The invention relates to a displaceable platform in an elevator installation with a fall prevention device and to a method for securing a displaceable platform in an elevator installation.
The elevator installation is usually installed in a building. For that purpose, the building includes a shaft which extends over several floors of the building. The elevator installation comprises at least one elevator car. The elevator car is moved by means of a drive along substantially vertical guide rails in the shaft. In the case of high buildings, lower regions of the building are already equipped with elevators while upper regions of the building are still under construction. In that case, use is made of special so-called concomitant-growth elevators. This means that during the construction time of the building an engine room of the elevator installation is displaced from a lower temporary use position to a next upper use position. The engine room is designed as a displaceable platform. In that case it is particularly important for the displaceable engine room or the displaceable platform to be safe during the displacement and not able to fall down.
A method is known from the publication WO 2012/072860 with regard to how an engine room of that kind can be displaced. In that respect, the displaceable engine room is secured, during displacement, by means of arresting devices from falling down. The arresting devices are in that case urged by springs into a blocking position. In this blocking position the arresting devices block downward movement and enable upward movement.
A temporary work platform, which is secured by means of a locking mechanism against falling down, is known from publication JP 2013-112500.
A further installation platform is known from the publication KR 2002-078342. In that case, a first brake device is activated by way of a pedal and a second brake device is activated by speed monitoring means.
The invention has the object of providing an alternative fall prevention device at a displaceable platform of an elevator installation and a corresponding method for securing a displaceable platform in a shaft of an elevator installation. The fall prevention device shall be simple to operate and safe.
The displaceable platform is installed in the shaft of the elevator installation and is usually supported and held by deposit devices such as supports or rests at a wall of the shaft or in recesses in the wall of the shaft. The displaceable platform includes, for example, engine room equipment or the displaceable platform forms the engine room. The displaceable platform can obviously also be used for receiving or transporting other elevator components. At least one closure roof is usually disposed above the displaceable platform, at the end of the respective section of construction. The building can undergo further construction above the closure roof while an elevator is already in operation below the displaceable platform. The displaceable platform is preferably guided along vertically oriented guide rails. These guide rails are fastened in the shaft and are provided for guidance of an elevator car of the elevator.
As soon as construction of a next-higher travel region in the building is finished, the guide rails can be installed by connection with the already-installed guide rails in the shaft. Further elevator components such as shaft doors, information transmitters, electrical wiring, etc., can be mounted. When the next-higher travel region is ready, the displaceable platform can be displaced so that this next-higher travel region or a corresponding part of the building can also be utilized by the elevator. Since the building is constructed from the bottom to the top, the displaceable platform is thus usually displaced from a lower temporary use position to an upper use position. The displacement of the displaceable platform to the upper use position is usually carried out by way of lifting means, for example by way of a chain block, crane, traction winch, hydraulic hoist or cable hoist. The displaceable platform or the displaceable engine room can obviously be displaced upwardly several times until reaching an uppermost use position or the final use position. The hoist for displacing the displaceable platform can act directly on the displaceable platform or can act on the displaceable platform by way of deflection means or by way of suspensions similarly to a block-and-tackle.
The displaceable platform is equipped, in accordance with the proposal, with a fall prevention device. The fall prevention device comprises on the one hand an arresting device, which is arranged at the displaceable platform and which can be brought into engagement with the guide rail, for example by means of an actuating device, when required. A safety component is preferably arranged along a displacement path of the displaceable platform. A locking mechanism arranged at the displaceable platform is in that case engaged with the safety component and the locking mechanism is connected at least indirectly with the arresting device. The locking mechanism is constructed so that it blocks or at least can block downward movement of the locking mechanism along the safety component. As a result, corresponding locking of the locking mechanism at the safety component takes place in the event of possible downward movement of the displaceable platform. As a consequence thereof a relative movement of the locking mechanism with respect to the displaceable platform occurs. The locking mechanism is in that regard so connected with the arresting device that in the case of relative movement of the locking mechanism with respect to the displaceable platform it brings the arresting device from a rest position into engagement with the guide rail. The locking mechanism together with the safety component forms the actuating device.
