The following descriptions and examples are not admitted to be prior art by virtue of their inclusion in this section.
Inline barrier valves are used in downhole well applications. Accidental and inadvertent closing or opening of these valves can cause catastrophic failures. For example, inline lubricator valves are used to balance pressure while running an intervention tool downhole. If a failure occurs that results in an inadvertent opening or closing of the valve, substantial risk arises with respect to damage to equipment and/or injury to personnel.
In general, embodiments of the present disclosure provide a technique for enabling failsafe control of actuators used to actuate downhole tools, such as downhole valves. According to one embodiment, a well system may comprise a tool having an adjustable member. An actuation mechanism serves as a fail-as-is mechanism and works in cooperation with the adjustable member. The actuation member is shiftable upon receiving a predetermined input; however the actuation member does not move the adjustable member upon each shift. Once the actuation member has been shifted the requisite number of times to move the adjustable member to another position, at least one subsequent shift of the actuation member is not able to cause movement of the adjustable member. This provides a fail-as-is technique for ensuring the tool, e.g. valve, is not inadvertently actuated to another operational position.
Other or alternative features will become apparent from the following description, from the drawings, and from the claims.
Certain embodiments of the invention will hereafter be described with reference to the accompanying drawings, wherein like reference numerals denote like elements. It should be understood, however, that the accompanying drawings illustrate only the various implementations described herein and are not meant to limit the scope of various technologies described herein. The drawings are as follows:
In the following description, numerous details are set forth to provide an understanding of the present disclosure. However, it will be understood by those of ordinary skill in the art that embodiments of the present disclosure may be practiced without these details, and that numerous variations or modifications from the described embodiments may be possible. In the specification and appended claims: the terms “connect”, “connection”, “connected”, “in connection with”, “connecting”, “couple”, “coupled”, “coupled with”, and “coupling” are used to mean “in direct connection with” or “in connection with via another element”; and the term “set” is used to mean “one element” or “more than one element”. As used herein, the terms “up” and “down”, “upper” and “lower”, “upwardly” and downwardly”, “upstream” and “downstream”; “above” and “below”; and other like terms indicating relative positions above or below a given point or element are used in this description to more clearly describe some embodiments of the invention.
Embodiments of the present disclosure generally relate to a well system and well devices employing a failsafe control. According to one embodiment, the well system comprises a well tool and an actuation mechanism which cooperates with the well tool to move or shift the well tool between operational positions. The actuation mechanism is designed and serves as a fail-as-is mechanism that reduces or eliminates the risk of inadvertent actuation of the well tool.
According to one specific example, the well tool comprises a valve coupled in cooperation with the actuation mechanism. The actuation mechanism is designed as a fail-as-is mechanism that allows the valve to remain in a current position if there is a failure in a control mechanism, such as a loss of hydraulic pressure in a control line maintaining the valve in an open position. The fail-as-is mechanism also enables the tool, e.g., valve, to remain in a current position in the case of a related component failure. If the valve is in an open position when the component failure occurs, for example, the valve remains open. Similarly, if the valve is in the closed position when the failure occurs, the valve remains closed.
The tool and its actuation mechanism may have a variety of forms for use with a variety of overall well systems. In one well system embodiment, the tool comprises a valve deployed in an intervention tool. The valve may comprise a lubricator valve deployed in the intervention tool to balance pressure as the intervention tool is run downhole into a wellbore. The fail-as-is mechanism prevents inadvertent shifting of the valve to another operational position even if a control line or other valve component fails during run-in of the intervention tool.
Referring generally to
The well string 28 may be deployed downhole by a conveyance 36 which may have a variety of forms, such as production tubing, coiled tubing, cable, or other suitable conveyances.
The conveyance 36 is used to deliver well string 28 and its well tool 32 downhole to a desired location in a wellbore 24. Generally, conveyance 34 is delivered downhole beneath surface equipment 38 positioned at a surface location 40. By way of example, surface equipment 38 may comprise a wellhead and/or rig equipment. In one specific example, the well string 28 comprises an intervention tool system, and well tool 32 is a valve, such as a lubricator valve. It also should be noted that the illustrated wellbore 24 is a generally vertical wellbore, however the system and methodology also may be utilized in deviated, e.g. horizontal, wellbores.
