FAMILY OF LDPC CODES FOR VIDEO BROADCASTING APPLICATIONS

Abstract
A family of quasi cyclic irregular low density parity check codes for video broadcasting applications. The parity check matrices of the constructed low density parity check codes have quasi-cyclic structures to facilitate hardware implementation and have proper check/bit degree distributions to offer frame error rate performance lower than 10−7.
Description
TECHNICAL FIELD OF THE INVENTION

This invention relates generally to error-correcting codes (ECC), and more particularly to a family of low-density parity-check (LDPC) codes for video broadcasting applications.


BACKGROUND OF THE INVENTION

The growth of broadband services has been fueled by consumers' demands for greater and greater data rates to support streaming video applications. Communication service providers therefore require an infrastructure that can support high data rates in bandwidth limited systems. Unfortunately, coding schemes employed in conventional video broadcasting systems can only provide relatively low throughput. Therefore, there is a need for a video broadcasting system that uses powerful LDPC codes to support higher date rates for the same bandwidth and power, without introducing greater complexity.


A fundamental problem in the field of data storage and communication is the development of efficient error-correcting codes. The mathematical foundations of error correction were established by Shannon. The most fundamental work of Shannon is the concept of noisy channel capacity, which defines a quantity that specifies the maximum rate at which information can be reliably transmitted through the channel. This capacity is called Shannon capacity. One of the most important research areas in information and coding theory is to devise coding schemes offering performance approaching Shannon capacity with reasonable complexity. Recently, a considerable interest has grown in a class of codes known as LDPC codes due to their feasible iterative decoding complexity and near-Shannon capacity performance.


In 1993, similar iterative methods were shown to perform very well for a new class of codes known as “turbo-codes.” The success of turbo-codes was partially responsible for greatly renewed interest in LDPC codes and iterative decoding methods. There has been a considerable amount of recent work to the analysis and the iterative decoding methods for both turbo-codes and LDPC codes. For instance, a special issue of the IEEE Communications Magazine was devoted to this work in August 2003 (see T. Richardson and R. Urbanke, “The Renaissance of Gallager's Low-Density Parity Check Codes,” IEEE Communications Magazine, vol. 41, pp. 126-131, August 2003, and C. Berrou, “The Ten-Year-Old Turbo Codes are entering into Service,” IEEE Communications Magazine, vol. 41, pp. 110-117, August 2003).


LDPC codes were first described by Gallager in the 1960s. LDPC codes perform remarkably close to Shannon limit. A binary (N, K) LDPC code, with a code length N and dimension K, is defined by a parity check matrix H of (N-K) rows and N columns. Most entries of the matrix H are zeros and only a small number the entries are ones, hence the matrix H is sparse. Each row of the matrix H represents a check sum, and each column represents a variable, e.g., a bit or symbol. The number of 1's in a row or a column of the parity check matrix H is called the weight of the row or the column. The LDPC codes described by Gallager are regular, i.e., the parity check matrix H has constant-weight rows and columns.


Regular LDPC codes can be extended to irregular LDPC codes, in which the weights of rows and columns vary. An irregular LDPC code is specified by degree distribution polynomials v(x) and c(x), which define the variable and check node degree distributions, respectively. More specifically, let











v


(
x
)


=




j
=
1


d

v





max






v
j



x

j
-
1





,




and




(
1
)








c


(
x
)


=




j
=
1


d
cmax





c
j



x

j
-
1





,




(
2
)







where the variables dv max and dc max are a maximum variable node degree and a check node degree, respectively, and vj(cj) represents the fraction of edges emanating from variable (check) nodes of degree j. The bit and check nodes degree distributions of an irregular LDPC code can also be described by specifying the numbers of bit or check nodes with different degrees. For instance, an irregular LDPC code with bit node degree distribution (bi,bj)=(Ni,Nj) contains Ni and Nj bit nodes with degree bi and bj, respectively. While irregular LDPC codes can be more complicated to represent and/or implement, it has been shown, both theoretically and empirically, that irregular LDPC codes with properly selected degree distributions outperform regular LDPC codes. FIG. 5 illustrates a parity check matrix representation of an exemplary irregular LDPC code of codeword length six.


LDPC codes can also be represented by bipartite graphs, or Tanner graphs. In a Tanner graph, one set of nodes called variable nodes (or bit nodes) corresponds to the bits of the codeword and the other set of nodes called constraints nodes (or check nodes) corresponds the set of parity check constraints which define the LDPC code. Bit nodes and check nodes are connected by edges. A bit node and a check node are to be neighbors or adjacent if they are connected by an edge. Generally, it is assumed that a pair of nodes is connected by at most one edge.



FIG. 6 illustrates a bipartite graph (Tanner graph) representation of the irregular LDPC code illustrated in FIG. 5. The LDPC code represented by FIG. 6 is of codeword length 6 and has 4 parity checks. As shown in FIG. 5, there are totally 9 one's in the parity check matrix representation of the LDPC code. Therefore in the Tanner graph representation shown in FIG. 6, 6 bit nodes 601 are connected to 4 check nodes 602 by 9 edges 603.


LDPC codes can be decoded in various ways such as majority-logic decoding and iterative decoding. Because of the structures of their parity check matrices, LDPC codes are majority-logic decodable. Although majority-logic decoding requires the least complexity and achieves reasonably good error performance for decoding some types of LDPC codes with relatively high column weights in their parity check matrices (e.g., Euclidean geometry LDPC and projective geometry LDPC codes), iterative decoding methods have received more attention due to their better performance versus complexity tradeoffs. Unlike majority-logic decoding, iterative decoding processes the received symbols recursively to improve the reliability of each symbol based on constraints that specify the code. In the first iteration, the iterative decoder only uses the channel output as input, and generates reliability output for each symbol. Subsequently, the output reliability measures of the decoded symbols at the end of each decoding iteration are used as inputs for the next iteration. The decoding process continues until a certain stopping condition is satisfied. Then final decisions are made based on the output reliability measures of the decoded symbols from the last iteration. According to the different properties of reliability measures used at each iteration, iterative decoding algorithms can be further divided into hard decision, soft decision and hybrid decision algorithms. The corresponding popular algorithms are iterative bit-flipping (BF), belief propagation (BP), and weighted bit-flipping (WBF) decoding, respectively. Since the BP algorithm has been proven to provide maximum likelihood decoding given that the underlying Tanner graph is acyclic, it becomes the most popular decoding method.


Belief propagation for LDPC codes is a type of message passing decoding. Messages transmitted along the edges of the graph are log-likelihood ratio (LLR) log p0/p1 associated with variable nodes corresponding to codeword bits. In this expression p0 and p1 denote the probability that the associated bit takes value 0 and 1, respectively. BP decoding has two steps, a horizontal step and a vertical step. In the horizontal step, each check node cm sends to each adjacent bit bn a check-to-bit message which is calculated based on all bit-to-check messages incoming to the check cm, except the one from bit bn. In the vertical step, each bit node bn sends to each adjacent check node cm a bit-to-check message which is calculated based on all check-to-bit messages incoming to the bit bn except the one from check node cm. These two steps are repeated until a valid codeword is found or the maximum number of iterations is reached.


Because of its remarkable performance with BP decoding, irregular LDPC codes are among the best for many applications. Various irregular LDPC codes have been accepted or are being considered for various communication and storage standards, such as DVB-S2/DAB, wireline ADSL, IEEE 802.11n, and IEEE 802.16 [4][5]. While considering applying irregular LDPC codes to video broadcasting systems, one often encounters a problem related to error floor.


The error floor performance region of an LDPC decoder can be described by the error performance curve of the system. The LDPC decoder system typically exhibits a sharp decrease in error probability as the quality of the input signal improves. The resulting error performance curves are conventionally called a waterfall curve and the corresponding region is called a waterfall region. At some point, however, the decrease of error probability with input signal quality increase decreases. The resulting flat error performance curve is called the error floor. FIG. 7 illustrates an exemplary FER performance curve containing waterfall 701 and error floor regions 702 of an irregular LDPC code.


Most video broadcasting systems require a frame error rate (FER) as low as 10−7. While given codeword length of practical interest (less than 20 k) and power constraint, most irregular LDPC codes exhibit error floor higher than 10−6, which is too high for video broadcasting applications.


