The present invention relates to an air metering throttle body assembly for an internal combustion engine, and more particularly, to a throttle positioning device to prevent inoperability of the engine during failure of the throttle actuator.
A typical throttle body assembly in present-day use takes the form of a one-piece metal casting formed with a main bore or flow passage extending through the body along a first axis which is intersected by a throttle shaft bore extending through the body along a second axis perpendicular and intersecting the axis of the main bore. A circular throttle plate is mounted within the main bore on a shaft rotatably supported in the shaft bore. By rotating the shaft, the plate can be moved between a blocking or minimum flow position, in which the plate is generally perpendicular to the axis of the main bore, to a maximum open position in which the plate is aligned with the bore axis to thereby meter flow through the main bore.
Throttle control valve systems have recently been developed which override the driver's command as represented by his positioning of the accelerator pedal by taking over control of the throttle. These systems are frequently referred to as “electronic throttle control” or “drive-by wire” systems in that there is no direct mechanical connection between the accelerator pedal and the throttle, the pedal position being transmitted to an electronic control unit as an electric signal which is processed by the control unit and transmitted by the control unit in the form of an electric signal to an electromechanical throttle actuator. This type of “drive-by wire” system may also be adapted for sensing the speed of the engine driven wheels with respect to that of the non-driven wheels, so that if the speed of the driven wheels becomes greater than that of the non-driven wheels, the control unit can transmit an electric signal to the electromechanical actuator which alters the position of the throttle plate to reduce the torque output of the engine until the engine driven wheels regain traction.
While such “drive-by wire” systems, in general, are quite reliable, a malfunction of the electrical supply system or the electronic control unit can result in a total loss of control by the driver over the throttle valve position in that the sole control over the position of the throttle valve is an electrical signal from the electronic control unit, and there is no direct mechanical connection between the accelerator pedal and the throttle valve. In the worst case, an electrical or electronic malfunction could result in unintended and uncontrollable acceleration of the vehicle, should the throttle plate, upon the loss of its electrical positioning signal, be in or moved to a wide open position. Consequently, most throttle plates are spring-biased to move to a closed position in response to loss of an electrical control signal, rendering the vehicle more or less effectively immobilized in that the idle air flow will be reduced to a minimum.
The present invention is directed to providing a fail-safe throttle positioning system to prevent inoperability of the engine during failure of the throttle actuator and to maintain the ability to continue to drive at a limited, but reasonable speed in the event of such malfunction by placing the throttle valve in a “limp home” mode where the throttle valve is positioned intermediate between the minimum and maximum flow positions. The actuator mechanism can include a throttle level connected for rotation to a shaft supporting the throttle valve. The throttle lever may include a first surface engageable with a first stop defining a minimum fluid flow position and a second surface engageable with a second stop defining a maximum fluid flow position. Throttle spring means urges the throttle lever toward the normal minimum fluid flow position. The fail-safe mechanism may include a fail-safe lever rotatably mounted on the shaft supporting the throttle valve. The fail-safe lever may include a first surface engageable with the throttle lever and a second surface engageable with a fail-safe stop. Fail-safe spring means urges the fail-safe lever toward the fail-safe stop so that the throttle lever is held in the intermediate position until driven by the actuator mechanism toward one of the minimum and maximum fluid flow positions. The actuator means may also include a mechanically operated actuator means connected to the throttle lever at one end and to the driver actuated accelerator mechanism, such as a pedal, at the other end to be responsive to driver input. The mechanically operated actuator means may include a cable connected between the throttle lever and the accelerator mechanism actuated by the driver. In the alternative, the actuator means may include an electrically operated actuator means connected to the throttle lever at one end and connected to the accelerator mechanism at the other end to receive driver input. The electrically operated actuator means may include what is typically referred to as “electronic throttle control” or “drive-by wire” configuration.
Other objects, advantages and applications of the present invention will become apparent to those skilled in the art when the following description of the best mode contemplated for practicing the invention is read in conjunction with the accompanying drawings.
