The present application relates generally to lighting systems for a fairlead.
A fairlead, such as a hawse fairlead, may be used to guide and restrict lateral movement of a rope and/or cable, as the rope and/or cable is pulled through the fairlead. Fairleads may be used in winches, hoists, boats, and other applications where a rope and/or cable is subjected to bi-directional motion. In some applications, such as in winching operations, it may be desirable to attach lights to the fairlead to increase visibility. The lights may be attached to a frame of the fairlead, and may provide increased illumination in front of the fairlead.
However, the inventors herein have recognized several problems with such fairleads. As one example, aftermarket lights that are attached to the fairlead may require increased electrical wiring, leading to added expense. Further, such attachable fairlead lights may be exposed to environmental elements, such as rain, snow, dirt, mud, etc., which may degrade the lights. Additionally, multiple lights must be added to the fairlead to provide both front and rear lighting of the fairlead. Thus in one example, the above issues may be at least partially addressed by a fairlead, comprising: a frame including a central, first opening and a second opening spaced away from the first opening; and a lighting system included within the frame, the lighting system comprising a plurality of lights disposed within and extending along the second opening. In some examples, the integrated lighting system may include LED lights. The LED lights may comprise a circuit board including a semiconductor light source that generates visible light in response to a supplied electric current. The circuit board may be in face-sharing contact with inner walls of the frame within the second opening.
In this way, the structural integrity and longevity of fairlead lights may be increased by integrating the lighting system within the frame of the fairlead and thus reducing exposure to environmental elements. Further, heat dissipation from the circuit board of the LED lights may be increased by positioning the circuit board in physical contact with the frame of the fairlead. As such, performance and operational periods of the lights may be increased.
It should be understood that the summary above is provided to introduce in simplified form a selection of concepts that are further described in the detailed description. It is not meant to identify key or essential features of the claimed subject matter, the scope of which is defined uniquely by the claims that follow the detailed description. Furthermore, the claimed subject matter is not limited to implementations that solve any disadvantages noted above or in any part of this disclosure.
The figures are drawn to scale, although other relative dimensions may be used, if desired.
The following detailed description relates to fairleads, and in particular to lighting systems for fairleads. A fairlead, such as any of the example hawse fairleads shown in
Further,
As yet another example, elements shown above/below one another, at opposite sides to one another, or to the left/right of one another may be referred to as such, relative to one another. Further, as shown in the figures, a topmost element or point of element may be referred to as a “top” of the component and a bottommost element or point of the element may be referred to as a “bottom” of the component, in at least one example. As used herein, top/bottom, upper/lower, above/below, may be relative to a vertical axis of the figures and used to describe positioning of elements of the figures relative to one another. As such, elements shown above other elements are positioned vertically above the other elements, in one example. As yet another example, shapes of the elements depicted within the figures may be referred to as having those shapes (e.g., such as being circular, straight, planar, curved, rounded, chamfered, angled, or the like). Further, elements shown intersecting one another may be referred to as intersecting elements or intersecting one another, in at least one example. Further still, an element shown within another element or shown outside of another element may be referred as such, in one example.
Turning now to
Focusing on
In some examples, one or more of the top-facing surface 106 may be parallel the bottom-facing surface, the front-facing surface 102 may be parallel the rear-facing surface 104, and at least one of the edges of the first side surface 110 may be parallel to at least one of the edges of the second side surface 112. A central axis X-X′ of the frame 120 is shown in
In the description herein, a “thickness” of the fairlead frame 120 may be used to define the physical extent of the frame 120 along the axis X-X.′ Thus, the thickness of the frame 120 may refer to the distance between the front-facing surface 102 and the rear-facing surface 104. Further, a “width” of the frame 120 may be used to refer to the distance between the side surfaces 110 and 112, and a “height” of the frame 120 may be used to refer to the distance between the top-facing surface 106 and the bottom-facing surface 108.
The frame 120 includes an aperture or first opening 122 through which a rope and/or cable (not shown in
In some examples, the first opening 122 may be centrally positioned within the frame 120. As such, the first opening 122 may also be referred to herein as central opening 122. Thus, the first opening 122 (e.g., opening 122) may be centered on the central axis X-X.′ The opening 122 may therefore be equidistant from the top-facing surface 106 and the bottom-facing surface 108, and/or may be equidistant from the first side surface 110 and second side surface 112. However, it will be appreciated that in other examples the opening 122 may not be centrally positioned within the frame 120. For example, as shown in the example of
The first opening 122 may be defined at the front-facing surface 102 by a first edge 128 and at the rear-facing surface 104 by a second edge 130. Said another way, the front-facing surface 102 may include the first edge 128, where the first edge 128 defines the cross-sectional area of the opening 122 at the front-facing surface 102. Similarly, the rear-facing surface 104 may include the second edge 130, which defines the cross-sectional area of the opening 122 at the rear-facing surface 104. The first edge 128 may also be referred to herein as first perimeter 128, and second edge 130 may be also be referred to herein as second perimeter 130, as the edges 128 and 130 may define the perimeter of cross-sections of the opening 122 at the front-facing surface 102 and rear-facing surface 104, respectively.