LDPC codes have been used in the digital video broadcasting second generation applications (DVB S2). The first generation DVBS was introduced as a standard in 1994 and is now widely used for video broadcasting throughout the world. The ECC used in DVBS is concatenated convolutional and Reed-Solomon codes which is considered not powerful enough. Therefore in 2002 DVB S2 Project called for new coding proposals which are capable of offering 30% throughput increase for the same bandwidth and power. After examining more than 7 candidates proposed by worldly renowned research labs and companies in terms of performance and hardware complexity, the committee chose a solution based on LDPC codes which provides more than 35% throughput increase with respect to DVBS. Therefore, the LDPC codes used in the DVBS2 standard are widely considered as state-of-the-art. In comparison to the LDPC codes in the DVBS2 standard, the family of LDPC codes in the present invention has two advantages. First, the codeword length of the LDPC codes in the present invention is 15360, which is much shorter than 64800, and 16200, which are the codeword lengths of the normal and the short LDPC codes in the standard DVBS2, respectively. It is well known in the ECC area that, the longer the codeword length of an LDPC code, the better the asymptotic performance the LDPC code can offer (T. Richardson, M. Shokrollahi, and R. Urbanke, “Design of capacity-approaching irregular low-density parity-check codes,” IEEE Trans. Inf. Theory, vol. 47, pp. 619-637, February 2001). Nevertheless the LDPC codes in the present invention can provide similar performance as the longer LDPC codes in the DVBS2 standard. It is also known that, from the application perspective, hardware implementation favors shorter LDPC codes which cause less design trouble and less hardware cost. The second advantage is, the LDPC codes in the present invention can offer FER lower than 10−7, which is required by video broadcasting application. By contrast, the LDPC codes in the DVBS2 standard can not provide FER lower than 10−7 by themselves therefore outer BCH codes are concatenated to the LDPC codes as outer error correcting techniques to lower the error floor. It is well known in the ECC area that, the shorter the codeword length of an LDPC code, the higher the probability the LDPC code exhibits a higher error floor. Nevertheless, without any aid of concatenated codes and with much shorter codeword length, the LDPC codes in the present invention alone can provider FER lower than 10−7.


SUMMARY OF THE INVENTION

It is an object of the invention to present a family of irregular LDPC codes with different code rates and practical codeword length which can provide error performance with error floor lower than 10−7.


The present invention is directed to irregular LDPC codes of code rates ranging from 1/4 to 9/10. The techniques of the present invention are particularly well suited for video broadcasting applications.


The LDPC codes in the present invention can offer FER performance with error floor lower than 10−7, therefore they can meet the error correcting requirements of video broadcasting applications.


At the same time, with carefully selected check and bit node degree distributions and Tanner graph constructions, the LDPC codes in the present invention have good threshold which reduce transmission power for a given FER performance.


The threshold of an LDPC code is defined as the smallest SNR value at which as the codeword length tends to infinity, the bit error probability can be made arbitrarily small.


Furthermore, the quasi-cyclic structure of the LDPC codes in the present invention simplify hardware implementation.





BRIEF DESCRIPTION OF THE DRAWINGS

The present invention is illustrated by way of example, and not by way of limitation, in the figures of the corresponding drawings and in which like reference numerals refer to similar elements and in which:



FIG. 1 is an exemplary of a communications system which employs LDPC codes.



FIG. 2 illustrates an exemplary of a satellite video communications system employing LDPC codes, according to an embodiment of the present invention.



FIG. 3 illustrates an exemplary of a transmitter in FIG. 1.



FIG. 4 illustrates an exemplary of a receiver in FIG. 1.



FIG. 5 is a parity check matrix representation of an exemplary irregular LDPC code of codeword length six.



FIG. 6 illustrates a bipartite graph representation of the irregular LDPC code illustrated in FIG. 5.



FIG. 7 illustrates an exemplary FER performance curve containing waterfall and error floor regions of an irregular LDPC code.



FIG. 8 illustrates the FER performance curves of the irregular LDPC codes in the present invention.



FIG. 9 illustrates an exemplary block diagram of a video broadcasting transmitter showing a framing and LDPC encoding process transforming original user data into modulated frames, according to an embodiment of the present invention.



FIG. 10 illustrates an exemplary formed frame structure, according to an embodiment of the present invention.





DETAILED DESCRIPTION OF THE INVENTION

The main purpose of ECC design is to construct LDPC codes with a good threshold to reduce transmission power consumption and to lower the error floor to provide satisfactory services. The main factors affecting threshold and error floor of irregular LDPC codes are check/bit distributions and Tanner graph structures. Steps involved in searching for optimal check/bit degree distributions of irregular LDPC codes will first be described. Next approaches of constructing preferable Tanner graphs based on given check/bit distributions will be discussed.


Given a code rate, irregular LDPC codes with different check/bit degree distributions have a different threshold. Good check/bit degree distributions can be searched through various optimization algorithms combined with density evolution. It has been shown that density evolution is an efficient theoretical tool to track the process of iterative message-passing decoding for LDPC codes. The idea of density evolution can be traced back to Gallager's results. To determine the performance of BF decoding, Gallager derived formulas to calculate the output BER for each iteration as a function of the input BER at the beginning of the iteration, and then iteratively calculated the BER at a given iteration. For a continuous alphabet, the calculation is more complex. The probability density functions (pdf's) of the belief messages exchanged between bit and check nodes need to be calculated from one iteration to another, and the average BER for each iteration can be derived based on these pdf's. In both check node processing and bit node processing, each outgoing belief message is a function of incoming belief messages. For a check node of degree dc, each outgoing message U can be expressed by a function of dc−1 incoming messages,






U=F
c(V1,V2, . . . ,Vdc−1),


where Fc denotes the check node processing function which is determined from BP decoding. Similarly, for bit node of degree dv, each outgoing message V can be expressed by a function of dv−1 incoming messages and the channel belief message Uch,






V=F
v(Uch,U1,U2, . . . ,Udv−1),


where Fv denotes the bit node processing function. Although for both check and bit node processing, we can derive the pdf of an outgoing message based on the pdf's of incoming messages for a given decoding algorithm, there may exist an exponentially large number of possible formats of incoming messages. Therefore, the process of density evolution seems intractable. Fortunately, it has been proved in that for a given message-passing algorithm and noisy channel, if some symmetry conditions are satisfied, then the decoding BER is independent of the transmitted sequence x. That is to say, with the symmetry assumptions, the decoding BER of all-zero transmitted sequence x=1 is equal to that of any randomly chosen sequence. Thus, the derivation of density evolution can be considerably simplified. The symmetry conditions required by efficient density evolution are channel symmetry, check node symmetry, and bit node symmetry. Another assumption for the density evolution is that the Tanner graph is cyclic free. In that case, the incoming messages to any bit and check node are independent, and thus the derivation for the pdf of the outgoing messages can be considerably simplified. For many LDPC codes with practical interests, the corresponding Tanner graph contains cycles. Suppose the minimum length of a cycle (or girth) in a Tanner graph of an LDPC code is equal to 4×l, then the independence assumption does not hold after the l-th decoding iteration with the standard BP decoding. However, for a given iteration number, as the code length increases, the independence condition is satisfied for an increasing iteration number. Therefore, the density evolution predicts the asymptotic performance of an ensemble of LDPC codes and the “asymptotic” nature is in the sense of code length.


In order to keep the search for the optimal check/bit degree distributions of LDPC codes tractable, we let the number of types of bit nodes be four (except for rate 9/10 code which only has three types of bit nodes). For the purpose of constructing efficiently encodable irregular LDPC codes with good threshold, we let the number of bit nodes with degree two be (Ns−Ks−1)×S, where S=32 is a constant, and Ns=N/S, Ks=K/S. For each code rate R, the message length can be calculated as K=N×R, where N=15360. Let dv,x×S be the number of bit nodes with degree x. Given each R, for dv,3=1, . . . ,Ks+1 and dv,4=0, . . . ,Ks, we can determine the number of the bit node with largest weight dv,max=Ks+1−dv,3−dv,4. Then we can search for the optimal check/bit degree distributions with the smallest threshold for each dv,3. Finally among the check/bit degree distributions associated with LDPC codes having an error floor lower than 10−7 and codeword length N=15360, we select the one with the smallest threshold. Table 1 lists the check/bit degree distributions for irregular LDPC codes with code rate 1/4, 2/5, 1/2, 3/5, 2/3, 3/4, 4/5, 5/6, 13/15, and 9/10.









TABLE 1







Bit node degree distributions














bit









rate
2
3
4
6
7
10
12

















¼
11264
256

3840






8960
256
4608



1536


½
7424
2304
3840



1792



5888
3328
4352



1792



4864
4096
4864



1536


¾
3584
4608
5888



1280



2816
5888
5376



1280



2304
4608
6912


1536



13/15
1792
5632
6912

1024




  9/10
1280
3584
10496









Given the check/bit degree distributions, an LDPC code can be constructed in several methods. These methods can be decomposed into two main classes, random or pseudorandom constructions, and algebraic constructions. Since the special structure of algebraic LDPC codes greatly facilitate the hardware implementation of decoders, we consider algebraic constructions. Algebraic constructions of LDPC codes can be further decomposed into two main categories. The first category is based on finite geometries while the second category is based on cyclic shift matrices. Because of the flexible parameters of cyclic-shift-based LDPC codes, we consider LDPC codes constructed based on circulant permutation matrices. The parity check matrix of a quasi-cyclic LDPC code is expanded from a base matrix associated with shift numbers. Given check/bit degree distributions, the ultimate performance of an LDPC code decoded by the BP algorithm mainly depends on the smallest length of loops in the corresponding Tanner graph, which is called girth. The girth of a quasi-cyclic LDPC codes is determined by the girth of the Tanner graph of the based matrix and the shift numbers. Conventionally, the Tanner graph of the base matrix first optimized based on the check/bit degree distributions, then optimal shift values are assigned to entries of the base matrix. According to a method of the invention for constructing quasi-cyclic LDPC codes, the Tanner graph of the base matrix and the shift values are optimized simultaneously.