The description herein makes reference to the accompanying drawings wherein like reference numerals refer to like parts throughout the several views, and wherein:
The fail-safe throttle positioning system 10 can be part of a conventional mechanically operated engine induction throttling device, such as a throttle body 12, with a direct acting idle speed control, such as a movable throttle valve 14, for use with a spark ignition engine. The fail-safe throttle positioning system 10 of the present invention can also be incorporated into an electric operated engine induction system throttling device that provides complete drive-by wire functions of idle speed control, traction control, transmission shift harshness control, vehicle speed control and deceleration air control on a spark ignition engine. In its simplest form, the fail-safe throttle positioning device 10 according to the present invention includes the throttle body 12 with a movable throttle valve 14 for at least idle speed control mounted for movement with respect to the throttle body 12. The movable throttle valve 14 is disposed in a fluid passage 16 formed in the throttle body 12 for controlling fluid flow through the fluid passage 16 in response to movement of the throttle valve 14. Actuator means 18 is connected to the throttle valve 14 for operably moving the throttle valve 14 between a minimum fluid flow position 20 and a maximum fluid flow position 22. Fail-safe means 24 urges the throttle valve 14 toward an intermediate fluid flow position 26 between the minimum and maximum fluid flow positions, 20 and 22 respectively, to prevent inoperability of the engine during failure of the actuator means 18.
The actuator means 18 may include a throttle lever 28 connected to a shaft 30 supporting the throttle valve 14 within the fluid passage 16 of the throttle body 12. The throttle lever 28, shaft 30 and throttle valve 14 moving in rotation with one another. The throttle lever 28 includes a first surface 32 engageable with a first stop 34 defining the minimum fluid flow position 20. A second surface 36 of the throttle lever 28 engages with a second stop 38 defining the maximum fluid flow position 22. Throttle spring means 40 normally urges the throttle lever 28 toward the minimum fluid flow position 20. The actuator means 18 may also include a mechanically operated actuator means connected to the throttle lever 28 and responsive to driver input, or alternatively may include an electrically operated actuator means connected to the throttle lever 28 and responsive to driver input. The electrically operated actuator means may include a “drive-by wire” configuration where the throttle lever 28 is operably actuated by a reversible electric motor 42 having a radially extending drive arm 44 supporting a drive pin 46 drivingly engaged within an elongated slot 48 formed in the throttle lever 28. The radially extending drive arm 44 and connected drive pin 46 are driven in rotation about the shaft of the reversible electric motor 42 in response to electric signals for driving the reversible electric motor in the desired direction to position the movable throttle valve 14 in the desired fluid flow position.
The fail-safe means 24 may include a fail-safe lever 50 rotatably mounted with respect to the shaft 30 so that the fail-safe lever 50 can rotate independently of the shaft 30. The fail-safe lever 50 includes a first surface 52 engageable with the throttle lever 28, such as with longitudinally extending throttle tab 54. A second surface 56 of the fail-safe lever 50 engages with a fail-safe stop 58. Fail-safe spring means 60 urges the fail-safe lever 50 toward the fail-safe stop 58 so that the throttle lever 28 is driven through contact between the fail-safe lever 50 and the longitudinally extending throttle tab 54 formed on the throttle lever 28 until it reaches the intermediate fluid flow position 26 corresponding to the fail-safe lever 50 engaging the fail-safe stop 58. The throttle lever 28 is held in the intermediate position 26 until driven by the actuator means 18 toward one of the minimum and maximum fluid flow positions, 20 and 22 respectively.
The fail-safe means 24, in the preferred embodiment as illustrated in
The fail-safe throttle positioning system 10 according to the present invention for a mechanically operated throttle device with direct acting idle speed control device can include a throttle lever 28 for direct connection to the throttle shaft 30 and throttle valve 14, along with provisions for attachment to the vehicle throttle system. A fail-safe position lever 50 contacts a fixed stop 58 and the idle speed control lever 28 or throttle lever 28. The fail-safe lever 50 is held in place against the fixed fail-safe stop 58 by a fail-safe spring means 60. The idle speed control lever or throttle lever 28 provides an attachment point for an idle speed actuator means 18. A throttle return spring means 40 provides normal throttle system return force and is attached the throttle body 12 at one end and the throttle lever 28 at the other end. The throttle return spring means 40 has less force than the fail-safe spring means 60. The system allows the idle speed control actuator means 18 to position the throttle valve anywhere in the range from minimum idle air flow throttle valve set position, such as minimum fluid flow position 20 to some predetermined throttle valve position that allows more air flow than the fail-safe position, such as maximum fluid flow position 22. In the event that the idle speed control actuator means 18 loses force, the fail-safe throttle positioning system 10 is intended to provide a predetermined throttle valve position greater than the minimum idle air flow set position, such as intermediate fluid flow position 26. The fail-safe throttle positioning system 10 functions properly only if the vehicle throttle system is free to move over its entire operating range.