In some examples, such as the example shown in
Thus, the edges 128 and 130 may define the perimeter of the same or similar shape. However, in other examples, the edges 128 and 130 may define the perimeter of different shapes and the cross-sections of the opening 122 at the front-facing surface 102 and rear-facing surface 104 may define different shapes. In the example shown in
A first perimeter of the first edge 128 may be greater than a second perimeter of the second edge 130, and thus, the cross-sectional area of the opening 122 may be greater at the front-facing surface 102 than at the rear-facing surface 104. In this way, the cross-sectional area of the opening 122 may vary from the front-facing surface 102 to the rear-facing surface. In particular, the cross-sectional area of the opening 122 may monotonically decrease from the front-facing surface 102 to the rear-facing surface 104, such as is shown in the example of
However, in other examples, the first perimeter of the first edge 128 may be the same and/or similar to the second perimeter of the second edge 130, and therefore the cross-sectional area of the opening 122 may be approximately the same at the front and rear-facing surfaces 102 and 104, respectively. In such examples, the cross-sectional area of the opening 122 may be relatively constant along the thickness or axis X-X′ of the frame 120 (e.g., when moving from the front-facing surface 102 to the rear-facing surface 104). However, in still further examples, the first perimeter of the first edge 128 may be smaller than the second perimeter of the second edge 130, and therefore the cross-sectional area of the opening 122 may be larger at the rear-facing surface 104 than the front-facing surface 102.
In some examples, such as the example shown in
Similarly, the edge 130 may be flush with the rear-facing surface 104, such as in the example shown in
The fairlead frame 120 may further include one or more bores 132 including a central portion that may extend through an entirety of the frame 120 in the direction of the axis X-X′ and an outer portion surrounding the central portion that extends to the front-facing surface of the bore 132 which may be arranged at the front-facing surface 102. Specifically, the central portion may define smaller cross-sectional area than the outer portion, and the outer portion may extend from the front-facing surface 102 of the frame 120 into the frame 120, up to the central portion. The central portion, may then extend from the outer portion to the rear-facing surface 104 of the frame 120. The transition between the central portion and outer portion may be defined by a step. Thus, the bores 132 may extend from the front-facing surface 102 to the rear-facing surface 104. In the description herein, the bores 132 may also be referred to as mounting apertures 132. As shown in the example of
The fairlead frame 120 may be constructed from one or more metals, metal alloys, and/or plastics. In one example, the fairlead frame 120 may be constructed from aluminum. However, in other examples, the fairlead frame 120 may be constructed from one or more of steel, iron, etc. Further, the fairlead frame 120 may be constructed from a single metal element or alloy. However, in other examples, the fairlead frame 120 may be a composite, constructed from a combination of more than one metal element or alloy.
The frame 120 may further include a second opening 140 configured to house an integrated lighting system comprising a plurality of lights. The integrated lighting system may be a lighting system that is included within the frame 120. Thus, the integrated lighting system may not be coupled to an exterior surface of the frame 120. As such, the lights of the integrated lighting system may be fully included within the frame 120 and may not be positioned external to the frame 120. As shown in the examples of
The second opening 140 may extend through the entirety of the frame 120 from the front-facing surface 102 to the rear-facing surface 104 of the frame 120. However, in other examples, the second opening 140 may extend through only a portion of the frame 120 from the front-facing surface 102. In yet further examples, the second opening 140 may extend from the rear-facing surface 104 through only a portion of the frame 120. In some examples, such as is shown below in the example of
In some examples, cross-sections of the opening 140 may define a rectangular shape. However, the cross-sections of the opening 140 may be shaped differently to define the perimeters of other geometric and non-geometric shapes such as rectangles with rounded corners, ovals, ellipses, circles, etc. In some examples, the cross-sectional area of the opening 140 may be approximately the same throughout the frame 120, when translating from the front-facing surface 102 to the rear-facing surface 104. However, in other examples, the cross-sectional area of the opening 140 may vary from the front-facing surface 102 to the rear-facing surface 104.
Due to the inclusion of the top opening 140, the edges of the side surfaces 110 and 112 may comprise different lengths. For example top edges 148 of the side surfaces 110 and 112 may be longer than side edges 160 and bottom edges 162 of the side surfaces 110 and 112. The frame 120 may also include one or more recesses 158 on the front-facing surface 102.
Continuing to
As shown in
As shown in the example of
Turning now to
Continuing to
Moving on to
The back-loaded lighting system 501 may include in order from the front-facing surface 102 to the rear-facing surface 104 of the frame 120, one or more of a first gasket 5502, lens 504, lights 505, the lights 5505 including a circuit board 5508 and reflectors 506, a second gasket 5510, a circuit board mount 512, and one or more rear-facing lenses 5514. Thus, the first gasket 502 may be may be in face sharing contact with a rear facing inner surface 503 of the opening 140. The lens 504, reflectors 506, and circuit board 508508 may be included within an interior of a body 513 of the mount 512, where the lens may be positioned in front of (e.g., more proximate the front-facing surface 102 of the frame 120 than) the reflectors 506, and the reflectors 506 may be positioned in front of the circuit board 5508. As described above with reference to
In some examples, the lights 505 may be LEDs. Specifically, the circuit board 508 may be a printed circuit board, and may include one or more LED semiconductors or crystal light sources such as gallium phosphide, aluminum gallium arsenide, gallium arsenide phosphide, silicon carbide, silicon, etc. When an electric field (e.g., electric current) is supplied to the circuit board 508, light may be emitted by the semiconductor light sources in what is commonly referred to as electroluminescence. The reflectors 506 may direct the visible light waves generated by the LED semiconductor light sources, and focus them towards the front-facing surface 102 of the frame 120. It will be appreciated that in other examples, lights other than LEDs may be used such as fluorescent, incandescent, high-intensity discharge, etc. Reflectors 506 may include one or more components, as shown in the example of
The first gasket 502 may be in face sharing contact with each of the rear facing inner surface 503 of the second opening 140 of the frame 120, and the lens 504. In particular, the first gasket 502 may be in sealing contact with the rear facing inner surface 503 of the second opening 140, and the lens 504. In this way, the first gasket 502 may provide a seal between the frame 120 and the lens 504. In this way, the gasket 502, lens 504, and body 513 of the mount 512 may provide a seal with respect to the front-facing surface 102 of the frame 120.