Referring generally to
In the embodiment illustrated in
The movable member 42 is coupled into cooperation with the actuation mechanism 34, which serves as a fail-as-is mechanism. As illustrated, actuation mechanism 34 comprises a mandrel 52 translatably mounted in a cylinder 54 defined by an actuation mechanism housing 56. Although valve housing 48 and actuation mechanism housing 56 may be formed as separate housings, the illustrated embodiment shows the valve housing 48 and actuation mechanism housing 56 as a single integral housing.
Mandrel 52 is sealed with respect to the surrounding actuation mechanism housing 56 via a plurality of seals 58. By way of example, seals 58 may comprise circular seals mounted in corresponding grooves 60 formed circumferentially along the interior surface of actuation mechanism housing 56. The mandrel 52 also comprises a longitudinal passage 62 through which fluid may be conducted as it flows along flow passage 44. Mandrel 52 is coupled with movable member 42 via a suitable mandrel operator 64. If movable member 42 comprises a ball valve, as illustrated, mandrel operator 64 comprises a linkage configured to pivot the ball valve between open and closed positions as mandrel 52 translates back and forth in a longitudinal direction along cylinder 54.
Shifting of mandrel 52 back and forth within the actuation mechanism housing 56 may be achieved via actuation of a piston 66 cooperatively coupled with mandrel 52. Piston 66 is slidably mounted within a recessed region 68 that is recessed into an interior wall of actuation mechanism housing 56 at a location surrounding mandrel 52. A predetermined input may be applied to piston 66 to selectively shift the piston back and forth in recessed region 68. However, every transition of the piston 66 along recessed region 68 does not impart motion to mandrel 52, and at least one “dummy” shifting of piston 66 is provided between each actual movement of mandrel 52. In other words, the interaction of piston 66 and of mandrel 52 enables the actuation mechanism 34 to perform as a fail-as-is mechanism by limiting movement of mandrel 52 (and thus valve member 42) to specific shifts within a series of shifts. Effectively, piston 66 is decoupled from mandrel 52 in that movement of piston does not necessarily move mandrel 52.
The predetermined input applied to shift piston 66 may be in a variety of forms, such as electrical, electro-hydraulic, hydraulic, or other types of inputs. In the specific example illustrated, the input is a hydraulic input provided by one or more hydraulic lines 70. If hydraulic inputs are used, single hydraulic lines may be used to move piston 66 against a resilient member; or two or more hydraulic lines 70 may be employed to selectively move the piston 66 back and forth along recessed region 68. In the embodiment illustrated, for example, the predetermined hydraulic input is provided by a pair of hydraulic lines 70 with an individual hydraulic line positioned on each side of piston 66 to selectively move the piston back and forth.
The hydraulic lines 70 are located to deliver hydraulic fluid into recessed region 68 on opposite sides of piston 66 via ports 72 extending through housing 56. The piston 66 may comprise a plurality of seals 74 positioned to form a seal between piston 66 and mandrel 52 on one side of the piston; and between piston 66 and an interior surface defining recessed region 68 on a radially opposite side of the piston. Pressurized hydraulic fluid is selectively applied to each side of piston 66 to drive the piston back and forth in recessed region 68 and to ultimately shift mandrel 52, thereby moving the movable member 42 to another operational position.
For each shift of piston 66 that causes movement of mandrel 52 and movable member 42, at least one subsequent shifting of the piston 66 is not able to cause movement of the mandrel 52. In many applications, a plurality of subsequent shifts of the piston 66 may not move mandrel 52. These “dummy” shifts ensure actuation mechanism 34 functions as a fail-as-is mechanism and prevents inadvertent actuation of movable member 42 to another operational position. The selective movement of mandrel 52 under the influence of piston 66 is caused by a selective engagement mechanism 76, which enables cooperation between actuation mechanism 34 and well tool 32 without directly coupling piston 66 to mandrel 52.
According to one embodiment, selective engagement mechanism 76 is an indexer or indexing system in which piston 66 comprises a plurality of slots 78 that move in cooperation with corresponding keys 80 mounted on mandrel 52. In
When the piston 66 is shifted, sloped surfaces 86 engage corresponding keys 80 and slightly rotate the piston 66 relative to the mandrel 52 so that the keys 80 move along the corresponding slots 78. If the keys 80 move into a short slot 82, continued movement of piston 66 forces a corresponding movement of mandrel 52. By having slots 78 on both longitudinal ends of piston 66, a similar engagement occurs as the piston 66 is shifted longitudinally in each direction. The engagement of keys 80 at one longitudinal end of the piston 66 effectively rotates the piston slightly for appropriate engagement with keys 80 at an opposite longitudinal end of the piston 66 when the piston 66 is transitioned in the opposite longitudinal direction. However, between each sequential pair of short slots 82, one or more long slots 84 prevent movement of the mandrel 52 during one or more subsequent shifts. This is accomplished by forming long slots 84 with sufficient length to prevent the “bottoming out” of keys 80 over the full longitudinal transition or stroke of piston 66.