The displaceable platform can thus be displaced upwardly and in the case of unintended downward movement of the displaceable platform the arresting device is quickly and directly actuated at the displaceable platform. The displaceable platform is thus braked or stopped at the guide rails. In that case, use can be made of known arresting devices such as are also used for the braking of elevator cars.
The displaceable platform preferably has at least one suspension point with appropriate suspension means at which the car can be suspended when required so that the displaceable platform is displaceable together with the suspended car. In addition, an intermediate linkage, which connects a safety brake system—present in any case—of the car with the coupling linkage of the fall prevention device, is preferably provided. The safety brake system of the car is thus able to be actuated or brought into engagement with the guide rail substantially simultaneously with or even slightly ahead of the arresting device arranged at the displaceable platform. This is advantageous, since the arresting device of the displaceable platform or of the engine room can thereby be relieved of load.
The displaceable platform is preferably arranged to be vertically displaceable along mutually parallelly extending guide rails and the displaceable platform comprises at least two arresting devices. Each of the arresting devices co-operates with a respective one of the parallelly extending guide rails. The locking mechanism advantageously acts on the at least two arresting devices by way of a coupling linkage. The displaceable platform during an arresting process or during braking by the fall prevention device is thus symmetrically loaded and tipping moments can be kept small. Obviously, in the case of heavy displaceable platforms several pairs of arresting devices can also be connected together by way of the coupling linkage. In addition, several guide rails with several pairs of arresting devices can be used. Thus, for example, guide rails provided for later guidance of the elevator car and guide rails provided for later guidance of a counterweight can be used in order to guide and secure the displaceable platform. The several arresting devices for securing the displaceable platform can in that case be distributed to several guide rails. The several arresting devices are then connected together by way of the coupling linkage so that they are actuated synchronously.
The at least two arresting devices are preferably connected together by means of a connecting linkage so that they are actuable substantially together. The connecting linkage is in turn controlled by the coupling linkage. Controlled in this connection defines that the coupling linkage is coupled with the connecting linkage in such a way that actuation of the coupling linkage is transmitted to the connecting linkage. Alternatively, a connection of the at least two arresting devices by means of a cable pull or if need be also by means of electrical trigger means is obviously also possible. However, the connecting linkage is advantageous to produce and safe in use.
The coupling linkage preferably provides a translation which translates the relative movement between locking mechanism and displaceable platform so that an actuating travel until engagement of the arresting device with the guide rail is shortened. This is advantageous, since the travel path until possible standstill of the displaceable platform can be kept small.
Preferably, the coupling linkage is held in a standby position by means of a restoring spring. The standby position of the coupling linkage corresponds with the rest position of the arresting device, i.e. the displaceable platform is freely movable in upward direction and the arresting device is not in engagement with the guide rail. This is advantageous, since the displaceable platform is not blocked as a consequence of small vibrations.
The coupling linkage preferably includes stroke adjusting means and this stroke adjusting means can adjust the rest position of the arresting device. Thus, a required actuation travel from the rest position of the arresting device until engagement of the arresting device with the guide rail can be preset as required. This is advantageous, since response sensitivity of the fall prevention device can thereby be selectively set. Thus, for example, in the case of fine positioning in the upper use position the stroke adjustment can be set to coarse so as to enable slight lowering of the displaceable platform, whereas for displacement of the displaceable platform the stroke adjustment can be set to sensitive. Possible slipping down of the displaceable platform is thus rapidly stopped. Stroke adjustment to coarse in that case means that a longer actuating travel from the rest position of the arresting device until engagement of the arresting device for the guide rail is set. Stroke adjustment to sensitive in that case means that a shorter actuation travel from the rest position of the arresting device until engagement of the arresting device with the guide rail is set. The stroke adjusting means can include, for example, an eccentric disc by which, through turning, the actuation travel is set.
The locking mechanism is preferably constructed to be switchable so that a blocking function can be switched off at least temporarily. This is advantageous, since return travel of the displaceable platform in downward direction is thereby made possible. Temporary switching off in that case produces, for example, permanent manual intervention so that in the case of a fault the locking mechanism can block again solely through absence of the manual intervention.
The safety component is preferably a safety cable which runs at least along the displacement path of the displaceable platform and the locking mechanism is executed as a cable securing lock. The safety cable is guided by the locking mechanism or the locking mechanism engages around the safety cable. Safety-cable locking mechanisms are well-proven and economically available. The safety cable can in that case extend from the floor of the shaft to the respective uppermost use position or it can stretch only along the required displacement path of the displaceable platform.