However, in other examples, the first gasket 502 may be in face sharing contact with each of the rear facing inner surface 503 and a forward facing outer surface 516 of the body 513 of the circuit board mount 512. Thus, in some examples, the first gasket 502 may be positioned between the mount 512, and the rear facing inner surface 503 of the second opening 140. As such, the gasket 502 may be in sealing contact with the body 513 of the mount 512, and the rear facing inner surface 503 of the second opening 140. However, in other examples, the first gasket 502 may surround the body 513 of the circuit board mount 512. In such examples, the forward facing outer surface 516 of the body 513 may directly contact the rear facing inner surface 503 of the second opening 140.
The forward facing outer surface 516 of the body 513 may be spaced away from an outer flange 515 of the circuit board mount 512. More specifically, the circuit board mount 512, may include the body 513 that extends inwards, into the frame 120, towards the front-facing surface 102, and an outer flange 515 that is in face sharing contact with and physically coupled to the rear-facing surface 104 of the frame 120. The flange 515 may include one or more holes 524 for receiving fasteners such as screws, bolts, etc., for physically coupling the mount 512 to the rear-facing surface 104 of the frame 120. The flange may be raised from the outer surfaces of the body 513, such that the flange 515 has a larger cross-sectional area than the body 513. The forward facing outer surface 516 of the body 513, may be the front end of the mount 512, and thus may be the most inwardly projecting part of the mount 512. The body 513 includes an opening 522 defined by inner surfaces 518 of body 513. Opening 522 may also be referred to herein as mount central opening 522.
The lights 505, including the circuit board 508 and reflectors 506 may be positioned behind the lens 504. The lens 504, and lights 505 may be positioned within the opening 522. In particular, the lights 505 may be fully included within the opening 140 of the frame 120. Thus, no portion of the lights 505 may be positioned exterior to the frame 120, when the lighting system 501 is assembled within the frame 120. Further, the lights 505 may not be coupled to an exterior surface of the frame 120 (e.g., front-facing surface 102 and rear-facing surface 104) and may be coupled to an interior surface (e.g., interior walls of opening 140).
In some examples, the gasket 502 may surround the edges of the lens 504, and thus may form a border around the lens 504. Further, the circuit board 508 may be physically coupled to a rear surface 517 of the mount 512. Specifically, a rear surface 519 of the circuit board 508 may be coupled to an interior of the rear surface 517 of the mount 512. The mount 512 may be closed at the back or rear surface 517. Thus, the mount 512 may be closed at the back edge of the flange 515. However, in other examples, the rear surface 517 may be closed except for one or more cut-outs, sized and shaped to receive one or more rear lenses 514. Thus, the rear lenses 514 may be received within the rear surface 517 of the mount 512, and as such, light from the circuit board 508 may be emitted out the back end of the fairlead 10, from the rear-facing surface 104. By including rear lenses 514, visible light from the lights 505 may be directed backwards towards the structure to which the fairlead 10 may be coupled.
Thus, in some examples, the circuit board 508 may include a plurality of LED semiconductor or crystal light sources on a front surface 521, and a second set of LED semiconductor or crystal light sources on the rear surface 519, the front surface 521 opposite the rear surface 519. The LED semiconductor or crystal light sources on the front surface 521 may propagate light towards the front-facing surface 102, and out of the frame 120 via the lens 504. Similarly, the LED semiconductor or crystal light sources on the rear surface 519 of the circuit board 508 may propagate light towards the rear-facing surface 104, and out of the frame 120 via the rear lenses 514. Thus, the first set of LED semiconductor or crystal light sources on the front surface 521, and second set of LED semiconductor or crystal light sources on the rear surface 519 may propagate light in approximately opposite directions. Circuit board 508 may be disposed within the second opening 140 and outer edges of the circuit board 508 may be in face sharing contact with inner walls (e.g., inner surfaces 518) of the frame which form the second opening 140. The plurality of lights may comprise the circuit board and a plurality of reflectors, the circuit board including a first set of LED semiconductor light sources (e.g., lights and reflectors 506) on a front first surface 521 and a second set of LED semiconductor light sources (e.g., rear lenses 514) on a rear second surface, the rear second surface of the circuit board opposite the front first surface of the circuit board 508. In other words the circuit board 508 further includes a second set of LED semiconductor light sources on a rear second surface, the rear second surface of the circuit board 508 opposite the front first surface 521 of the circuit board 508, and where light generated by the second set of LED semiconductors passes through the rear-facing lenses 514 and out of the rear-facing surface of the frame 104. In this way, rear lenses 514 may serve to provide aesthetically pleasing backlighting of the fairlead.
In some examples, when the integrated lighting system 501 is assembled within the opening 140, and the mount 512 is coupled to the frame 120, the rear surface 517 of the mount 512 may be approximately flush with the rear-facing surface 104 of the frame 120. However, in other examples, the rear surface 517 may be raised or recessed relative to the rear-facing surface 104 of the frame 120. The circuit board 508 may be disposed within the mount central opening 522 in front of the rear surface 517 of the mount 512. Further, when the lighting system 501 is assembled within the opening, and the mount 512 is coupled to the frame 120, outer edges of the circuit board 508 may be in face sharing contact with inner surfaces 518 of the circuit board mount 512. The mount 512 may comprise a thermally conductive material such as a metal. By positioning the circuit board 508 in face sharing contact with the mount 512, heat may be dissipated from the circuit board, through the mount 512, and into the frame 120, via conduction. Thus, an amount of heat dissipated from the circuit board 508 may be increased by positioning the circuit board 508 in contact with thermally conductive materials of the mount 512 and/or frame 120.