It should be understood that the following specification may be performed or stored on a readable storage media, computer software, or hardware, such as storage tapes, RAM, ROM, flash memory, synthesized logic as is well known in the art.


In the present invention, each LDPC code is defined by a binary parity check matrix H of size (N−K)×N, which is expanded from a base matrix B of size







(


N
-
K

32

)

×


(

N
32

)

.





The base matrix defining (through expanded to parity check matrix) each LDPC code in the present invention is specified by the specification in the appendix. Each specification of the base matrix contains groups of numbers and each group contains 3 numbers. Each group of 3 numbers i j k specifies a non-negative entry of base matrix B, i.e, Bi,j=k. For instance, Table A of the Appendix is the specification of B1/4 which defines the base matrix B for the rate-1/4 LDPC code and the first group 0 16 9 denotes B0,16=9. All the entries not specified in the corresponding table are assigned with value −1. The parity check matrix H is expanded from B by replacing each non-negative entry Bi,j with a Bi,j-right-shifted identity matrix of size 32×32, and each negative entry with an all-zero matrix of size 32×32. A Bi,j-right-shifted identity matrix is a circulant permutation matrix with a 1 at column-(r+Bi,j)mod32 for row-r, 0≦r≦31, and zero elsewhere. All the LDPC codes in the present invention have codeword length 15360, therefore the parity check matrix H of the LDPC code with rate R contains 15360×(1−R) rows and 15360 columns.


LDPC codes in the present invention are linear block codes. Once the parity check matrix H of size (N−K)×N is specified, an LDPC code with codeword length N and dimension K is uniquely defined by H. Exchanging among any rows of parity check matrix H results in a new parity check matrix H′, which is called permutation of H. The LDPC code defined by a parity check matrix H is the same LDPC code defined by the permutation of the parity check matrix H. Therefore when we refer to an LDPC code defined by a parity check matrix H, we refer to an equivalent LDPC code defined by any possible permutation of H. Besides permutation of parity check matrix H, there exists many other ways to define or describe the LDPC code defined by H. When we refer to an LDPC code defined by a parity check matrix H, we refer to an equivalent LDPC code described in any format.



FIG. 1 is a diagram of a communications system employing LDPC codes, according to an embodiment of the present invention. A communications system includes a transmitter 101 which generates signal waveforms across a communication channel 102 to a receiver 103. The transmitter 101 contains a message source producing a discrete set of possible messages and each of these messages corresponds a signal waveform. The waveforms enter the channel 102 and is corrupted by noise. LDPC codes are employed to reduce the disturbances introduced by the channel 102.



FIG. 2 depicts a diagram of a video broadcasting system using LDPC codes, according to an embodiment of the present inversion. The satellite 201 broadcasts video program from the hub station 202 to the satellite terminals 203, which may include a set top box 204 for interfacing with a television display 205. In direct video broadcasting applications, power and bandwidth efficiency are essential. In the conventional video broadcasting systems, ECC techniques such as turbo trellis coding are used to provide power and bandwidth efficiency. Nevertheless the conventional ECC techniques require higher complexity and offer low throughput given power constraint. On the contrast, LDPC codes can offer high power and bandwidth efficiency without increased complexity. What is more, the structures of LDPC codes make them essentially suitable for parallel decoding which can greatly reduce decoding delay.



FIG. 3 depicts an exemplary transmitter in the communications system of FIG. 1 which employs LDPC codes as ECC. The LDPC encoder 302 encodes information bits from source 301 into LDPC codewords. The mapping from each information block to each LDPC codeword is specified by the parity check matrix (or equivalently the generator matrix) of the LDPC code. The LDPC codeword is interleaved (for some communication systems) and modulated to signal waveforms by the interleaver/modulator 303. These signal waveforms are sent to a transmit antenna 304 and propagated to a receiver shown in FIG. 4.



FIG. 4 depicts an exemplary receiver in FIG. 1 which employs LDPC codes as ECC. Signal waveforms are received by the receiving antenna 401 and distributed to demodulator/deinterleaveror 402. Signal waveforms are demodulated by demodulator and deinterleaved by deinterleavor (for some communication systems) and then distributed to a LDPC decoder 403 which iteratively decodes the received messages and output estimations of the transmitted codeword.


For most video broadcasting systems, directly transmitting an LDPC encoded and modulated signal waveforms is not acceptable, because receivers can't decode received signals without knowing where each encoded LDPC codeword starts or ends. Time references (or markers) therefore haven been necessary throughout the transmission to help identify the positions of LDPC codewords. Similarly, typical communication systems require that receiver's time and frequency be locked to a transmitter's reference, which is referred to as synchronization.


Furthermore, certain overhead information is typically periodically transferred to enable receivers to properly demodulate transmitted signals, decode signals and abstract user messages. For at least these reasons, typical transmitters insert a synchronization pattern and a header periodically into encoded messages, a process called frame formatting. Typically, a receiver first tries to lock onto a synchronization pattern and then decodes the header and message signal. Frame formatting design is critical to overall system performance and can directly impact the cost of establishing and operating a communication system. Frame formatting design often depends on many factors, such as channel characteristics, modulation type and ECC scheme. A well designed frame format may result in high performance receivers that achieve fast frame acquisition, reliable tracking (time and frequency lock) and improved ECC decoding performance (such as meeting the required FER) with minimum overhead at a low cost.



FIG. 9 illustrates an exemplary block diagram of a video broadcasting transmitter showing a framing and LDPC encoding process transforming original user data into modulated frames, according to an embodiment of the present invention. Through a process of frame grouping 901, the input data bits to be transmitted are first divided into subsequent groups, e.g. group n and group n+1. Each group contains a number of information bits required for the corresponding frame. Each of the information groups is then prefixed by a header (H) by the header insertion module 902. The header, along with each group, is further divided into j (an integer) sub-groups (sg) by the codeword grouping module 903, with each sub-group carrying an equal number of bits. For illustration purpose, j denotes the number of sub-groups in each group. For each sub-group, in an LDPC encoding 904 process, an LDPC encoder computes the error checking and error correction parity bits (P) of a fixed length based on the sub-group's data pattern and attaches the parity bits to the end of the associated sub-group to form a code word. Then the symbol mapping module 905 maps the bit stream of each codeword into modulation symbols according to the corresponding modulation type in the codeword. Following the symbol mapping, all frames are of an equal length, regardless of modulation used. Next the pilot insertion module 906 may insert a number of pilot waves (p) evenly into the encoded frames as shown in FIG. 1. Also, the UW and ACC insertion module 907 will add a UW followed by an ACC at the beginning of each frame. The symbol scrambler 908 scrambles the symbols of each frame except the UW using a fixed scrambling pattern. Finally, all the symbols may be modulated by modulator 909 to a radio frequency for transmission through an antenna.



FIG. 10 depicts an exemplary frame format of a transmitted frame containing encoded LDPC codewords according to an embodiment of the present invention. The frame starts with an 64-symbol unique word 1001, followed by 64-symbol auxiliary control code 1002, and m+1 segments 1003 of encoded LDPC data (or payload data) separated by m evenly distributed pilots 1004.



FIG. 8 depicts the performance of the family of quasi-cyclic irregular LDPC codes of code rate 1/2, 3/5, 2/3, 3/4, 4/5, 5/6, 13/15, and 9/10. From the simulation results, we observe that all codes have error floor lower than 10−7 and exhibit good threshold.


Appendix Tables A-J are specifications of the base matrices B for the code rates of 1/4, 2/5, 1/2, 3/5, 2/3, 3/4, 4/5, 5/6, 13/15, and 9/10, respectively.


Although the invention has been described by the way of examples of preferred embodiments, it is to be understood that various other adaptations and modifications may be made within the spirit and scope of the invention. Therefore, it is the object of the appended claims to cover all such variations and modifications as come within the true spirit and scope of the invention.


