (here a quarter-turn) about the axis Z.
As previously, the sensor and drying means 8 and 9 are normally fixed, but can be designed to be movable concomitantly with the print heads 6.
According to an additional feature with respect to the abovementioned two variants, and compatible therewith, provision can be made for each of the print heads 6, 7 to be also able to be moved individually, under the effect of a suitable driven actuator (not represented), specific to each head 6, 7 or common to all the heads 6, 7, by sliding on the first axis X (not represented).
The result thereof is a greater flexibility of maneuvering and of application, and a greater mastery, better control and greater flexibility in terms of spray distance.
In accordance with a third constructional variant of the invention, represented in
The sequence for controlling the print heads 6, 7 advantageously comprises, in succession, first of all a sliding on the axis Z for the selection of the color to be applied, then a sliding on the axis X to bring the ejection orifice 13 (nozzle) concerned close to the surface to be decorated.
Finally, and as illustrated in
The person skilled in the art understands that the vertical Z and horizontal XY orientations represented in the figures are so indicated only by way of the most commonplace example. Indeed, and in accordance with a construction and a suitable orientation of the device 4 for displacing the part 2, these axes X, Y and Z can be inverted, the axis Z then no longer corresponding to the vertical direction (variant not represented).
Advantageously, the support structure 11 is provided with a hood 12 with an aperture 12′ constituting the determined spatial position allowing the printing PSD, this aperture 12′ allowing the passage of a print head 6, 7 if necessary.
Moreover, given the vertically superposed arrangement of the means 5, 8 and 9, the support structure 11 with the hood 12 advantageously takes the form of a column that is simple and of little bulk.
In accordance with a second embodiment of the installation 1, schematically illustrated in
Advantageously, the second robot arm 4′ is equipped, at its free end, with an automatic tool loader 14, with its automatic driver device, on which can be mounted, temporarily and interchangeably, the print head 6, 7 selected for the planned printing operation, the management of the operation of each printing head 6, 7 and the flow of ink, in line with the possible movements of the supporting robot arm 4′ being handled by the means 10.
When it is not in use, each print head 6, 7 is, in this second embodiment of the installation, stored in the support structure 11 (the size and number of receiving locations is matched to the needs in qualitative and quantitative terms).
Each print head 6, 7 can feature ink recirculation or not, the management of the slight vacuum pressures is computerized (means 10) and matched in real time to the movements of the robot 4′ and to the orientations of the head 6, 7 concerned.
The mounting of each head 6, 7 on its automatic tool changer 14 allows any orientation of the mounted head to work anywhere in the sphere of action of the robot 4′.
To apply a print color, the robot 4′ takes the head 6, 7 of the corresponding color from the storage rack 11 using the automatic tool changer 14.
The parameters for controlling the ink and the print head are advantageously adapted in real time to compensate for the movements of the wrist of the robot 4′ when the head is set in motion at the end of the wrist of the robot.
In the context of this second embodiment of the invention, the person skilled in the art will understand that each print head 6, 7 can be used in the following two configurations, namely:
Preferentially, the different print heads 6, 7 all have similar constructions and outer forms.
According to a first embodiment, emerging from
According to a second embodiment, represented partially in
The practical production of the means 4, 4′, 5, 8, 9 and 12, and the design of the driving and printing programs, are within the scope of the person skilled in the art, in particular experts in automation and automated printing systems.
Advantageously, the installation 1 can exploit the instantaneous speeds of fractions of the surface 2′ of the part 2 in displacement (acquired by the sensor means 8 and exploited by the means 10) to manage the printing cycle, as mentioned in the French patent application no. 18 54024 in the name of the applicant, by way of illustrative example (see
Likewise, the drying and/or crosslinking means 9 can advantageously comprise a radiation source with beam adjustment means as described and represented in the French patent application no. 17 50260 in the name of the applicant, by way of illustrative example.
Obviously, the invention is not limited to the embodiments described and represented in the attached drawings. Modifications remain possible, notably from the point of view of the construction of the various elements or by substituting technical equivalents, without departing in any way from the scope of protection of the invention.
Number | Date | Country | Kind |
---|---|---|---|
18 55490 | Jun 2018 | FR | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2019/066241 | 6/19/2019 | WO |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2019/243440 | 12/26/2019 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
20100302304 | Bauer | Dec 2010 | A1 |
20130257984 | Beier | Oct 2013 | A1 |
20130342592 | Merz | Dec 2013 | A1 |
20160009104 | Matsuhashi | Jan 2016 | A1 |
20170341423 | Schnepp | Nov 2017 | A1 |
20180056671 | Boniface | Mar 2018 | A1 |
20190337306 | Boniface | Nov 2019 | A1 |
Number | Date | Country |
---|---|---|
2448690 | Oct 2008 | GB |
H05293955 | Nov 1993 | JP |
2002084407 | Mar 2002 | JP |
2010-094882 | Apr 2010 | JP |
2014012240 | Jan 2014 | JP |
2014117930 | Jun 2014 | JP |
2015098103 | May 2015 | JP |
2016088071 | May 2016 | JP |
Entry |
---|
International Search Report dated Aug. 22, 2019. |
International Office Action dated Jan. 3, 2023. |
Number | Date | Country | |
---|---|---|---|
20210300061 A1 | Sep 2021 | US |