The reflectors 506 may be mounted within the mount central opening 522 of the circuit board mount 512, in front of the circuit board 508, with respect to the front-facing surface 102 of the frame 120. In some examples, the plurality of reflectors 506 surround the plurality of LED semiconductor materials included on the circuit board 508. In particular, the reflectors 506 and LED semiconductor materials of the circuit board 508 may be arranged in a line along the second opening 140. Thus, the lights 505 may be arranged along a line parallel to the lateral axis 154 across the opening 140. However, in other examples, the reflectors 506 and LED semiconductor materials of the circuit board 508 may be arranged in another manner within the opening 140 such as in a grid, array, columns, rows, or other patterns.
The second gasket 510 may be positioned around a perimeter of the outer surface of the body 513 of the circuit board mount 512. Further, the second gasket 510 may be positioned between and/or in face sharing contact with each of a forward facing surface 526 of the outer flange 515 and the rear-facing surface 104 of the frame 120, around the second opening 140. Thus, the second gasket 510 may surround the body 513, and may be in sealing contact with the body 513 and rear-facing inner surface 503 of the second opening 140. In this way, the second gasket 510 may provide a seal between the rear-facing surface 104 of the frame 120, and the mount 512.
Turning now to
Focusing now on
As such, opening 640 (which may be similar to 140 described above with reference to
The bezel 602 may be physically secured to the front via fasteners such as bolts, screws, etc. As such, the bezel 602 may include a plurality of holes 604 positioned proximate a perimeter of the bezel 602 for receiving the fasteners.
Moving on to
In the example shown in
Further, the opening 640 of the frame 620 may include a central opening portion 716 and a lip portion 714. As shown in the example of
The cross-section of the opening 640 may be greater at the forward slot portion 724, than at the lip portion 714 and central opening portion 716. The forward slot portion 724 may be positioned more proximate the front-facing surface 609 than the lip portion 714 and central opening portion 716, where the lip portion 714 may be positioned more proximate the front-facing surface 609 than the central opening portion 716. In the description herein, forward slot portion 724 may also be referred to as first portion 724, lip portion 714 may be referred to herein as second portion 714, and central opening portion 716 may be referred to as third portion 716. Thus, the cross-sectional area of the opening 640 may monotonically decrease when translating from the front-facing surface 609 to the rear-facing surface 730, where the cross-sectional area of the opening 640 may be defined by the first portion 724, second portion 714, and third portion 716.
The front-loaded lighting system 601 may include in order from the front-facing surface 609 to the rear-facing surface 730 of the frame 620, one or more of the bezel 602, a gasket 732, lens 734, lights 735, the lights 735 including a circuit board 738 and reflectors 736, and one or more rear lenses 712. The circuit board 738 may be the same or similar to circuit board 508 described above with reference to
The lights 735 may be fully included within the opening 640 of the frame 620. Thus, no portion of the lights 735 may be positioned exterior to the frame 620, when the lighting system 601 is assembled within the frame 620. Further, the lights 735 may not be coupled to an exterior surface of the frame 620 (e.g., front-facing surface 609 and rear-facing surface 730) and may be coupled to an interior surface (e.g., interior walls of opening 640).
Further, the reflectors 736 and LED semiconductor materials of the circuit board 738 may be arranged in a line along the second opening 640. Thus, in some examples, the lights 735 may be arranged along a line parallel to the lateral axis 154 extending across the opening 640. However, in other examples, the reflectors 736 and LED semiconductor materials of the circuit board 738 may be arranged in another manner within the opening 640 such as in a grid, array, columns, rows, or other patterns.
In some examples, the circuit board 738 may be in face-sharing contact with the interior back surface 718 of the frame 620. Specifically, the rear surface 719 of the circuit board 738 may be in face-sharing contact with the back surface 718 of the frame 620. Additionally or alternatively, outer edges of the circuit board 738 may be in face-sharing contact with interior walls of the frame 620 in the opening 640. Specifically, the circuit board 738 may be positioned within the central opening portion 716 of the opening 640 of the frame 620, and thus may physically contact the interior walls of the frame 620 at the central opening portion 716 of the opening 640 via the outer edges of the circuit board 738. By positioning the circuit board 738 in face sharing contact with the frame 620, heat may be dissipated from the circuit board 738 directly into the frame 620, via conduction. Thus, an amount of heat dissipated from the circuit board 738 may be increased by positioning the circuit board 738 in contact with the thermally conductive frame 620.
The rear lenses 712 may be positioned within the cut-outs 720 on the back of the frame 620, and in some examples, may be flush with the rear-facing surface 730 of the frame 620. Further, the rear lenses 712 may be flush with the interior back surface 718 of the opening 640. In this way, objects behind the fairlead 650 may be illuminated by powering on the lights 735. Additional cut-outs 722 may be provided to accept wiring harness 702.
As described above with reference to
In some examples, outer edges of the gasket 732 may physically contact inner edges of the lip portion 714 of the opening 140. In such examples, the gasket 732 may be positioned in the opening 140 at the lip portion 714 and may physically contact a front-facing surface of the central opening portion 716. Thus, the gasket 732 may abut the central opening portion 716. In this way, a front-facing surface of the gasket 732 may physically contact a rear surface 743 of the bezel, and the rear-facing surface of the gasket 732, opposite the front-facing surface may physically contact the front-facing surface of the central opening portion 716.
However, in other examples, the gasket 732 may be positioned within the central opening portion 716, and outer edges of the gasket 732 may physically contact inner surfaces of the central opening portion 716 of the opening 140. In such examples, a front-facing surface of the gasket 732 may physically contact a rear surface 743 of the bezel 602, and the rear-facing surface of the gasket 732, opposite the front-facing surface may physically contact the lens 734.
In yet further examples, the gasket 732 may be positioned in the first portion 724 between the lip portion 714 and the bezel 602. Thus, in such examples, the gasket 732 may abut the lip portion 714. In this way, a front-facing surface of the gasket 732 may physically contact the rear surface 743 of the bezel 602, and the rear-facing surface of the gasket 732, opposite the front-facing surface may physically contact the front-facing surface of the lip portion 714.