APPENDIX









APPENDIX TABLE A





Specification of the base matrix B1/4 for the rate-¼ LDPC code
































0
61
9
0
119
21
0
120
0
0
128
0
1
47
0
1
103
6


1
165
0
1
173
0
2
30
1
2
113
0
2
210
0
2
218
0


3
23
21
3
86
17
3
255
0
3
263
0
4
0
7
4
60
5


4
125
0
4
300
0
4
308
0
5
38
3
5
70
20
5
345
0


5
353
0
6
9
2
6
76
7
6
390
0
6
398
0
7
7
18


7
108
14
7
435
0
7
443
0
8
62
9
8
112
22
8
121
0


8
129
0
9
40
1
9
96
7
9
166
0
9
174
0
10
31
1


10
114
0
10
211
0
10
219
0
11
5
31
11
30
30
11
119
22


11
256
0
11
264
0
12
1
7
12
61
5
12
126
0
12
301
0


12
309
0
13
39
3
13
71
20
13
346
0
13
354
0
14
10
2


14
77
7
14
391
0
14
399
0
15
0
19
15
109
14
15
436
0


15
444
0
16
63
9
16
113
22
16
122
0
16
130
0
17
41
1


17
97
7
17
167
0
17
175
0
18
24
2
18
115
0
18
212
0


18
220
0
19
6
31
19
31
30
19
112
23
19
257
0
19
265
0


20
2
7
20
62
5
20
127
0
20
302
0
20
310
0
21
32
4


21
64
21
21
347
0
21
355
0
22
4
1
22
114
7
22
392
0


22
400
0
23
1
19
23
110
14
23
437
0
23
445
0
24
56
10


24
114
22
24
123
0
24
131
0
25
37
16
25
94
31
25
168
0


25
176
0
26
25
2
26
116
0
26
213
0
26
221
0
27
7
31


27
24
31
27
113
23
27
258
0
27
266
0
28
3
7
28
63
5


28
120
1
28
303
0
28
311
0
29
33
4
29
65
21
29
348
0


29
356
0
30
5
1
30
115
7
30
393
0
30
401
0
31
2
19


31
111
14
31
438
0
31
446
0
32
57
10
32
115
22
32
124
0


32
132
0
33
38
16
33
95
31
33
169
0
33
177
0
34
26
2


34
117
0
34
214
0
34
222
0
35
0
0
35
25
31
35
114
23


35
259
0
35
267
0
36
45
2
36
85
30
36
304
0
36
312
0


37
34
4
37
66
21
37
349
0
37
357
0
38
6
1
38
116
7


38
394
0
38
402
0
39
3
19
39
104
15
39
439
0
39
447
0


40
58
10
40
116
22
40
125
0
40
133
0
41
39
16
41
88
0


41
170
0
41
178
0
42
27
2
42
118
0
42
215
0
42
223
0


43
1
0
43
26
31
43
115
23
43
260
0
43
268
0
44
46
2


44
86
30
44
305
0
44
313
0
45
35
4
45
67
21
45
350
0


45
358
0
46
7
1
46
117
7
46
395
0
46
403
0
47
28
16


47
106
31
47
440
0
47
448
0
48
59
10
48
117
22
48
126
0


48
134
0
49
32
17
49
89
0
49
171
0
49
179
0
50
21
23


50
76
25
50
216
0
50
224
0
51
2
0
51
27
31
51
116
23


51
261
0
51
269
0
52
47
2
52
87
30
52
306
0
52
314
0


53
36
4
53
68
21
53
351
0
53
359
0
54
0
2
54
118
7


54
396
0
54
404
0
55
29
16
55
107
31
55
441
0
55
449
0


56
60
10
56
118
22
56
127
0
56
135
0
57
33
17
57
90
0


57
172
0
57
180
0
58
22
23
58
77
25
58
217
0
58
225
0


59
3
0
59
28
31
59
117
23
59
262
0
59
270
0
60
40
3


60
80
31
60
307
0
60
315
0
61
30
22
61
112
4
61
352
0


61
360
0
62
1
2
62
119
7
62
397
0
62
405
0
63
30
16


63
108
31
63
442
0
63
450
0
64
59
2
64
111
21
64
128
0


64
136
0
65
34
17
65
91
0
65
173
0
65
181
0
66
23
23


66
78
25
66
218
0
66
226
0
67
4
0
67
29
31
67
118
23


67
263
0
67
271
0
68
41
3
68
81
31
68
308
0
68
316
0


69
31
22
69
113
4
69
353
0
69
361
0
70
2
2
70
112
8


70
398
0
70
406
0
71
31
16
71
109
31
71
443
0
71
451
0


72
60
2
72
104
22
72
129
0
72
137
0
73
35
17
73
92
0


73
174
0
73
182
0
74
16
24
74
79
25
74
219
0
74
227
0


75
33
4
75
64
6
75
264
0
75
272
0
76
42
3
76
82
31


76
309
0
76
317
0
77
24
23
77
114
4
77
354
0
77
362
0


78
3
2
78
113
8
78
399
0
78
407
0
79
24
17
79
110
31


79
444
0
79
452
0
80
61
2
80
105
22
80
130
0
80
138
0


81
36
17
81
93
0
81
175
0
81
183
0
82
17
24
82
72
26


82
220
0
82
228
0
83
34
4
83
65
6
83
265
0
83
273
0


84
43
3
84
83
31
84
310
0
84
318
0
85
25
23
85
115
4


85
355
0
85
363
0
86
19
3
86
61
4
86
400
0
86
408
0


87
25
17
87
111
31
87
445
0
87
453
0
88
62
2
88
106
22


88
131
0
88
139
0
89
40
15
89
114
11
89
176
0
89
184
0


90
18
24
90
73
26
90
221
0
90
229
0
91
35
4
91
66
6


91
266
0
91
274
0
92
44
3
92
84
31
92
311
0
92
319
0


93
26
23
93
116
4
93
356
0
93
364
0
94
20
3
94
62
4


94
401
0
94
409
0
95
26
17
95
104
0
95
446
0
95
454
0


96
63
2
96
107
22
96
132
0
96
140
0
97
41
15
97
115
11


97
177
0
97
185
0
98
19
24
98
74
26
98
222
0
98
230
0


99
36
4
99
67
6
99
267
0
99
275
0
100
9
11
100
65
2


100
312
0
100
320
0
101
27
23
101
117
4
101
357
0
101
365
0


102
21
3
102
63
4
102
402
0
102
410
0
103
27
17
103
105
0


103
447
0
103
455
0
104
56
3
104
108
22
104
133
0
104
141
0


105
42
15
105
116
11
105
178
0
105
186
0
106
20
24
106
75
26


106
223
0
106
231
0
107
37
4
107
68
6
107
268
0
107
276
0


108
10
11
108
66
2
108
313
0
108
321
0
109
28
23
109
118
4


109
358
0
109
366
0
110
22
3
110
56
5
110
403
0
110
411
0


111
72
5
111
448
0
111
456
0
112
57
3
112
109
22
112
134
0


112
142
0
113
43
15
113
117
11
113
179
0
113
187
0
114
49
1


114
96
24
114
224
0
114
232
0
115
38
4
115
69
6
115
269
0


115
277
0
116
11
11
116
67
2
116
314
0
116
322
0
117
29
23


117
119
4
117
359
0
117
367
0
118
23
3
118
57
5
118
404
0


118
412
0
119
73
5
119
449
0
119
457
0
120
58
3
120
110
22


120
135
0
120
143
0
121
44
15
121
118
11
121
180
0
121
188
0


122
50
1
122
97
24
122
225
0
122
233
0
123
39
4
123
70
6


123
270
0
123
278
0
124
12
11
124
68
2
124
315
0
124
323
0


125
39
25
125
64
16
125
360
0
125
368
0
126
16
4
126
58
5


126
405
0
126
413
0
127
74
5
127
450
0
127
458
0
128
58
8


128
108
7
128
136
0
128
144
0
129
45
15
129
119
11
129
181
0


129
189
0
130
51
1
130
98
24
130
226
0
130
234
0
131
32
5


131
71
6
131
271
0
131
279
0
132
13
11
132
69
2
132
316
0


132
324
0
133
32
26
133
65
16
133
361
0
133
369
0
134
17
4


134
59
5
134
406
0
134
414
0
135
75
5
135
451
0
135
459
0


136
59
8
136
109
7
136
137
0
136
145
0
137
46
15
137
112
12


137
182
0
137
190
0
138
52
1
138
99
24
138
227
0
138
235
0


139
36
20
139
95
14
139
272
0
139
280
0
140
14
11
140
70
2


140
317
0
140
325
0
141
33
26
141
66
16
141
362
0
141
370
0


142
18
4
142
60
5
142
407
0
142
415
0
143
76
5
143
452
0


143
460
0
144
60
8
144
110
7
144
138
0
144
146
0
145
47
15


145
113
12
145
183
0
145
191
0
146
53
1
146
100
24
146
228
0


146
236
0
147
37
20
147
88
15
147
273
0
147
281
0
148
15
11


148
71
2
148
318
0
148
326
0
149
34
26
149
67
16
149
363
0


149
371
0
150
23
31
150
90
4
150
408
0
150
416
0
151
77
5


151
453
0
151
461
0
152
61
8
152
111
7
152
139
0
152
147
0


153
45
14
153
82
31
153
184
0
153
192
0
154
54
1
154
101
24


154
229
0
154
237
0
155
38
20
155
89
15
155
274
0
155
282
0


156
8
12
156
64
3
156
319
0
156
327
0
157
35
26
157
68
16


157
364
0
157
372
0
158
16
0
158
91
4
158
409
0
158
417