Alternatively, the guide rail is at the same time the safety component. The locking mechanism is in that case constructed to co-operate with a web of the guide rail. This is particularly economic, since the guide rail present in any case is at the same time the safety component.
The fault prevention device is preferably provided with a warning device which notifies a rest position or standby position of the coupling linkage or of the arresting device. The warning device can be a switch which activates appropriate control displays or signal lights or it can also be, for example, a mechanical switching vane which indicates, for example, the position of the coupling linkage. The use of a warning device is advantageous, since locking of the locking mechanism or lowering of the displaceable platform can thereby also be rapidly indicated or detected optically. This increases safety. In the case of use of a switch with an appropriate control display or signal lights the circuit can operated with an energy store or with a battery during the time of displacement of the displaceable platform.
The displaceable platform preferably comprises deposit devices by means of which the displaceable platform can be fixed at predetermined places in the shaft. The deposit devices are, for example, supports or cantilever arms of the displaceable platform, which are extendible and which can be supported, for example, at the wall of the shaft or in recesses in the wall of the shaft. The displaceable platform preferably comprises at least one elevator drive which is used for driving the elevator with the at least one car. The displaceable platform is used as an engine room. The fall prevention device secures this displaceable platform together with the elevator drive against falling down at least during displacement of the displaceable platform from the lower temporary use position to the upper use position. This is obviously advantageous, since falling down of the elevator drive and possible significant consequences can be prevented.
In particular, a method for securing a displaceable platform in a shaft of an elevator installation is proposed. The displaceable platform is in that regard arranged to be vertically displaceable along the guide rail. The method comprises, in particular, the steps of:
The displaceable platform can thus be safely displaced. Usual hoists, for example a building crane, can be used, since the displaceable platform is secured against slipping down or falling down by the equipment, which is arranged on the displaceable platform, at all times during the displacement.
The car of the elevator installation during displacement of the engine room, which is arranged on the displaceable platform, of the elevator installation from a lower temporary use position to a next-upper use position is preferably temporarily suspended at the displaceable platform. Moreover, the safety brake system of the car is preferably connected with the locking mechanism so that in the case of actuation of the locking mechanism the safety brake system of the car is actuated together with the arresting device arranged at the displaceable platform.
The performance requirement of the arresting device of the displaceable platform can thereby be reduced, since the weight of the car itself is accepted by the safety brake system of the car.
The method preferably makes possible manual deactivation of the blocking function of the locking mechanism or the connection thereof with the arresting device so that the displaceable platform can be lowered at least over a predetermined deposit travel without bringing the arresting device into engagement with the guide rail.
In a special embodiment, the equipment of a displaceable engine room includes a multi-stage displacement, transportation and security system. In that case, a closure roof is disposed at the very top or at the upper end of the respective building section. This closure roof is mounted at the upper shaft end by a contractor at the time of finishing the respective building section. The closure roof has, on the one hand, the task of separating the lower shaft region from the building region lying above the closure roof and protecting the elevator installation which is in operation in the lower region of the building. In addition, it preferably includes support structures or suspension eyes or points. An auxiliary engineering platform is disposed below the closure roof. This auxiliary engineering platform has a load-bearing structure which, similarly to the displaceable platform, comprises rest or supports which enable supporting of the auxiliary engineering platform in recesses of the shaft walls. A load-bearing structure additionally comprises guide rollers which can guide the auxiliary engineering platform in the shaft, for example at walls of the shaft.
The auxiliary engineering platform preferably comprises a first hoist, for example a cable lifting device, which is provided in order to pull itself and thus the auxiliary engineering platform up in the shaft in co-operation with the supporting structure of the closure roof. In addition, the auxiliary engineering platform preferably also comprises a cable lock which can prevent possible slipping down of the auxiliary platform. The cable lock acts on a cable which is similarly connected with the closure roof, usually by means of a support roller. After installation or displacement of the closure roof the auxiliary engineering platform can thus be raised and fixed in the shaft in the vicinity of the closure roof.