In examples, where the gasket 732 is not positioned between the bezel 602 and the lip portion 714, the rear surface 743 of the bezel 602 may physically contact the front-facing surfaces of the lip portion 714 of the opening 140. Thus, the front surface 603, opposite the rear surface 743, may be flush with the front-facing surface 102 of the frame 120. The bezel 602 may therefore extend into the opening 140 along the first portion 724. Thus, the bezel 602 may fit within the first portion 724 of the opening 140, and may physically contact the front-facing surfaces of the lip portion 714. In some examples, the front-facing surface of the lip portion 714 and/or front-facing surfaces of the central opening portion 716 may be parallel to the front-facing surface 102 of the frame 120.
The lip portion 714, may further include one or more grooves 715 along the inner edges, for receiving the fasteners 606. Further, the central opening portion 716 may include one or more holes 717 on a front-facing surface of the central opening portion 716 for receiving the fasteners 606. The fasteners 606 may extend past the grooves 715 and into the holes 717 to physically couple the bezel 602 to the frame 120, and thereby retain the components of the integrated lighting system 1001 within the frame 120.
Turning now to
In the example of
The rollers 802 and 804 may rotate about respective rotational axes. The second rollers 804 may be positioned parallel to one another such that their rotational axes are parallel to one another. Further, the rollers 804 may be spaced a distance apart from one another. In particular, the rollers 804 may be spaced vertically away from one another, such that one of the rollers 804 is positioned vertically above the other. Thus, the distance between the rollers 804 may define the height of the opening 822. Similarly, the first rollers 802 may be positioned parallel to one another such that their rotational axes are parallel to one another. Further, the rollers 802 may be spaced a distance apart from one another. In particular, one of the rollers 802 may be positioned proximate the first side 810, while the other one of the rollers 802 may be positioned proximate the second side 814. The distance between the rollers 802 may define the height of the opening 822. Similarly, the distance between the rollers 804 may define a width of the opening 822.
Thus, the perimeter or cross-sectional area of the opening 822 may be the area defined between the rollers 802 and 804. A rope and/or cable may extend through the opening 822 between the rollers 802 and 804. The rope and/or cable may contact the surfaces of the rollers 802 and 804, and as the rope moves through the frame substantially along the axis X-X,′ the rollers 802 and/or 804 may rotate.
The second opening 840 may be included in the frame 820 above the first opening 822 and rollers 802 and 804. The second opening 840 may house an integrated lighting system, such as either of the integrated lighting systems 501 and 601 described above with reference to
As described above with reference to
Turning now to
Turning now to
Fairlead 1050 includes four rollers: a pair of first rollers 1002, and a pair of second rollers 1004. The second rollers 1004 may be shorter than the first rollers 1002 as depicted in the example of
The distance between the rollers 1002 may define the height of the first opening 1022. Similarly, the distance between the rollers 1004 may define a width of the first opening 1022. Thus, the perimeter or cross-sectional area of the first opening 1022 may be the area defined between the rollers 1002 and 1004. A rope and/or cable may extend through the first opening 1022 between the rollers 1002 and 1004. The rope and/or cable may contact the surfaces of the rollers 1002 and 1004, and as the rope moves through the frame substantially along an axis, similar to the X-X′ axis shown in
The second opening 1040 may be included in the upper frame 1020 above the first opening 1022 and rollers 1002 and 1004. The second opening 1040 may house an integrated lighting system, such as the front-loaded integrated light system 601 described above with reference to
Turning now to
Turning now to
Turning now to
Turning now to
Turning now to
Vehicle 1530 may include a vehicle controller 1560. Vehicle controller may be coupled to a controller (e.g., lighting controller) 1540 via a vehicle network, such as a Controller Area Network (CAN) 1580. The controller 1540 may be positioned on or near the bumper 1502. In one embodiment, the controller 1540 may be a winch controller and located within/on the winch 1506. In other examples, controller 1540 may be separate from the winch controller. A user input device (e.g., control device 1570) may be mounted inside the vehicle 1530 such as on the dashboard, handlebars, roll bars, or another vehicle location, and provide control signals to the controller 1540 and receive feedback signals from the controller 1540. In another example, the control device 1570 may be a wireless remote or another type of wireless user interface that is located remote from the winch and lighting system of the fairlead. It will also be noted that the controller 1540 may communicate either wirelessly, via CAN 1580, or through a wired electrical connection with vehicle controller 1560.
As described above, power to the integrated light system may come from a winch 1506 power system, the winch 1506 receiving its power from an external power source such as a vehicle battery or auxiliary battery. The controller may provide control signals to the vehicle controller 1560, which may supply current from the vehicle battery (not shown) to the integrated lighting system and/or to the winch 1506.
The controller may further include a microcontroller unit (MCU) with memory containing programmable data (e.g., instructions) for operating the integrated light system and/or winch components and other auxiliary systems. For example, the controller 1540 may provide control signals to the integrated light system for controlling operating of the integrated light system, and the integrated light system may provide feedback signals to the MCU of the controller 1540. Further, the controller 1540 may provide an electrical connection between the vehicle battery and the integrated light system through the associated control inputs.
As introduced above, the controller 1540 may be in communication with the vehicle Controller Area Network (CAN) bus 1580 for providing communication between the controller 1540 and a vehicle controller 1560. The CAN bus 1580 may exchange information using a scheduled periodic rate. Specifically, the controller 1540 may include a CAN module, electrically coupled to the MCU, for providing electronic communication between the controller 1540 and the CAN bus 1580. The CAN module may convert signals received from the MCU, into a CAN data stream, which may then be transmitted to the vehicle controller 1560 via the CAN bus. Likewise, the CAN module may convert and relay the CAN data stream received from the vehicle controller 1560 into an electrical signal interpretable by the MCU. CAN bus may therefore provide electronic communication between the vehicle controller 1560, and the CAN module.
