The present invention is directed to modular blades of wind turbine generators and more specifically to blades consisting of two or more modules that are assembled in situ and wrapped with a fairing to aerodynamically cover the existing gap due to the joint.
The blades are generally made of composite materials, such as carbon fibre, and suffer warping during their operation, heavy warping in cases of extreme conditions. The tip flexes due to the thrust of the wind and the blade twists, warping its profile. This particularly harms the fairing that covers the gap that originates in a modular blade.
By studying the state of the art in the search for greater aerodynamic performance of the blade, it is concluded that the modification of the profile is one of the most adopted solutions to avoid overloads in operation. This is mainly achieved by making the elements that make up the profile of the blade more flexible. Such is the case of patent application WO2018100401A1 that uses an external flexible skin that is complemented by an internal support structure. The flexible outer skin slides over the trailing edge without forming wrinkles or discontinuities. The internal support structure is attached to the blade beam and to rotating shafts that change the geometry of the blade based on load sensors and rotation controllers. Patent application DE102010047918A1 makes the trailing edge more flexible with pneumatic actuators attached to a fixed part of the wing and attached to a flexible trailing edge, simplifying the actuators and mechanical components to the maximum. Patent application DE10233102A1 describes a flexible trailing edge connected to a pressure medium such as compressed air. The trailing edge is made of a fluoropolymer that can be welded to the blade at its widest end, the rest of the element being a stable but flexible support. And lastly, patent US 2008107540 shows how damping elements are glued with adhesive on the leading edge, on the trailing edge, and even on the internal webs of the blade. The elements include a laminated material made of a viscoelastic layer and a rigid layer adhered to the viscoelastic layer. They are arranged externally or internally and cover practically the entire blade.
All these solutions are intended for long blade lengths, not for a fairing that covers a pre-established gap. The requirements of the fairing do not require complex complementary elements of the mentioned patents. These complex complementary elements are added to the trailing edge of the blade, increasing its aerodynamic response and minimizing noise.
It is an object of the invention to cover the gap existing at the joint of a modular blade with a fairing. The hole has a specific shape and size such that it can allow access to an operator or his tools during assembly carried out on site. The fairing is comprised of different components and each one of them has its own size, shape and auxiliary accessories, such as tabs, to facilitate their union between components as well as with the blade shell. All this ensuring aerodynamic continuity in the profile and hermetic closure by means of rivets or similar elements.
Another object of the invention is to replace some of the fairings used to cover the joining area of the modular blade, giving the new fairings the particularity of being able to absorb the warping experienced by the blade during the operation thereof. For this, the trailing edge fairing and the leading edge fairing are made of a flexible material, of the elastomer type, which absorbs to a greater extent the aforementioned warping experienced in the direction of the chord. An elastomeric material is a type of compound that includes non-metals in their composition and that show elastic behaviour. Silicone as an inorganic polymer derived from polysiloxane is the preferred material.
Another object of the invention is to incorporate the necessary metal elements so that the entire faring is equipotentially bonded being linked to the lighting down-drop. The problem of leaving conductive elements isolated is the high potential difference that is created between them due to the induction phenomena caused by the lightning as it passes through the lightning protection system.
The fairing object of the invention must be perfectly integrated, that is, aligned with the shells both in the chord direction and in the span direction, providing aerodynamic continuity to the blade and closing a very small gap with respect to the total length of the modular blade.
A brief description will be given below for a series of drawings useful for better understanding the invention and that expressly relate to an embodiment of said invention that is presented as a non-limiting example thereof.
As shown in
After the metal bonding is complete, all gaps must be covered. To do this, it is covered with a fairing comprising different parts: the leading edge fairing (19), the suction side fairing (12), the pressure side fairing (13) and the trailing edge fairing (20). This last fairing of the trailing edge (20) is made up of two components (20′, 20″) joined by one of its sides, as will be explained below. The leading and trailing edge fairings (19, 20) have a support in the form of a rigid perimeter framework (21). The fairings on the suction side (12) and on the pressure side (13) only have through holes to receive the fixing elements and join the blade shell at their ends. This avoids the places where the Xpacer elements (8) and their corresponding threaded bolts are located inside the inserts. The leading edge (19) and trailing edge (20) fairings have holes all around their periphery. In addition to the aforementioned fairings, there are two tabs (15) to complete the joining of the leading edge fairing (19) with the suction side (12) and the pressure side (13) fairing and two other tabs (16) to complete the joining of the two components (20′, 20″) of the trailing edge fairing (20) with the suction side (12) and pressure side (13) fairing, as shown in exploded view in
The rigid framework (21) of the leading edge fairing (19) supports the elastomeric material, either surrounding at least two sides of the element made of elastomeric material or placed below said element made of elastomeric material, said framework (21) being suitable for covering the setback (11′) of the shell of the modular blade (100) shown in
The elastomeric material is preferably silicone and is reinforced with a rigid glass fibre framework (21), withstands temperatures in the range of −40° to +50° and is resistant to environmental humidity. All fairings can be painted with a gel-coat like the rest of the blade. Both fairings (19, 20) are attached to the blade with fixing elements, preferably rivets or the similar.
To house said fixing elements, metal inserts or bushings are used which are arranged on the periphery of the fairings (19, 20) passing only through the rigid framework (21) or passing through the elastomer material itself and the rigid framework (21). Said metal inserts or bushings equipotentially bond the fairings (19, 20) made of elastomer material when joining the lightning down-drop.
As shown in
In the embodiment of
Each half of said fairings (20′, 20″) is joined at one end to the suction side fairing (12) and to the pressure side fairing (13) respectively, joining both halves at their free ends, as can be seen in
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/ES2020/070474 | 7/22/2020 | WO |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2022/018306 | 1/27/2022 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
7334989 | Arelt | Feb 2008 | B2 |
8172493 | Tobergte | May 2012 | B2 |
20060127222 | Arelt | Jun 2006 | A1 |
20100272570 | Arocena De La Rua | Oct 2010 | A1 |
20120141287 | Hynum | Jun 2012 | A1 |
20190383262 | Van Kalken | Dec 2019 | A1 |
Number | Date | Country |
---|---|---|
2865890 | Apr 2015 | EP |
2465975 | Jun 2010 | GB |
Entry |
---|
International Search Report and Written Opinion issued on Sep. 24, 2020, in corresponding International Application No. PCT/ES2020/070474, 12 pages. |
Number | Date | Country | |
---|---|---|---|
20230265827 A1 | Aug 2023 | US |