The invention relates to a fall safety device with a load-bearing rotor that supports at least one locking member, which can be moved by centrifugal force and which is engages with at least one stop of a stator if a certain rotor speed is exceeded to block further rotation of the rotor.
Such fall safety devices are used in a wide variety of lifting machines, such as elevators, cranes, and the like, so that the load cannot fall in the event of disruptions in the drive system. Such disruptions can be caused by breaks in the drive rope, loss of power, leaks in a compressed-medium line, loss of a braking system, etc. Frequently, the mentioned fall safety devices are mandated by law in order to prevent accidents.
According to the known state of the art, contemporary fall safety devices are predominantly brakes, latches, or bolt safety devices. However, brakes carry the risk that they could overheat due to heat from friction. At the same time, the braking process is also associated with material wear and tear. Both can lead to the loss of the brakes, especially if they are not regularly and carefully maintained.
These disadvantages are avoided in latch or bolt safety devices. However, the form fit necessary for the blocking process causes large forces and impacts due to the abrupt blocking process. Therefore, such safety devices are not suitable for large loads.
Through DE 24 33 237, a fall safety device has become known. Here, the stops are formed by a locking wheel, which can rotate in the stator to a limited extent. This locking wheel is held in its normal position by a damping clamp bent into a C-shape and arranged on the outside of the stator housing. If an impermissibly high rotor speed is reached, then the locking members that can move by centrifugal force are moved into engagement with the stops of the locking wheel and attempt to turn with this wheel. Here, the C-shaped damping clamp expands and is plastically deformed, which produces the desired damping of the blocking process.
Starting with these conditions, the present invention is based on the object of improving a fall safety device working with a form-fitting blocking process to the extent that a significantly more effective damping is achieved during the blocking process. Here, the fall safety device should be distinguished by less space requirements, high operating reliability and robustness for all cases of use, as well as reliable function even after a long operating time.
This object is solved according to the invention in that the braking body is no longer arranged as before in the open, but instead is located in a chamber. Therefore, its deformation during the blocking process can be selectively influenced through the shape and size of the chamber, and overall a higher energy absorption through the braking body is achieved. This applies, in particular, when the braking body must slide along the chamber walls during its plastic deformation, because then in addition to the deformation energy, frictional energy is also available for the damping process.
In another improvement of the damping effect, according to the invention the deformation of the braking body is not realized as in the known case by an expansion, but instead by reduction in the sense of plastic compression. At the same time, this results in a more favorable damping characteristic than for tensile loading of the braking body.
In another advantageous refinement of the invention, if the predetermined rotor speed is exceeded, either the previously mentioned or an additional locking member that can move due to centrifugal force blocks the further rotation of the rotor, also for overloading or failure of the braking body. The fall safety device is therefore redundant.
In terms of the type of deformation of the braking body, numerous possibilities are known to someone skilled in the art. The deformation can be realized both in the circumferential direction as well as in the axial or radial direction. A combination of these deformation directions into a diagonal or helical course also lies within the scope of the invention.
For the form-fitting engagement between the rotor and stator, it is recommended that the stator has at least two stops distributed over the circumference. A separate braking body is allocated to each of these stops. It is even more favorable to arrange several stops on a ratchet wheel that can rotate in the stator and to support this ratchet wheel on the stator in the circumferential direction by means of several braking bodies.
If the deformation of the braking body is realized in the axial direction, then it is preferred that the rotor has two opposite threads, on which disks can rotate, such that the disks shift in the axial direction during the blocking process and thus deform the braking body. The braking body is here arranged advantageously between the two disks, so that it is compressed. Likewise, however, the braking body could also be arranged between a disk and the adjacent wall of the stator housing.
For the structural configuration of the deformable braking body, numerous possibilities are available for someone skilled in the art. It is especially favorable when the braking body has a plurality of recesses. In this way, it can be flattened without requiring additional space for absorbing the movement. Advantageously, it can be formed of several flattenable bands, which are especially arranged one next to the other and which are especially made of ductile metal. Also, the use of several flattenable individual bodies, which can be arranged one behind the other, like balls or similarly shaped bodies, is conceivable.