By connecting the controller to the CAN bus, operation of the integrated light system 1101 and/or winch 1506 may be adjusted based on a model of a vehicle to which the integrated light system and winch 1506 is coupled and/or based on vehicle operating parameters. For example, the integrated light system 1101 may be powered on responsive to an indication from the controller 1540 that the winch 1506 is in operation. In another example, backlighting (e.g., “running lights”) may be illuminated responsive to an indication from vehicle controller 1560 that the vehicle engine is operating. In further examples, an operator may send an indication of a desire to change the illumination levels, illumination color, or the aim of the integrated lighting system 1101. The controller 1540 will send a signal to the integrated light system to adjust operation of the integrated light system to meet these demands. Further, operation of the integrated light system 1101 may be adjusted based on vehicle and winch operating parameters such as any one or more of winch speed, vehicle speed, vehicle incline, steering angle, engine temperature, brake pressure, engine load, charge state of the battery, and current and/or voltage output from the battery, etc. Additionally, operating of the integrated lighting system 1101 may be adjusted based on environmental conditions such as an indication of ambient light. In one example, the integrated light system 1101, including backlighting, may be illuminated responsive to an indication of a level of ambient light from a photo diode or light sensor (not shown). Therein, responsive to a vehicle controller 1560 receiving an indication of ambient light below a threshold, the vehicle controller 1560 may send a signal to the controller 1540 to actuate the integrated light system in order to illuminate one or more lights of the integrated light system. In other examples, automatic control of the integrated light system 1101 may be responsive to indications of a vehicle engine running condition, ambient light thresholds, winch operation condition, or an off-road condition indication.
Optionally or additionally, fairlead 1150 may include a switch 1538 coupled to the frame of the fairlead. Switch 1538 may be any suitable switch (e.g., toggle, button) that may be used to control the operation of the integrated light system. The switch may be used to send a signal to deliver power to the integrated light system and illuminate lights coupled to the integrated light system. It will be appreciated that the switch 1538 may also be coupled to the bumper, winch, a vehicle dashboard or other suitable location. Thus, a vehicle operator may adjust the operating of the integrated light system 1101 by manipulating a dashboard switch on a dashboard of the vehicle. In one embodiment, the communication between the controller 1540 and the control device 1570 may be performed by a wired connection from the control device 1570 to the integrated light system, and in another embodiment this connection could be wireless.
The control device 1570 may also include a microcontroller unit (MCU) for generating control signals to be sent to the integrated light system 1101 and/or winch 1506. The MCU may contain programmable data (e.g., stored on a memory of the MCU) for processing inputs received from one or more of a display (not shown) and input buttons (not shown) of the user input control device 1570. The MCU may then send signals corresponding to the received inputs to the MCU of the controller 1540, which may in turn accordingly adjust operation of the integrated light system and/or winch and/or accessories. Additionally, the control device 1570 may include a power management module (not shown) which may be electrically coupled to the vehicle battery (not shown). However, in another example, the control device 1570 may include its own dedicated battery (now shown), which may be coupled to the power management module for providing electrical power to the control device 1570. Thus, in some examples, the power management module may be not be coupled to the vehicle battery and may draw electrical power from the dedicated battery. In such examples, the control device may be wirelessly connected to the controller 1540
Turning now to
In one example, the control device 1670 may be a wireless remote control device for controlling the lighting system which may include a first button that is dedicated to control the power to the light system (e.g., an on/off switch). The wireless remote may include a second button dedicated to control a lighting level of the lighting system (e.g., a high beam or low beam condition). A high beam condition may be suitable for use in low-light or night time conditions. A low beam condition may be suitable for use in a daytime condition or for aesthetic effect. The control device may include a third button configured for adjusting the aim of the lighting system. In one example, an operator may wish to aim the lights downward to illuminate the area immediately to the front of a vehicle (not shown). In other examples, the operator may wish to direct illumination from the lighting system to an elevated focal point, toward a horizon or skyward, for example. It will be appreciated that for embodiments that include more than one lighting segment, individual lighting segments may be controlled collectively or individually. In one example, a lighting segment located above opening 122 may be aimed in a first direction, while a lighting segment located below opening 122 may be aimed in a second direction, the first direction different than the second direction. In alternate embodiments, control device may include a single toggle button for controlling operating conditions of the integrated light system 1601, or control device 1670 may include a touchscreen display via which an operator may select different options, functions, and operating modes of the lighting system 1601.
According to a further aspect of the present disclosure, the wireless remote can be downloaded with software or data through a data connection to a programming module or computer. The wireless remote can have its software and data modified through a connection to the computer or a programming module. The control device may be powered by a rechargeable battery connected through a plug on a body of the control device.
According to a further aspect of the present disclosure, the controller 1540 may be configured to distribute vehicle battery power to the control device and lighting system and may be capable of updating the winch controller through wireless communication, and communicate through a secured and encrypted wireless communication protocol.
Turning now to
Thus, a fairlead may include an integrated lighting system. The integrated lighting system may be included within the fairlead frame, and may project light from the fairlead frame in more than one direction. Specifically, the integrated lighting system may project light in opposite directions, out the front and back of the fairlead. In this way, a technical effect of increasing ease of attachment, inspection, and operation of the fairlead is achieved by providing lighting to the rear of the fairlead. Further by integrating the lighting system within the frame, the complexity of the fairlead system may be reduced, and the structural integrity of the system may be increased relative to systems where the lights are coupled to an external surface of the fairlead or external to the fairlead frame.