0


159
78
5
159
454
0
159
462
0
160
62
8
160
104
8
160
140
0


160
148
0
161
46
14
161
83
31
161
185
0
161
193
0
162
55
1


162
102
24
162
230
0
162
238
0
163
39
20
163
90
15
163
275
0


163
283
0
164
21
23
164
97
25
164
320
0
164
328
0
165
36
26


165
69
16
165
365
0
165
373
0
166
17
0
166
92
4
166
410
0


166
418
0
167
79
5
167
455
0
167
463
0
168
63
8
168
105
8


168
141
0
168
149
0
169
47
14
169
84
31
169
186
0
169
194
0


170
48
2
170
103
24
170
231
0
170
239
0
171
32
21
171
91
15


171
276
0
171
284
0
172
22
23
172
98
25
172
321
0
172
329
0


173
37
26
173
70
16
173
366
0
173
374
0
174
18
0
174
93
4


174
411
0
174
419
0
175
19
15
175
87
24
175
456
0
175
464
0


176
56
9
176
106
8
176
142
0
176
150
0
177
40
15
177
85
31


177
187
0
177
195
0
178
26
5
178
99
7
178
232
0
178
240
0


179
33
21
179
92
15
179
277
0
179
285
0
180
23
23
180
99
25


180
322
0
180
330
0
181
38
26
181
71
16
181
367
0
181
375
0


182
19
0
182
94
4
182
412
0
182
420
0
183
20
15
183
80
25


183
457
0
183
465
0
184
57
9
184
107
8
184
143
0
184
151
0


185
41
15
185
86
31
185
188
0
185
196
0
186
27
5
186
100
7


186
233
0
186
241
0
187
34
21
187
93
15
187
278
0
187
286
0


188
16
24
188
100
25
188
323
0
188
331
0
189
47
22
189
96
18


189
368
0
189
376
0
190
20
0
190
95
4
190
413
0
190
421
0


191
21
15
191
81
25
191
458
0
191
466
0
192
52
22
192
107
22


192
144
0
192
152
0
193
42
15
193
87
31
193
189
0
193
197
0


194
28
5
194
101
7
194
234
0
194
242
0
195
35
21
195
94
15


195
279
0
195
287
0
196
17
24
196
101
25
196
324
0
196
332
0


197
40
23
197
97
18
197
369
0
197
377
0
198
21
0
198
88
5


198
414
0
198
422
0
199
22
15
199
82
25
199
459
0
199
467
0


200
53
22
200
108
22
200
145
0
200
153
0
201
43
15
201
80
0


201
190
0
201
198
0
202
29
5
202
102
7
202
235
0
202
243
0


203
39
23
203
94
23
203
280
0
203
288
0
204
18
24
204
102
25


204
325
0
204
333
0
205
41
23
205
98
18
205
370
0
205
378
0


206
22
0
206
89
5
206
415
0
206
423
0
207
23
15
207
83
25


207
460
0
207
468
0
208
54
22
208
109
22
208
146
0
208
154
0


209
44
15
209
81
0
209
191
0
209
199
0
210
30
5
210
103
7


210
236
0
210
244
0
211
32
24
211
95
23
211
281
0
211
289
0


212
19
24
212
103
25
212
326
0
212
334
0
213
42
23
213
99
18


213
371
0
213
379
0
214
15
19
214
69
26
214
416
0
214
424
0


215
16
16
215
84
25
215
461
0
215
469
0
216
55
22
216
110
22


216
147
0
216
155
0
217
53
23
217
90
18
217
192
0
217
200
0


218
31
5
218
96
8
218
237
0
218
245
0
219
33
24
219
88
24


219
282
0
219
290
0
220
20
24
220
96
26
220
327
0
220
335
0


221
43
23
221
100
18
221
372
0
221
380
0
222
8
20
222
70
26


222
417
0
222
425
0
223
17
16
223
85
25
223
462
0
223
470
0


224
48
23
224
111
22
224
148
0
224
156
0
225
54
23
225
91
18


225
193
0
225
201
0
226
24
6
226
97
8
226
238
0
226
246
0


227
34
24
227
89
24
227
283
0
227
291
0
228
3
0
228
96
13


228
328
0
228
336
0
229
44
23
229
101
18
229
373
0
229
381
0


230
9
20
230
71
26
230
418
0
230
426
0
231
18
16
231
86
25


231
463
0
231
471
0
232
49
23
232
104
23
232
149
0
232
157
0


233
55
23
233
92
18
233
194
0
233
202
0
234
25
6
234
98
8


234
239
0
234
247
0
235
35
24
235
90
24
235
284
0
235
292
0


236
4
0
236
97
13
236
329
0
236
337
0
237
45
23
237
102
18


237
374
0
237
382
0
238
10
20
238
64
27
238
419
0
238
427
0


239
15
29
239
83
20
239
464
0
239
472
0
240
50
23
240
105
23


240
150
0
240
158
0
241
48
24
241
93
18
241
195
0
241
203
0


242
13
16
242
73
24
242
240
0
242
248
0
243
36
24
243
91
24


243
285
0
243
293
0
244
5
0
244
98
13
244
330
0
244
338
0


245
46
23
245
103
18
245
375
0
245
383
0
246
11
20
246
65
27


246
420
0
246
428
0
247
8
30
247
84
20
247
465
0
247
473
0


248
51
23
248
106
23
248
151
0
248
159
0
249
49
24
249
94
18


249
196
0
249
204
0
250
14
16
250
74
24
250
241
0
250
249
0


251
37
24
251
92
24
251
286
0
251
294
0
252
6
0
252
99
13


252
331
0
252
339
0
253
41
23
253
80
16
253
376
0
253
384
0


254
12
20
254
66
27
254
421
0
254
429
0
255
9
30
255
85
20


255
466
0
255
474
0
256
54
20
256
106
9
256
152
0
256
160
0


257
50
24
257
95
18
257
197
0
257
205
0
258
15
16
258
75
24


258
242
0
258
250
0
259
38
24
259
93
24
259
287
0
259
295
0


260
7
0
260
100
13
260
332
0
260
340
0
261
42
23
261
81
16


261
377
0
261
385
0
262
13
20
262
67
27
262
422
0
262
430
0


263
10
30
263
86
20
263
467
0
263
475
0
264
55
20
264
107
9


264
153
0
264
161
0
265
51
24
265
88
19
265
198
0
265
206
0


266
8
17
266
76
24
266
243
0
266
251
0
267
8
0
267
64
0


267
288
0
267
296
0
268
0
1
268
101
13
268
333
0
268
341
0


269
43
23
269
82
16
269
378
0
269
386
0
270
14
20
270
68
27


270
423
0
270
431
0
271
11
30
271
87
20
271
468
0
271
476
0


272
48
21
272
108
9
272
154
0
272
162
0
273
52
24
273
89
19


273
199
0
273
207
0
274
9
17
274
77
24
274
244
0
274
252
0


275
9
0
275
65
0
275
289
0
275
297
0
276
1
1
276
102
13


276
334
0
276
342
0
277
44
23
277
83
16
277
379
0
277
387
0


278
54
6
278
75
21
278
424
0
278
432
0
279
12
30
279
80
21


279
469
0
279
477
0
280
49
21
280
109
9
280
155
0
280
163
0


281
29
21
281
88
29
281
200
0
281
208
0
282
10
17
282
78
24


282
245
0
282
253
0
283
10
0
283
66
0
283
290
0
283
298
0


284
2
1
284
103
13
284
335
0
284
343
0
285
45
23
285
84
16


285
380
0
285
388
0
286
55
6
286
76
21
286
425
0
286
433
0


287
13
30
287
81
21
287
470
0
287
478
0
288
50
21
288
110
9


288
156
0
288
164
0
289
30
21
289
89
29
289
201
0
289
209
0


290
11
17
290
79
24
290
246
0
290
254
0
291
11
0
291
67
0


291
291
0
291
299
0
292
52
14
292
77
7
292
336
0
292
344
0


293
46
23
293
85
16
293
381
0
293
389
0
294
48
7
294
77
21


294
426
0
294
434
0
295
14
30
295
82
21
295
471
0
295
479
0


296
51
21
296
111
9
296
157
0
296
165
0
297
31
21
297
90
29


297
202
0
297
210
0
298
12
17
298
72
25
298
247
0
298
255
0


299
12
0
299
68
0
299
292
0
299
300
0
300
53
14
300
78
7


300
337
0
300
345
0
301
47
23
301
86
16
301
382
0
301
390
0


302
49
7
302
78
21
302
427
0
302
435
0
303
7
4
303
60
26


303
122
0
303
472
0
304
52
21
304
104
10
304
158
0
304
166
0


305
24
22
305
91
29
305
203
0
305
211
0
306
16
21
306
87
16


306
248
0
306
256
0
307
13
0
307
69
0
307
293
0
307
301
0


308
54
14
308
79
7
308
338
0
308
346
0
309
40
24
309
87
16


309
383
0
309
391
0
310
50
7
310
79
21
310
428
0