So that the fall safety device can be checked at any time from outside for whether the device is still intact, it is recommended to arrange the braking body in a chamber that can be viewed from outside. Therefore, at any time visual inspection is possible without having to remove the previous cover parts or the like.
As an alternative or an addition, the braking body can also have a pointer element projecting outwards, whose position can be used to determine whether the braking body has assumed a flattened or an unflattened position. In connection with this, it is especially advantageous if this pointer element is brought into active connection with the lifting drive, e.g., by means of an end switch, so that bringing the lifting system back on-line is only possible when the deformed braking body has been replaced by a new braking body.
Depending on whether the braking body is to interact with the locking member arranged in the rotor or with the stop arranged in the stator, the braking body can be arranged either in one or else in the other component. If the stator is a component surrounding the rotor on the outside, then the arrangement of the braking body in the stator provides the advantage that more space is available.
In another advantageous refinement of the invention, the locking member supported on the rotor is not only exposed to the influence of the centrifugal force, but instead it is held by a snap-in connection in the rotational position, thus, out of engagement with the one or more stops of the stator. This gives the advantage that strong shaking cannot inadvertently lock the device. Simultaneously, through this snap-in connection, a defined centrifugal force and thus a defined speed of the rotor can be predetermined, and if these values are exceeded, the locking member can slide out of the snap-in connection and trigger the blocking process. The snap-in connection preferably is formed of a pretensioned locking element, whose pretensioning force can be adjusted.
An especially favorable refinement of the invention is to provide at least two locking members and to set these locking members in active connection such that they can be led into engagement with the associated stops only in common. In this way, the reliability of the fall safety device for external shaking is improved considerably, because unintended locking of an individual locking member due to a local impact is excluded. The cross acceleration exerted here on the opposing locking members acts in opposite senses on these members, so that the effect of the impact can be compensated for by the coupling of the locking members. Instead, the locking effect can only then occur if the triggering force is generated by centrifugal acceleration, which acts in the radial direction and which acts on both locking members in the same sense.
For the structural configuration of the mentioned active connection, various possibilities are available for someone skilled in the art. In principle, it merely has to be provided that the movement of one locking member is transferred to the other locking member, and that is in the same functional sense. For locking members that can pivot, a connecting lever is recommended, which is hinged relative to the locking member pivot axis at opposing regions of the locking members. For linearly moveable locking members, a crossbar control mechanism can be used.
In an especially favorable refinement of the invention, structural means guarantee that after plastic deformation of the braking body, the locking member can be brought back into the open position from its engagement position only if the deformed braking body has been replaced by a new braking body. Here, the deformation of the braking body can be used to create the desired fixation of the locking member. However, usually it is more reliable to use the relative rotation between the ratchet wheel and stator to fix the locking member in the engagement position. To mechanically convert the relative rotation into the fixing of this locking member, numerous possibilities are available for someone skilled in the art. Advantageously, the relative rotation can create an axial shift in the ratchet wheel, wherein the ratchet wheel is shaped such that in its shifted position, it directly or indirectly blocks a release of the locking member from this engagement position.
Additional features and advantages of the invention result from the description of the exemplary embodiments with reference to the drawing as well as from the drawings themselves. In the drawings:
In
On a radial inner edge of the gear 2, two opposing locking members 6 are supported so that they can pivot in the radial direction by means of support pins 6a. These locking members can be shifted outwards with their center of gravity if a certain shaft speed is exceeded, wherein a locking wedge 6b of the locking member 6 engages with stops 7b, which are arranged on a ratchet ring 7. On its side, the ratchet ring 7 can rotate on the already mentioned, annular stator 4, which is mounted with screws and bolts to a wall of the housing 5.
Now it is essential that the ratchet ring 7 cannot rotate freely on the stator 4, but instead it is supported in the circumferential direction by plastically deformable braking bodies 8, cf.
