The invention may be more completely understood in consideration of the following detailed description of an illustrative embodiment of the present invention in connection with the accompanying drawings, without being restricted to this or other illustrative embodiment, in which:
An illustrative embodiment of the present invention is described in greater detail below with reference to
In the illustrative embodiment of
The illustrative fail-safe circuit 10 of
The charging circuit 14 of the illustrative fail-safe circuit 10 includes a capacitor 16, where two diodes 17 and 18 are connected in parallel with the capacitor 16. A resistor 19, which is connected to the input 11 of the fail-safe circuit 10 via a capacitor 20, is connected between the two diodes 17 and 18.
As can be seen in the illustrative embodiment of
In the illustrative embodiment of
As can be seen from
As already mentioned, the fail-safe circuit 10 may only generate an output voltage of over 150 volts that is required to open the gas valve at the outputs 12, 13 if a signal containing at least two different successive frequency signals is provided by the control device at the input 11 of the fail-safe circuit 10. In this case, a defined operating state of the control device for opening the gas valve exists.
In the illustrative embodiment, the input signal may contain two frequency signals, namely a first frequency signal with a frequency of about 500 kHz and a second frequency signal with a frequency of about 10 kHz, which are present or are applied successively in the signal provided by the control device in such a way that a time period of about 30 milliseconds with the first frequency signal of about 500 kHz is respectively followed by a time period of about 100 milliseconds with the second frequency signal of about 10 kHz.
The illustrative fail-safe circuit 10 of
During the time period for which the first frequency signal of about 500 kHz is applied to the input 11, a high output voltage that is required to open the gas valve cannot be generated by the voltage transformer circuit 15 due to the high losses, in particular in the coil 26 and in the MOSFET transistor 30 of the voltage transformer circuit 15. Rather, this high output voltage is only generated when the second frequency signal with a frequency of about 10 kHz is applied to the input 11. When the second frequency signal of about 10 kHz is applied to the input 11, an output voltage VOUT of more than 150 volts that is required to open the piezo-operated gas valve is generated from the supply voltage VBAT by the voltage transformer circuit 15, and the capacitor 28 of the voltage transformer circuit 15 is charged.
If a time period of about 100 milliseconds, in which the second frequency signal with a frequency of about 10 kHz is applied, is followed by a time period of about 30 milliseconds with the first frequency signal with a frequency of about 500 kHz, then the capacitor 28 of the voltage transformer circuit 15 discharges and essentially maintains the output voltage of more than 150 volts that is required to open the gas valve. The capacitor 28 discharges via the high resistance of the gas valve during the time period in which the first frequency signal with the frequency of about 500 kHz is applied.
The specific design of the circuit described above is incumbent upon the person skilled in the art addressed here. In the particularly preferred exemplary embodiment in which an output voltage VOUT of about 250 volts is to be provided for opening the gas valve from the supply voltage VBAT of about 3 volts, the capacitance of the capacitor 28 is preferably 1 μF, the capacitance of the capacitor 16 is about 10 μF and the capacitance of the capacitor 20 is about 220 pF. The resistance of the gas valve connected to the outputs 12 and 13 can be assumed to be 10 MΩ, the resistor 21 is preferably chosen to be 1 MΩ, the resistor 19 to be 1 kΩ and the resistor 29 to be 10 kΩ. The resistor 23 preferably has a value of 22 kΩ. The coil 26 preferably has an inductance of 1 mH. With these values, the discharge time of the capacitor 28 is about 10 seconds from which it immediately follows that an output voltage that is required to open the gas valve can also be provided at the outputs 12 and 13 during the time period of 30 milliseconds in which the first frequency signal of about 500 kHz is applied to the input 11.
Number | Date | Country | Kind |
---|---|---|---|
102004016764.8 | Apr 2004 | DE | national |
This application claims priority to PCT/EP2005/002855, filed on Mar. 17, 2005, which claims priority to DE102004016764.8 filed on Apr. 1, 2004.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP05/02855 | 3/17/2005 | WO | 00 | 6/26/2007 |