Further, the lighting system may comprise LED lights, where LED semiconductor or crystal light sources may be included on a circuit board, and may generate visible light in response to a generated electric field. The circuit board may be in face-sharing contact with the fairlead frame. By positioned the circuit board in face-sharing contact with the fairlead frame, a technical effect of increasing heat dissipation from the circuit board is achieved. In this way, heat degradation to the lights and circuit board may be reduced, and the maximum operating duration of the lights may be increased.
As one embodiment, a fairlead comprises: a frame including a central, first opening and a second opening spaced away from the first opening; and a lighting system included within the frame, the lighting system comprising a plurality of lights disposed within and extending along the second opening. In one example, the second opening is positioned adjacent to the first opening. In another example, the second opening is positioned vertically above the first opening. In yet another example, the second opening is positioned to a side of the first opening.
In a first example, the lighting system is integrated with the frame and the first opening extends through an entirety of the frame from a front-facing surface to a rear-facing surface of the frame, where the front-facing surface and rear-facing surface are in parallel with one another, and wherein the first opening is defined by a first perimeter at the front-facing surface and a second perimeter at the rear-facing surface, where the first perimeter is larger than the second perimeter and wherein the first opening has a continuous curved surface that curves outward from the second perimeter to the first perimeter. For example, the second opening extends through the entirety of the frame from the front-facing surface to the rear-facing surface of the frame and the second opening has a second length that is shorter than a first length of the second perimeter of the first opening. The fairlead may further comprise a circuit board mount including an outer flange directly coupled to the rear-facing surface of the frame and a body extending outward from the outer flange and into the second opening of the frame, toward the front-facing surface of the frame, wherein an inner surface of the body forms a mount central opening. In one example, the circuit board is disposed within the mount central opening and outer edges of the circuit board are in face sharing contact with the inner surface of the body of the circuit board mount. The fairlead may further comprise a wire harness directly and electrically coupled to the circuit board and extending outward from the circuit board in a direction away from the rear-facing surface of the frame. Further, the plurality of lights may be LED lights, where the lights comprise the circuit board and a plurality of reflectors, the circuit board including a first set of LED semiconductor light sources on a front first surface, and where the plurality of reflectors are mounted within the mount central opening in front of the circuit board with respect to the front-facing surface of the frame. The fairlead may further comprise a lens positioned in front of the plurality of lights relative to the front-facing surface of the frame and further comprising a first gasket positioned between and in face sharing contact with each of a rear facing inner surface of the second opening of the frame and a forward facing outer surface of the lens. In one example, the first gasket is positioned between and in face sharing contact with each of the rear facing inner surface of the second opening of the frame and a forward facing outer surface of the body of the circuit board mount, where the forward facing outer surface of the body is spaced away from the outer flange of the circuit board mount. The fairlead may further comprise a second gasket positioned around a perimeter of an outer surface of the body of the circuit board mount, where the second gasket is further positioned between and in face sharing contact with each of a forward facing surface of the outer flange and the rear-facing surface of the frame, around the second opening. The fairlead may further comprise a plurality of rear-facing lenses, and where the circuit board further includes a second set of LED semiconductor light sources on a rear second surface, the rear second surface of the circuit board opposite the front first surface of the circuit board, and where light generated by the second set of LED semiconductors passes through the rear-facing lenses and out of the rear-facing surface of the frame.
In a second example, the lighting system is integrated with the frame, where the first opening extends through an entirety of the frame from a front-facing surface to a rear-facing surface of the frame, where the front-facing surface and rear-facing surface are in parallel with one another, where the second opening extends into the frame from the front-facing surface, and where the rear-facing surface of the frame covers the second opening at the rear-facing surface of the frame, defining a back of the second opening. In one example, a circuit board is disposed within the second opening and outer edges of the circuit board are in face sharing contact with inner walls of the frame which form the second opening, wherein the plurality of lights comprise the circuit board and a plurality of reflectors, the circuit board including a first set of LED semiconductor light sources on a front first surface and a second set of LED semiconductor light sources on a rear second surface, the rear second surface of the circuit board opposite the front first surface of the circuit board. In another example, the rear second surface of the circuit board is in face-sharing contact with the frame at an interior surface of the back of the second opening. In yet another example, the second opening includes a central opening portion, a lip portion, and a forward slot portion, where the central opening portion extends from a back of the second opening up to the lip portion, and where the lip portion extends from the central opening portion up to the forward slot portion, and where the forward slot portion extends from the lip portion up to a front-facing surface of the frame, and where a cross-sectional area of the forward slot portion is greater than that of the lip portion, and where a cross-sectional area of the lip portion is greater than that of the central opening portion, and where the transition between the portions comprises a step. The fairlead may further comprise a bezel coupled to the second opening and forming a portion of the front-facing surface of the frame and further comprising a gasket positioned directly between a lens and the bezel.
As another embodiment, a fairlead comprises a frame including a first opening and a second opening, the first and second openings extending through an entirety of the frame from a front-facing surface of the frame to a rear-facing surface of the frame, where the second opening is positioned vertically above the first opening; and a lighting system included within the second opening, the lighting system comprising a plurality of lights and a mount, the mount coupled to the rear-facing surface of the frame. In one example, the mount includes an outer flange directly coupled to the rear-facing surface of the frame and a body extending outward from the outer flange and into the second opening of the frame, toward the front-facing surface of the frame, where an inner surface of the body forms a mount central opening and further comprising a circuit board disposed within the mount central opening, where outer edges of the circuit board are in face sharing contact with the inner surface of the body of the mount.