310
436
0


311
0
5
311
61
26
311
123
0
311
473
0
312
53
21
312
105
10


312
159
0
312
167
0
313
25
22
313
92
29
313
204
0
313
212
0


314
17
21
314
80
17
314
249
0
314
257
0
315
14
0
315
70
0


315
294
0
315
302
0
316
55
14
316
72
8
316
339
0
316
347
0


317
11
1
317
78
6
317
384
0
317
392
0
318
51
7
318
72
22


318
429
0
318
437
0
319
1
5
319
62
26
319
124
0
319
474
0


320
42
0
320
98
6
320
160
0
320
168
0
321
26
22
321
93
29


321
205
0
321
213
0
322
18
21
322
81
17
322
250
0
322
258
0


323
15
0
323
71
0
323
295
0
323
303
0
324
48
15
324
73
8


324
340
0
324
348
0
325
12
1
325
79
6
325
385
0
325
393
0


326
52
7
326
73
22
326
430
0
326
438
0
327
2
5
327
63
26


327
125
0
327
475
0
328
43
0
328
99
6
328
161
0
328
169
0


329
27
22
329
94
29
329
206
0
329
214
0
330
19
21
330
82
17


330
251
0
330
259
0
331
4
6
331
56
5
331
121
0
331
296
0


331
304
0
332
49
15
332
74
8
332
341
0
332
349
0
333
13
1


333
72
7
333
386
0
333
394
0
334
53
7
334
74
22
334
431
0


334
439
0
335
3
5
335
56
27
335
126
0
335
476
0
336
44
0


336
100
6
336
162
0
336
170
0
337
28
22
337
95
29
337
207
0


337
215
0
338
20
21
338
83
17
338
252
0
338
260
0
339
5
6


339
57
5
339
122
0
339
297
0
339
305
0
340
50
15
340
75
8


340
342
0
340
350
0
341
14
1
341
73
7
341
387
0
341
395
0


342
4
18
342
105
14
342
432
0
342
440
0
343
4
5
343
57
27


343
127
0
343
477
0
344
45
0
344
101
6
344
163
0
344
171
0


345
28
1
345
119
31
345
208
0
345
216
0
346
21
21
346
84
17


346
253
0
346
261
0
347
6
6
347
58
5
347
123
0
347
298
0


347
306
0
348
51
15
348
76
8
348
343
0
348
351
0
349
15
1


349
74
7
349
388
0
349
396
0
350
5
18
350
106
14
350
433
0


350
441
0
351
5
5
351
58
27
351
120
1
351
478
0
352
46
0


352
102
6
352
164
0
352
172
0
353
29
1
353
112
0
353
209
0


353
217
0
354
22
21
354
85
17
354
254
0
354
262
0
355
7
6


355
59
5
355
124
0
355
299
0
355
307
0
356
37
3
356
69
20


356
344
0
356
352
0
357
8
2
357
75
7
357
389
0
357
397
0


358
6
18
358
107
14
358
434
0
358
442
0
359
6
5
359
59
27


359
121
1
359
479
0
















APPENDIX TABLE B





Specification the base matrix B2/5 for the rate-⅖ LDPC code
































0
18
12
0
42
1
0
113
18
0
184
9
0
192
0
0
200
0


1
12
23
1
37
20
1
97
29
1
175
13
1
228
0
1
236
0


2
10
6
2
39
3
2
96
6
2
149
18
2
264
0
2
272
0


3
12
11
3
40
3
3
72
28
3
182
8
3
300
0
3
308
0


4
19
29
4
45
18
4
87
20
4
193
0
4
336
0
4
344
0


5
19
16
5
28
26
5
61
11
5
186
14
5
372
0
5
380
0


6
7
13
6
47
0
6
58
11
6
191
16
6
408
0
6
416
0


7
22
20
7
52
27
7
108
23
7
170
24
7
444
0
7
452
0


8
19
12
8
43
1
8
114
18
8
185
9
8
193
0
8
201
0


9
13
23
9
38
20
9
98
29
9
168
14
9
229
0
9
237
0


10
11
6
10
32
4
10
97
6
10
150
18
10
265
0
10
273
0


11
13
11
11
41
3
11
73
28
11
183
8
11
301
0
11
309
0


12
20
29
12
46
18
12
80
21
12
194
0
12
337
0
12
345
0


13
20
16
13
29
26
13
62
11
13
187
14
13
373
0
13
381
0


14
0
14
14
40
1
14
59
11
14
184
17
14
409
0
14
417
0


15
23
20
15
53
27
15
109
23
15
171
24
15
445
0
15
453
0


16
20
12
16
44
1
16
115
18
16
186
9
16
194
0
16
202
0


17
14
23
17
39
20
17
99
29
17
169
14
17
230
0
17
238
0


18
12
6
18
33
4
18
98
6
18
151
18
18
266
0
18
274
0


19
14
11
19
42
3
19
74
28
19
176
9
19
302
0
19
310
0


20
21
29
20
47
18
20
81
21
20
195
0
20
338
0
20
346
0


21
21
16
21
30
26
21
63
11
21
188
14
21
374
0
21
382
0


22
1
14
22
41
1
22
60
11
22
185
17
22
410
0
22
418
0


23
16
21
23
54
27
23
110
23
23
172
24
23
446
0
23
454
0


24
21
12
24
45
1
24
116
18
24
187
9
24
195
0
24
203
0


25
15
23
25
32
21
25
100
29
25
170
14
25
231
0
25
239
0


26
13
6
26
34
4
26
99
6
26
144
19
26
267
0
26
275
0


27
15
11
27
43
3
27
75
28
27
177
9
27
303
0
27
311
0


28
22
29
28
40
19
28
82
21
28
196
0
28
339
0
28
347
0


29
22
16
29
31
26
29
56
12
29
189
14
29
375
0
29
383
0


30
2
14
30
42
1
30
61
11
30
186
17
30
411
0
30
419
0


31
17
21
31
55
27
31
111
23
31
173
24
31
447
0
31
455
0


32
22
12
32
46
1
32
117
18
32
188
9
32
196
0
32
204
0


33
5
14
33
27
4
33
119
11
33
162
29
33
232
0
33
240
0


34
14
6
34
35
4
34
100
6
34
145
19
34
268
0
34
276
0


35
6
20
35
24
0
35
115
1
35
138
29
35
304
0
35
312
0


36
23
29
36
41
19
36
83
21
36
197
0
36
340
0
36
348
0


37
12
24
37
37
23
37
99
26
37
134
26
37
376
0
37
384
0


38
3
14
38
43
1
38
62
11
38
187
17
38
412
0
38
420
0


39
8
29
39
24
1
39
66
10
39
128
25
39
448
0
39
456
0


40
23
12
40
47
1
40
118
18
40
189
9
40
197
0
40
205
0


41
6
14
41
28
4
41
112
12
41
163
29
41
233
0
41
241
0


42
15
6
42
36
4
42
101
6
42
146
19
42
269
0
42
277
0


43
7
20
43
25
0
43
116
1
43
139
29
43
305
0
43
313
0


44
16
30
44
42
19
44
84
21
44
198
0
44
341
0
44
349
0


45
13
24
45
38
23
45
100
26
45
135
26
45
377
0
45
385
0


46
4
14
46
44
1
46
63
11
46
188
17
46
413
0
46
421
0


47
9
29
47
25
1
47
67
10
47
129
25
47
449
0
47
457
0


48
16
13
48
40
2
48
119
18
48
190
9
48
198
0
48
206
0


49
7
14
49
29
4
49
113
12
49
164
29
49
234
0
49
242
0


50
8
7
50
37
4
50
102
6
50
147
19
50
270
0
50
278
0


51
0
21
51
26
0
51
117
1
51
140
29
51
306
0
51
314
0


52
17
30
52
43
19
52
85
21
52
199
0
52
342
0
52
350
0


53
14
24
53
39
23
53
101
26
53
128
27
53
378
0
53
386
0


54
5
14
54
45
1
54
56
12
54
189
17
54
414
0
54
422
0


55
10
29
55
26
1
55
68
10
55
130
25
55
450
0
55
458
0


56
17
13
56
41
2
56
112
19
56
191
9
56
199
0
56
207
0


57
0
15
57
30
4
57
114
12
57
165
29
57
235
0
57
243
0


58
9
7
58
38
4
58
103
6
58
148
19
58
271
0
58
279
0


59
1
21
59
27
0
59
118
1
59
141
29
59
307
0
59
315
0


60
18
30
60
44
19
60
86
21
60
192
1
60
343
0
60
351
0


61
15
24
61
32
24
61
102
26
61
129
27
61
379
0
61
387
0


62
6
14
62
46
1
62
57
12
62
190
17
62
415
0
62
423
0


63
11
29
63
27
1
63
69
10
63
131
25
63
451
0
63
459
0


64
17
1
64
36
28
64
107
31
64
178
9
64
200
0
64
208
0


65
1
15
65
31
4
65
115
12
65
166
29
65
236
0
65
244
0


66
23
16
66
36
14
66
82
9
66
148
20
66
272
0
66
280
0


67
2
21
67
28
0
67
119
1
67
142
29
67
308
0
67
316
0


68
11
15
68
27
1
68
71
7
68
154
8
68
344
0
68
352
0


69
8
25
69
33
24
69
103
26
69
130
27
69
380
0
69
388
0


70
5
15
70
42
18
70
113
7
70
141
30
70
416
0
70
424
0


71
12
29
71
28
1
71
70
10
71
132
25
71
452
0
71
460
0


72
18
1
72
37
28
72
108
31
72
179
9
72
201
0
72
209
0


73
2
15
73
24
5
73
116
12
73
167
29