The auxiliary engineering platform preferably now includes further support points or fastening points at which an assembly platform or other auxiliary hoists can be suspended. By means of the assembly platform and possible further auxiliary hoists the guide rails can be subsequently installed at the guide rails, which are disposed further below and already installed, in the shaft. In addition, further shaft material can be fitted by means of the assembly platform or by means of other auxiliary hoists. Operation of the elevator installation travelling in the lower shaft region is in that case not disturbed. For preference, marks which can be used as alignment aids for precise alignment of the guide rails are applied to the auxiliary engineering platform. These marks can be alignment marks for the fastening of plumb lines or for placement of laser instruments or the like.
The auxiliary engineering platform now preferably additionally includes a second hoist, for example a chain block. The chain block is designed so that the displaceable platform or engine room can preferably be displaced together with the suspended car.
The use of an auxiliary engineering platform of that kind is advantageous, since:
Embodiments of the invention are described by way of example in the following on the basis of partly schematic figures. Equivalent parts are provided in the figures with the same reference numerals.
In
The displaceable platform 20 includes the essential elevator components required for operation of the elevator installation insofar as they are usually arranged in the engine room. The elevator installation can thus be operated in the lower region 3u of the shaft 3. The displaceable platform 20 schematically shown in
The elevator car 43 obviously also includes an own safety brake or safety brake system 48, which arrests or stops the elevator car 43 in known mode and manner in the event of excess speed. In addition, the displaceable platform 20 is equipped with a fall prevention device 25. In
In
The elevator car 43 is suspended at the displaceable platform 20 by way of suspension means, in the example by way of support rods 45. For that purpose, the displaceable platform is provided with appropriate suspension points. A possible counterweight (not illustrated) is fixed to the lower end of the shaft 3. Depending on the form of suspension, the support means 44 can be detached or at least relieved of load at one of the support means fastening points and can, in the subsequent pulling up of the displaceable platform 20 or in a later work step, simply be pulled afterwards or at the same time. The displaceable platform 20 or the entire engine room can now be raised together with the elevator car 43 by way of a hoist 62, which is suspended at a suspension point 22 of the displaceable platform 20, and moved to an upper use position P2. The upper use position P2 is defined in such a way that a next-higher travel region in the building can be serviced. In order to displace the displaceable platform 20, obviously the deposit device 38 of the displaceable platform 20 is released or retracted so that it does not obstruct displacement of the displaceable platform 20. During the raising and movement, the displaceable platform 20 is secured by means of the fall prevention device 25 against unexpected downward movement. The fall prevention device 25 of the displaceable platform 20 is in that case coupled with the safety brake system 48 of the elevator car 43 by means of an intermediate linkage 46. Thus, in the event of possible slipping down of the displaceable platform 20 with suspended cage car 43 the fall prevention device 25 of the displaceable platform 20 and the safety brake system 48 of the elevator car are directly brought into action. The safety brake system 48 of the elevator car 43 thus acts as a component of the fall prevention device.
As soon as the upper use position P2, as apparent in
An embodiment of the displaceable platform 20 is illustrated in
The fall prevention device 25 of the displaceable platform 20 is largely integrated in the support structure 21. For that purpose, in the present example two pairs of arresting devices 26, which together with the guide rail 23 can stop and hold the displaceable platform 20 with the associated loads, are integrated in the support structure. The arresting devices 26 are, as illustrated in detail in
The locking mechanism 28 controls the arresting device 26 by way of the coupling linkage 29 and in the usual case also the safety brake system 48 of the elevator car 43 by way of the intermediate linkage 46. A form of embodiment of the coupling linkage 29 is illustrated in detail in
In the embodiment according to
In addition, the coupling linkage 29 includes stroke adjustment means 36. This is an eccentric disc by means of which the parallel levers 29.2 can be so displaced that the arresting devices 26 are already lifted out of their standby position. A response sensitivity of the fall prevention device can thus be set, since a residual actuation path in the case of a required actuation can be shortened. In addition, arranged at the coupling linkage 29 is an electrical contact 37.1 which on actuation of the parallel levers 29.2—and thus corresponding actuation of the arresting and braking systems—switches a warning device 37, for example a warning light or a flashing beacon. An accumulator or a battery is carried on the displaceable platform for energy supply.