As yet another embodiment, a fairlead comprises: a frame including a first opening extending through an entirety of the frame from a front-facing surface of the frame to a rear-facing surface of the frame, and a second opening disposed above the first opening, the second opening extending only partially through the frame from the front-facing surface; and a lighting system included within the second opening, the lighting system comprising a plurality of lights and a bezel, the bezel coupled to the front-facing surface of the frame. In one example, the second opening includes a central opening portion, a lip portion, and a forward slot portion, where the central opening portion extends from a back of the second opening up to the lip portion, where the lip portion extends from the central opening portion up to the forward slot portion, and where the forward slot portion extends from the lip portion up to the front-facing surface of the frame, and wherein the bezel is directly mounted to front-facing walls of the lip portion which are arranged in parallel with the front-facing surface of the frame.
In another representation, a system for a vehicle comprises: a vehicle bumper including a front-facing outer (e.g., front) surface, the vehicle bumper positioned at a front-end (e.g., front) of the vehicle; a winch positioned within the bumper, behind and covered by the front-facing outer surface, the winch including a fairlead mounted to (or coupled to the bumper in front of) a front of the winch and positioned forward of the front-facing outer surface; and a lighting system coupled with the fairlead, where the lighting system and the fairlead are visible from front-end of the vehicle. In one example, the lighting system is integrated with and included within a frame of the fairlead. In another example, the lighting system is mounted directly to a forward-facing surface of a frame of the fairlead. In yet another example, the lighting system is coupled (e.g., sandwiched) between the vehicle bumper and the fairlead via a mounting bracket. For example, the mounting bracket may be positioned between a rear-facing surface of the fairlead and vehicle bumper and the lighting system may be positioned vertically above a central opening of the fairlead that is adapted to receive a rope. For example, the lighting system may be positioned vertically above a top surface of the frame, the top surface arranged perpendicular to the forward-facing surface, via the mounting bracket.
In yet another representation, a fairlead assembly comprises: a fairlead including a frame, the frame including a central, first opening adapted to receive a rope; and a lighting system coupled with the frame and including a light source. In one example, the lighting system is directly mounted to the frame. In another example, the lighting system is included within a housing (e.g., upper frame) and the housing is directly mounted to a top of the frame, above the first opening. In yet another example, the lighting system is included within a housing and the housing is coupled to a mounting bracket and the mounting bracket is directly coupled to a rear-facing surface of the frame of the fairlead. For example, the mounting bracket may extend above a top surface of the frame and the lighting system may be positioned above the top surface of the frame and the first opening. In another example, the light source includes a plurality of lights. In yet another example, the frame includes at least one second opening and the lighting system is integrated within the at least one second opening of the frame. In still another example, the frame includes a plurality of second openings (or a second opening segmented into a plurality of openings and corresponding light segments) and the lighting system is integrated within the plurality of second openings. As one example, power (e.g., a power cable or wiring harness) to the light source of the lighting system is routed through the frame of the fairlead. In another example, power to the light source of the lighting system is coupled to the frame. The fairlead assembly may further comprise a second, backlight lighting system. In one example, the light source of the lighting system is a forward-facing light source and the backlight lighting system includes at least one backlight. As one example, the at least one backlight is an LED light source. As another example, the at least one backlight is a colored light. As yet another example, the at least one backlight is a colored light and the forward-facing light source of the lighting system is a white light. In another example, an angle of the light source of the lighting system, relative to the frame, is adjustable. In yet another example, the light source includes a plurality of lights and angled of each light of the plurality of lights is adjustable relative to the frame and other lights of the plurality of lights.
In still another representation, a fairlead comprises: a fairlead including a frame, the frame including a central, first opening adapted to receive a rope and a plurality of second openings, each of the plurality of second openings arranged adjacent to the first opening; and a lighting system included within the frame, the lighting system comprising a plurality of lights disposed within the plurality of second openings.
In another representation, a system comprises: a fairlead of a winch, the fairlead including a frame and a lighting system integrated within the frame, where the frame includes a central, first opening adapted to receive a rope and a second opening arranged separate from the first opening, where the lighting system is disposed within the second opening; and a controller electronically coupled with the lighting source and in electronic communication with a control device, where the controller includes memory with instructions for controlling the lighting source based on control signals received from the control device. In one example, the control device is one or more of a remote control device and a vehicle controller of a vehicle to which the winch is attached, where the vehicle controller is in communication with the controller via a vehicle control network of the vehicle. In another example, the controller is coupled to a power source of the winch. In yet another example, the controller is a controller of the winch (e.g., winch controller) and the controller is coupled to a vehicle power source.
In yet other representations, the integrated lighting system may be both front-loaded and back-loaded, where some of the components of the lighting system may be loaded from the front of the fairlead frame, while other components may be loaded from the back of the fairlead frame.
It will be appreciated that the configurations disclosed herein are exemplary in nature, and that these specific embodiments are not to be considered in a limiting sense, because numerous variations are possible. The subject matter of the present disclosure includes all novel and non-obvious combinations and sub-combinations of the various systems and configurations, and other features, functions, and/or properties disclosed herein.
The following claims particularly point out certain combinations and sub-combinations regarded as novel and non-obvious. These claims may refer to “an” element or “a first” element or the equivalent thereof. Such claims should be understood to include incorporation of one or more such elements, neither requiring nor excluding two or more such elements. Other combinations and sub-combinations of the disclosed features, functions, elements, and/or properties may be claimed through amendment of the present claims or through presentation of new claims in this or a related application. Such claims, whether broader, narrower, equal, or different in scope to the original claims, also are regarded as included within the subject matter of the present disclosure.
The present application claims priority to U.S. Provisional Patent Application No. 62/331,558, entitled “A Fairlead with a Lighting System,” filed on May 4, 2016, the entire contents of which are hereby incorporated by reference for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
20160131322 | Chen | May 2016 | A1 |
Number | Date | Country | |
---|---|---|---|
20170321851 A1 | Nov 2017 | US |
Number | Date | Country | |
---|---|---|---|
62331558 | May 2016 | US |