73
237
0
73
245
0


74
16
17
74
37
14
74
83
9
74
149
20
74
273
0
74
281
0


75
3
21
75
29
0
75
112
2
75
143
29
75
309
0
75
317
0


76
12
15
76
28
1
76
64
8
76
155
8
76
345
0
76
353
0


77
9
25
77
34
24
77
96
27
77
131
27
77
381
0
77
389
0


78
6
15
78
43
18
78
114
7
78
142
30
78
417
0
78
425
0


79
13
29
79
29
1
79
71
10
79
133
25
79
453
0
79
461
0


80
19
1
80
38
28
80
109
31
80
180
9
80
202
0
80
210
0


81
3
15
81
25
5
81
117
12
81
160
30
81
238
0
81
246
0


82
17
17
82
38
14
82
84
9
82
150
20
82
274
0
82
282
0


83
4
21
83
30
0
83
113
2
83
136
30
83
310
0
83
318
0


84
13
15
84
29
1
84
65
8
84
156
8
84
346
0
84
354
0


85
10
25
85
35
24
85
97
27
85
132
27
85
382
0
85
390
0


86
7
15
86
44
18
86
115
7
86
143
30
86
418
0
86
426
0


87
14
29
87
30
1
87
64
11
87
134
25
87
454
0
87
462
0


88
20
1
88
39
28
88
110
31
88
181
9
88
203
0
88
211
0


89
4
15
89
26
5
89
118
12
89
161
30
89
239
0
89
247
0


90
18
17
90
39
14
90
85
9
90
151
20
90
275
0
90
283
0


91
5
21
91
31
0
91
114
2
91
137
30
91
311
0
91
319
0


92
14
15
92
30
1
92
66
8
92
157
8
92
347
0
92
355
0


93
11
25
93
36
24
93
98
27
93
133
27
93
383
0
93
391
0


94
0
16
94
45
18
94
116
7
94
136
31
94
419
0
94
427
0


95
15
29
95
31
1
95
65
11
95
135
25
95
455
0
95
463
0


96
21
1
96
32
29
96
111
31
96
182
9
96
204
0
96
212
0


97
17
11
97
30
7
97
88
14
97
187
30
97
240
0
97
248
0


98
19
17
98
32
15
98
86
9
98
144
21
98
276
0
98
284
0


99
6
0
99
28
30
99
77
26
99
142
2
99
312
0
99
320
0


100
15
15
100
31
1
100
67
8
100
158
8
100
348
0
100
356
0


101
11
19
101
25
11
101
69
4
101
160
6
101
384
0
101
392
0


102
1
16
102
46
18
102
117
7
102
137
31
102
420
0
102
428
0


103
13
2
103
35
5
103
56
17
103
170
9
103
456
0
103
464
0


104
22
1
104
33
29
104
104
0
104
183
9
104
205
0
104
213
0


105
18
11
105
31
7
105
89
14
105
188
30
105
241
0
105
249
0


106
20
17
106
33
15
106
87
9
106
145
21
106
277
0
106
285
0


107
7
0
107
29
30
107
78
26
107
143
2
107
313
0
107
321
0


108
8
16
108
24
2
108
68
8
108
159
8
108
349
0
108
357
0


109
12
19
109
26
11
109
70
4
109
161
6
109
385
0
109
393
0


110
2
16
110
47
18
110
118
7
110
138
31
110
421
0
110
429
0


111
14
2
111
36
5
111
57
17
111
171
9
111
457
0
111
465
0


112
23
1
112
34
29
112
105
0
112
176
10
112
206
0
112
214
0


113
19
11
113
24
8
113
90
14
113
189
30
113
242
0
113
250
0


114
21
17
114
34
15
114
80
10
114
146
21
114
278
0
114
286
0


115
0
1
115
30
30
115
79
26
115
136
3
115
314
0
115
322
0


116
9
16
116
25
2
116
69
8
116
152
9
116
350
0
116
358
0


117
13
19
117
27
11
117
71
4
117
162
6
117
386
0
117
394
0


118
3
16
118
40
19
118
119
7
118
139
31
118
422
0
118
430
0


119
15
2
119
37
5
119
58
17
119
172
9
119
458
0
119
466
0


120
16
2
120
35
29
120
106
0
120
177
10
120
207
0
120
215
0


121
20
11
121
25
8
121
91
14
121
190
30
121
243
0
121
251
0


122
22
17
122
35
15
122
81
10
122
147
21
122
279
0
122
287
0


123
1
1
123
31
30
123
72
27
123
137
3
123
315
0
123
323
0


124
10
16
124
26
2
124
70
8
124
153
9
124
351
0
124
359
0


125
14
19
125
28
11
125
64
5
125
163
6
125
387
0
125
395
0


126
4
16
126
41
19
126
112
8
126
140
31
126
423
0
126
431
0


127
8
3
127
38
5
127
59
17
127
173
9
127
459
0
127
467
0


128
17
21
128
34
25
128
104
13
128
177
7
128
208
0
128
216
0


129
21
11
129
26
8
129
92
14
129
191
30
129
244
0
129
252
0


130
7
1
130
34
15
130
84
0
130
145
23
130
280
0
130
288
0


131
2
1
131
24
31
131
73
27
131
138
3
131
316
0
131
324
0


132
15
8
132
47
23
132
95
19
132
156
14
132
352
0
132
360
0


133
15
19
133
29
11
133
65
5
133
164
6
133
388
0
133
396
0


134
15
13
134
26
31
134
63
15
134
151
10
134
424
0
134
432
0


135
9
3
135
39
5
135
60
17
135
174
9
135
460
0
135
468
0


136
18
21
136
35
25
136
105
13
136
178
7
136
209
0
136
217
0


137
22
11
137
27
8
137
93
14
137
184
31
137
245
0
137
253
0


138
0
2
138
35
15
138
85
0
138
146
23
138
281
0
138
289
0


139
3
1
139
25
31
139
74
27
139
139
3
139
317
0
139
325
0


140
8
9
140
40
24
140
88
20
140
157
14
140
353
0
140
361
0


141
8
20
141
30
11
141
66
5
141
165
6
141
389
0
141
397
0


142
8
14
142
27
31
142
56
16
142
144
11
142
425
0
142
433
0


143
10
3
143
32
6
143
61
17
143
175
9
143
461
0
143
469
0


144
19
21
144
36
25
144
106
13
144
179
7
144
210
0
144
218
0


145
23
11
145
28
8
145
94
14
145
185
31
145
246
0
145
254
0


146
1
2
146
36
15
146
86
0
146
147
23
146
282
0
146
290
0


147
4
1
147
26
31
147
75
27
147
140
3
147
318
0
147
326
0


148
9
9
148
41
24
148
89
20
148
158
14
148
354
0
148
362
0


149
9
20
149
31
11
149
67
5
149
166
6
149
390
0
149
398
0


150
9
14
150
28
31
150
57
16
150
145
11
150
426
0
150
434
0


151
11
3
151
33
6
151
62
17
151
168
10
151
462
0
151
470
0


152
20
21
152
37
25
152
107
13
152
180
7
152
211
0
152
219
0


153
16
12
153
29
8
153
95
14
153
186
31
153
247
0
153
255
0


154
2
2
154
37
15
154
87
0
154
148
23
154
283
0
154
291
0


155
5
1
155
27
31
155
76
27
155
141
3
155
319
0
155
327
0


156
10
9
156
42
24
156
90
20
156
159
14
156
355
0
156
363
0


157
10
20
157
24
12
157
68
5
157
167
6
157
391
0
157
399
0


158
10
14
158
29
31
158
58
16
158
146
11
158
427
0
158
435
0


159
12
3
159
34
6
159
63
17
159
169
10
159
463
0
159
471
0


160
21
21
160
38
25
160
108
13
160
181
7
160
212
0
160
220
0


161
10
26
161
36
3
161
97
17
161
158
15
161
248
0
161
256
0


162
3
2
162
38
15
162
80
1
162
149
23
162
284
0
162
292
0


163
2
28
163
35
23
163
78
2
163
152
30
163
320
0
163
328
0


164
11
9
164
43
24
164
91
20
164
152
15
164
356
0
164
364
0


165
5
24
165
22
15
165
45
2
165
54
29
165
165
8
165
392
0


165
400
0
166
11
14
166
30
31
166
59
16
166
147
11
166
428
0


166
436
0
167
26
29
167
95
19
167
128
13
167
464
0
167
472
0


168
22
21
168
39
25
168
109
13
168
182
7
168
213
0
168
221
0


169
11
26
169
37
3
169
98
17
169
159
15
169
249
0
169
257
0


170
4
2
170
39
15
170
81
1
170
150
23
170
285
0
170
293
0


171
3
28
171
36
23
171
79
2
171
153
30
171
321
0
171
329
0


172
12
9
172
44
24
172
92
20
172
153
15
172
357
0
172
365
0


173
6
24
173
23
15
173
46
2
173
55
29
173
166
8
173
393
0


173
401
0
174
12
14
174
31
31
174
60
16
174
148
11
174
429
0


174
437
0
175
27
29
175
88
20
175
129
13
175
465
0
175
473
0


176
23
21
176
32
26
176
110
13
176
183
7
176
214
0
176
222
0


177
12
26
177