As
Now if an impermissibly high speed of the shaft 1 occurs and thus the locking member 6 engages with the ratchet ring 7, then the latter is quickly loaded against the counterclockwise direction for the structural shape according to
For this purpose, the braking body 8, as the cut E—E in
After a stopping process, to recognize whether the braking bodies have reached a degree of deformation, which excludes re-use, a pointer element 14 is mounted on the ratchet wheel 7, whose rotation relative to the stationary housing 13 indicates the degree of deformation. In addition, this element 14 can turn off the drive for the entire lifting device and/or trigger the previously discussed fixing of the locking members in their engagement position.
To set the triggering speed, the pressure of the spring elements 9 on the locking members 2 can be adjusted. The spring elements 9 therefore are under the effect of a cam 10, which amplifies or reduces the contact force of the spring element 9 according to its rotational position.
For the configuration of the spring element 9, numerous possibilities are available for someone skilled in the art. Two variants are shown in the lower part of
The section B—B in
Alternatively, the axial shifting of the ratchet wheel can also be created as follows: the guidance collar 4a on the stator 4 is eliminated and the axial limitation of the chamber 14 for the braking bodies is formed by the ratchet wheel 7 itself. The braking bodies are shaped so that when their width is flattened, i.e., their extent in the axial direction increases and thus the ratchet wheel shifts in the direction of the locking members, especially into the recess 6c of the locking members.
Here, the shaft 1 is non-rotatably connected to a hub part 12, to which two locking members 6 are supported similar to
The method of operation is the same as for the previously described embodiments.
The embodiment according to
Here, the rotor 2 is provided on its outer extent with two opposite threads, namely on the left side of
In addition, the locking members 6 are in turn connected by levers 11 to each other such that their pivoting movements always occur simultaneously.
The stops 7b, which are here not mounted on a ratchet ring with limited rotation, but instead stationary on the housing of the fall safety device, are located adjacent to the locking members 6, spaced outwards in the radial direction.
Now if an impermissible rotor speed occurs, then the locking members 6 pivot outwards, as shown in
The two threads 2a and 2b are now oriented so that for further rotation of the rotor 2 relative to the blocked disks 17a and 17b, the two disks 17a and 17b run towards each other in the axial direction. In the extreme case, the two disks continue moving until they contact each other. Here, the braking bodies 8 are plastically deformed, which is facilitated by corresponding shaping and dimensioning of the chambers 14a and 14b. Thus, it is recommended to expand the two chambers 14a and 14b on their facing sides in cross section so that the braking bodies can bulge in the radial direction. So that space is also available farther inwards in the chambers for the deformation of the braking bodies, the braking bodies are provided there with a plurality of recesses 8a, as shown in
Finally,
The main advantage of the last described structural form is that the parts exposed to the impact from the blocking process, thus the stops 7b and the locking wedge 6b of the locking members 6, are shifted in the radial direction farther outwards, namely nearly to the outer edge of the housing 5. Thus, long lever arms with correspondingly small impacting forces are produced.
Both embodiments have in common that the impact occurring during the blocking process is effectively damped by flattening the braking bodies in their housing and thus all parts taking part in the transfer of motion are improved considerably.
Number | Date | Country | Kind |
---|---|---|---|
103 24 900 | May 2003 | DE | national |
Number | Name | Date | Kind |
---|---|---|---|
3946898 | Prillinger et al. | Mar 1976 | A |
4005771 | Cappotto et al. | Feb 1977 | A |
4254854 | St. John | Mar 1981 | A |
4282953 | Lichti et al. | Aug 1981 | A |
4556155 | Koppensteiner | Dec 1985 | A |
5310022 | Sheridan et al. | May 1994 | A |
5522581 | Kulhavy | Jun 1996 | A |
5701972 | Bloder | Dec 1997 | A |
20010037920 | Draper et al. | Nov 2001 | A1 |
20040035653 | Christensen | Feb 2004 | A1 |
20040262109 | Timtner | Dec 2004 | A1 |
Number | Date | Country |
---|---|---|
24 33 237 | May 1977 | DE |
Number | Date | Country | |
---|---|---|---|
20040262109 A1 | Dec 2004 | US |