The fail-safe throttle operating system 10 for an electrically operated throttling device can include a throttle control lever 28 contacting the fail-safe position lever 50. The throttle control lever 28 provides an attachment point for the throttle control actuator means 18. The fail-safe position lever 50 contacts a fixed fail-safe stop 58 and the throttle control lever 28. The fail-safe lever 50 is held in place against the fixed fail-safe stop 58 by fail-safe spring means 60. Throttle spring means 40 provides normal throttle system return force and is attached to the throttle body 12 at one end and the throttle control lever 28 at the other end. The throttle return spring means 40 has less force than the fail-safe position spring means 60. The fail-safe throttle positioning system 10 according to the present invention allows the throttle control actuator means 18 to position the throttle valve 14 anywhere in the range from minimum idle air flow throttle valve set position, such as minimum fluid flow position 20, to a wide open throttle position, such as maximum fluid flow position 22. In the event that the throttle control actuator means 18 loses force, the fail-safe throttle positioning system 10 is intended to provide a predetermined throttle valve position greater than the minimum idle air flow set position, such as intermediate fluid flow position 26.
In operation, when the actuator means 18 is in a de-energized state, or failure mode, the throttle spring 80 urges the throttle lever 28 in a clockwise direction as illustrated in
In the event of actuator means 18 failure while the engine is idling and the throttle lever 28 is disposed having the first surface 32 engaging the first stop 34, the fail-safe spring means 60 overcomes the throttle spring means 40 to move the throttle lever 28 through contact with the first surface 52 of the fail-safe lever 50 and the longitudinally extending throttle tab 54. The fail-safe spring means 60 urging the throttle lever 28 to the intermediate fluid flow position 26. When the throttle lever 28 reaches the intermediate fluid flow position 26, the second surface 56 of the fail-safe lever 50 reaches the fail-safe stop 58 preventing further counterclockwise rotation, as illustrated in
While the invention has been described in connection with what is presently considered to be the most practical and preferred embodiment, it is to be understood that the invention is not to be limited to the disclosed embodiments but, on the contrary, is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the appended claims, which scope is to be accorded the broadest interpretation so as to encompass all such modifications and equivalent structures as is permitted under the law.
Number | Name | Date | Kind |
---|---|---|---|
4601271 | Ejiri et al. | Jul 1986 | A |
4785782 | Tanaka et al. | Nov 1988 | A |
4831985 | Mabee et al. | May 1989 | A |
4850319 | Imoehl | Jul 1989 | A |
4867122 | Kono et al. | Sep 1989 | A |
4879657 | Tamura et al. | Nov 1989 | A |
4892071 | Asayama | Jan 1990 | A |
4909213 | Mezger et al. | Mar 1990 | A |
4940031 | Mann | Jul 1990 | A |
4947815 | Peter | Aug 1990 | A |
4951772 | Peter et al. | Aug 1990 | A |
4953529 | Pfalzgraf et al. | Sep 1990 | A |
5014666 | Westenberger | May 1991 | A |
5078110 | Rodefeld | Jan 1992 | A |
5092296 | Gunter et al. | Mar 1992 | A |
5103787 | Bassler et al. | Apr 1992 | A |
5121727 | Kramer et al. | Jun 1992 | A |
5233530 | Shimada et al. | Aug 1993 | A |
5235951 | Taguchi et al. | Aug 1993 | A |
5263448 | Bluhm et al. | Nov 1993 | A |
5297521 | Sasaki et al. | Mar 1994 | A |
5325832 | Maute et al. | Jul 1994 | A |
Number | Date | Country |
---|---|---|
3718544 | Dec 1988 | DE |
4115647 | Nov 1992 | DE |
4126025 | Feb 1993 | DE |
0154036 | Sep 1985 | EP |
60230520 | Nov 1985 | JP |
3237227 | Oct 1991 | JP |
04060143 | Feb 1992 | JP |
6229263 | Aug 1994 | JP |
Number | Date | Country | |
---|---|---|---|
Parent | 08203274 | Feb 1994 | US |
Child | 11237580 | US |