As a result, the decoupling between piston 66 and mandrel 52 creates a fail-as-is mechanism that can be used in a variety of downhole tools. A few examples of suitable downhole tools include downhole completion tools, which may be in the form of valves, e.g. barrier valves, ball valves, safety valves, inflow control valves, as well as a variety of other tools. The unintended actuation of the downhole tool is prevented because the motion of piston 66 is decoupled from the mandrel 52 following the transition of mandrel 52. In the embodiment illustrated, movable member 42 is a ball valve movable via appropriate activation of selective engagement mechanism 76. The selective engagement mechanism 76 may be an index system comprising J-slots located on opposite longitudinal ends of the piston 66 such that each set of slots 78 is arranged in a pattern with short J-slots 82 separated by two long J-slots 84, for example.
In the embodiment illustrated, mandrel 52 has two sets of matching sized lugs or keys 80. When piston 66 moves through a full stroke along recessed region 68 and the subject mandrel keys 80 move into a long slot 84, the mandrel 52 does not move. On the other hand, if the mandrel keys 80 move into one of the short slots 82, the mandrel 52 moves according to the corresponding movement of the piston 66 as it transitions through its piston stroke. In the illustrated example, the movement of mandrel 52 cycles the valve member 42 between open and closed positions. After intentionally actuating the movable member 42, the subsequent, repeated cycling of piston 66 results in the next two piston strokes moving through two dummy cycles in which the mandrel keys 80 engage long slots 84. Accordingly, in the case of a failure, e.g. a control line leak, the next two cycles or strokes of piston 66 produce two non-activating movements which fail to move mandrel 52. This prevents inadvertent actuation of the downhole well tool 32.
In the embodiment illustrated in
Referring generally to
As described above, when selective engagement mechanism 76 comprises and indexing system, piston 66 and slots 78 may be partially rotated around the mandrel 52 during each engagement to allow progression from one cycle to the next. When the piston 66 is subsequently cycled or stroked to the left, the keys 80 located on the left side of piston 66 are engaged with long slots 84, as illustrated in
During the next actuation of piston 66, the piston is cycled or stroked to the left and the left keys 80 are engaged by short slots 82, as illustrated in
The fail-as-is feature of the actuation mechanism 34 protects the well tool against inadvertent actuation by providing at least one dummy cycle, e.g. two dummy cycles, between actual actuation steps. For example, after the ball valve is cycled open, the piston 66 is in the initial actuation position illustrated in
The overall well system 20 may be designed for use in a variety of well applications and well environments. Accordingly, the number, type and configuration of components and systems within the overall system may be adjusted to accommodate different applications. For example, the well tool and actuation mechanism may be employed in an intervention tool system or in a variety of other types of well systems. The technique for shifting actuation mechanism 34 may rely on a variety of predetermined inputs, such as hydraulic inputs, electrical inputs, electro-hydraulic inputs, and other inputs suitable for imparting motion to the shiftable piston. Furthermore, the piston, mandrel, selective engagement mechanism, and other components of the actuation mechanism may be adjusted to the specifics of a given well application and well tool. Similarly, the well tool may comprise a variety of valves and other types of well tools actuated between operational positions via various linkages between the actuation mechanism and the movable element of the well tool.
Elements of the embodiments have been introduced with either the articles “a” or “an.” The articles are intended to mean that there are one or more of the elements. The terms “including” and “having” are intended to be inclusive such that there may be additional elements other than the elements listed. The term “or” when used with a list of at least two elements is intended to mean any element or combination of elements.
Although only a few embodiments of the present disclosure have been described in detail above, those of ordinary skill in the art will readily appreciate that many modifications are possible without materially departing from the teachings of this disclosure. Accordingly, such modifications are intended to be included within the scope of this disclosure as defined in the claims.
The present document is based on and claims priority to U.S. Provisional Application Ser. No. 61/153,671, filed 19 Feb., 2009, the contents of which are herein incorporated by reference.
Number | Date | Country | |
---|---|---|---|
61153671 | Feb 2009 | US |