An example of a displacement cycle of a conjunctively growing elevator installation is explained by way of example on the basis of
The auxiliary engineering platform 50 is illustrated in detail in
The auxiliary engineering platform 50 is fixed on each occasion in the uppermost region near the closure roof. It includes aids which enable displacement of the auxiliary engineering platform itself as well as later raising of the displaceable platform 20. In addition, the auxiliary engineering platform 50 has further support points which are used in order to finish off the shaft with shaft material required for operation of the elevator installation. A first hoist 56 in the form of a cable pull device is arranged on the auxiliary engineering platform 50. The first hoist 56 acts on a cable 57. The cable 57 is fastened at one end to the auxiliary engineering platform, is guided by way of a support roller 67 arranged at the suspension device 66 anchored in the closure roof 70, and is led to the first hoist 56 or through drive elements of the first hoist 56. The first hoist 56 thus draws itself and thereby the entire auxiliary engineering platform 50 at the cable 57 in upward direction. In addition, an auxiliary locking mechanism 58 which prevents possible slipping down of the auxiliary platform is also arranged on the auxiliary engineering platform 50. The auxiliary locking mechanism 58 acts on a further cable 59, which is similarly connected by way of a support roller 68 with the closure roof 70 and is fixed by one end to the auxiliary engineering platform 50. The auxiliary locking mechanism 58 is designed to be able to hold, together with the further cable 59, the auxiliary engineering platform 50. In addition, cable winches 60 are provided and serve for winding up the cables 57, 59 when the auxiliary engineering platform is fixed by means of the supports 53. The suspensions and the arrangements of the guides 52 are selected so that the auxiliary engineering platform 50 can be moved substantially horizontally.
The auxiliary engineering platform 50 has further support points 55 at which an assembly platform 71 (see
In
The assembly platform 71 is now suspended at the auxiliary engineering platform 50 by way of associated support means 72. By means of the assembly platform 71 and, possible further auxiliary hoists the guide rails 23 can now be installed in the shaft in connection with the already installed guide rails lying further down. In addition, further shaft material can be fitted. Operation of the elevator installation travelling in the lower shaft region 3u is not disturbed during these activities. Marks (not shown) which can be used as alignment aids in precise orientation of the guide rails 23 are applied to the auxiliary engineering platform.
After the conclusion of the installation operations in the corresponding shaft region, the assembly platform 71 can be removed or it can also be parked on the protective roof 41 of the displaceable platform. As apparent in
The expert will recognize further embodiments. Thus, the expert can also use hydraulic jacks or traction devices instead of the illustrated chain block.
In accordance with the provisions of the patent statutes, the present invention has been described in what is considered to represent its preferred embodiment. However, it should be noted that the invention can be practiced otherwise than as specifically illustrated and described without departing from its spirit or scope.
Number | Date | Country | Kind |
---|---|---|---|
13175972 | Jul 2013 | EP | regional |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2014/064028 | 7/2/2014 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2015/003964 | 1/15/2015 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
1886213 | Murphy | Nov 1932 | A |
6446763 | Glassey | Sep 2002 | B1 |
7635049 | Van Der Meijden | Dec 2009 | B2 |
8485319 | Peacock | Jul 2013 | B2 |
9809424 | Peacock | Nov 2017 | B2 |
9850096 | Peacock | Dec 2017 | B2 |
20070170014 | Woronoff | Jul 2007 | A1 |
20120291395 | Plathin | Nov 2012 | A1 |
20130233655 | Peacock | Sep 2013 | A1 |
20130248299 | Perala | Sep 2013 | A1 |
20150307322 | Peacock | Oct 2015 | A1 |
20170050822 | Wurth | Feb 2017 | A1 |
20170327348 | Blasi | Nov 2017 | A1 |
Number | Date | Country |
---|---|---|
101643164 | Feb 2010 | CN |
2010037060 | Feb 2010 | JP |
2013112500 | Jun 2013 | JP |
20020078342 | Oct 2002 | KR |
0144096 | Jun 2001 | WO |
2008059100 | May 2008 | WO |
2008077992 | Jul 2008 | WO |
2012072860 | Jun 2012 | WO |
Number | Date | Country | |
---|---|---|---|
20160152442 A1 | Jun 2016 | US |