38
3
177
99
17
177
152
16
177
250
0
177
258
0


178
5
2
178
32
16
178
82
1
178
151
23
178
286
0
178
294
0


179
4
28
179
37
23
179
72
3
179
154
30
179
322
0
179
330
0


180
13
9
180
45
24
180
93
20
180
154
15
180
358
0
180
366
0


181
7
24
181
16
16
181
47
2
181
48
30
181
167
8
181
394
0


181
402
0
182
13
14
182
24
0
182
61
16
182
149
11
182
430
0


182
438
0
183
28
29
183
89
20
183
130
13
183
466
0
183
474
0


184
16
22
184
33
26
184
111
13
184
176
8
184
215
0
184
223
0


185
13
26
185
39
3
185
100
17
185
153
16
185
251
0
185
259
0


186
6
2
186
33
16
186
83
1
186
144
24
186
287
0
186
295
0


187
5
28
187
38
23
187
73
3
187
155
30
187
323
0
187
331
0


188
14
9
188
46
24
188
94
20
188
155
15
188
359
0
188
367
0


189
0
25
189
17
16
189
40
3
189
49
30
189
160
9
189
395
0


189
403
0
190
14
14
190
25
0
190
62
16
190
150
11
190
431
0


190
439
0
191
29
29
191
90
20
191
131
13
191
467
0
191
475
0


192
1
20
192
19
18
192
39
12
192
122
1
192
171
28
192
216
0


192
224
0
193
14
26
193
32
4
193
101
17
193
154
16
193
252
0


193
260
0
194
36
9
194
110
19
194
183
11
194
288
0
194
296
0


195
6
28
195
39
23
195
74
3
195
156
30
195
324
0
195
332
0


196
0
31
196
46
5
196
72
5
196
141
10
196
360
0
196
368
0


197
1
25
197
18
16
197
41
3
197
50
30
197
161
9
197
396
0


197
404
0
198
21
10
198
40
29
198
50
5
198
125
2
198
432
0


198
440
0
199
30
29
199
91
20
199
132
13
199
468
0
199
476
0


200
2
20
200
20
18
200
32
13
200
123
1
200
172
28
200
217
0


200
225
0
201
15
26
201
33
4
201
102
17
201
155
16
201
253
0


201
261
0
202
37
9
202
111
19
202
176
12
202
289
0
202
297
0


203
7
28
203
32
24
203
75
3
203
157
30
203
325
0
203
333
0


204
1
31
204
47
5
204
73
5
204
142
10
204
361
0
204
369
0


205
2
25
205
19
16
205
42
3
205
51
30
205
162
9
205
397
0


205
405
0
206
22
10
206
41
29
206
51
5
206
126
2
206
433
0


206
441
0
207
31
29
207
92
20
207
133
13
207
469
0
207
477
0


208
3
20
208
21
18
208
33
13
208
124
1
208
173
28
208
218
0


208
226
0
209
8
27
209
34
4
209
103
17
209
156
16
209
254
0


209
262
0
210
38
9
210
104
20
210
177
12
210
290
0
210
298
0


211
0
29
211
33
24
211
76
3
211
158
30
211
326
0
211
334
0


212
2
31
212
40
6
212
74
5
212
143
10
212
362
0
212
370
0


213
3
25
213
20
16
213
43
3
213
52
30
213
163
9
213
398
0


213
406
0
214
23
10
214
42
29
214
52
5
214
127
2
214
434
0


214
442
0
215
24
30
215
93
20
215
134
13
215
470
0
215
478
0


216
4
20
216
22
18
216
34
13
216
125
1
216
174
28
216
219
0


216
227
0
217
9
27
217
35
4
217
96
18
217
157
16
217
255
0


217
263
0
218
39
9
218
105
20
218
178
12
218
291
0
218
299
0


219
1
29
219
34
24
219
77
3
219
159
30
219
327
0
219
335
0


220
3
31
220
41
6
220
75
5
220
136
11
220
363
0
220
371
0


221
4
25
221
21
16
221
44
3
221
53
30
221
164
9
221
399
0


221
407
0
222
16
11
222
43
29
222
53
5
222
120
3
222
435
0


222
443
0
223
25
30
223
94
20
223
135
13
223
471
0
223
479
0


224
5
20
224
23
18
224
35
13
224
126
1
224
175
28
224
220
0


224
228
0
225
26
22
225
45
23
225
85
1
225
167
18
225
256
0


225
264
0
226
32
10
226
106
20
226
179
12
226
292
0
226
300
0


227
15
1
227
24
11
227
64
30
227
128
12
227
328
0
227
336
0


228
4
31
228
42
6
228
76
5
228
137
11
228
364
0
228
372
0


229
0
20
229
41
3
229
94
10
229
122
20
229
400
0
229
408
0


230
17
11
230
44
29
230
54
5
230
121
3
230
436
0
230
444
0


231
7
7
231
23
23
231
44
19
231
51
17
231
127
1
231
194
0


231
472
0
232
6
20
232
16
19
232
36
13
232
127
1
232
168
29


232
221
0
232
229
0
233
27
22
233
46
23
233
86
1
233
160
19


233
257
0
233
265
0
234
33
10
234
107
20
234
180
12
234
293
0


234
301
0
235
8
2
235
25
11
235
65
30
235
129
12
235
329
0


235
337
0
236
5
31
236
43
6
236
77
5
236
138
11
236
365
0


236
373
0
237
1
20
237
42
3
237
95
10
237
123
20
237
401
0


237
409
0
238
18
11
238
45
29
238
55
5
238
122
3
238
437
0


238
445
0
239
0
8
239
16
24
239
45
19
239
52
17
239
120
2


239
195
0
239
473
0
240
7
20
240
17
19
240
37
13
240
120
2


240
169
29
240
222
0
240
230
0
241
28
22
241
47
23
241
87
1


241
161
19
241
258
0
241
266
0
242
34
10
242
108
20
242
181
12


242
294
0
242
302
0
243
9
2
243
26
11
243
66
30
243
130
12


243
330
0
243
338
0
244
6
31
244
44
6
244
78
5
244
139
11


244
366
0
244
374
0
245
2
20
245
43
3
245
88
11
245
124
20


245
402
0
245
410
0
246
19
11
246
46
29
246
48
6
246
123
3


246
438
0
246
446
0
247
1
8
247
17
24
247
46
19
247
53
17


247
121
2
247
196
0
247
474
0
248
0
21
248
18
19
248
38
13


248
121
2
248
170
29
248
223
0
248
231
0
249
29
22
249
40
24


249
80
2
249
162
19
249
259
0
249
267
0
250
35
10
250
109
20


250
182
12
250
295
0
250
303
0
251
10
2
251
27
11
251
67
30


251
131
12
251
331
0
251
339
0
252
7
31
252
45
6
252
79
5


252
140
11
252
367
0
252
375
0
253
3
20
253
44
3
253
89
11


253
125
20
253
403
0
253
411
0
254
20
11
254
47
29
254
49
6


254
124
3
254
439
0
254
447
0
255
2
8
255
18
24
255
47
19


255
54
17
255
122
2
255
197
0
255
475
0
256
8
23
256
33
20


256
101
28
256
171
13
256
224
0
256
232
0
257
30
22
257
41
24


257
81
2
257
163
19
257
260
0
257
268
0
258
8
11
258
44
2


258
76
27
258
178
8
258
296
0
258
304
0
259
11
2
259
28
11


259
68
30
259
132
12
259
332
0
259
340
0
260
23
15
260
24
26


260
57
11
260
190
13
260
368
0
260
376
0
261
4
20
261
45
3


261
90
11
261
126
20
261
404
0
261
412
0
262
18
20
262
48
27


262
104
23
262
174
23
262
440
0
262
448
0
263
3
8
263
19
24


263
40
20
263
55
17
263
123
2
263
198
0
263
476
0
264
9
23


264
34
20
264
102
28
264
172
13
264
225
0
264
233
0
265
31
22


265
42
24
265
82
2
265
164
19
265
261
0
265
269
0
266
9
11


266
45
2
266
77
27
266
179
8
266
297
0
266
305
0
267
12
2


267
29
11
267
69
30
267
133
12
267
333
0
267
341
0
268
16
16


268
25
26
268
58
11
268
191
13
268
369
0
268
377
0
269
5
20


269
46
3
269
91
11
269
127
20
269
405
0
269
413
0
270
19
20


270
49
27
270
105
23
270
175
23
270
441
0
270
449
0
271
4
8


271
20
24
271
41
20
271
48
18
271
124
2
271
199
0
271
477
0


272
10
23
272
35
20
272
103
28
272
173
13
272
226
0
272
234
0


273
24
23
273
43
24
273
83
2
273
165
19
273
262
0
273
270
0


274
10
11
274
46
2
274
78
27
274
180
8
274
298
0
274
306
0


275
13
2
275
30
11
275
70
30
275
134
12
275
334
0
275
342
0


276
17
16
276
26
26
276
59
11
276
184
14
276
370
0
276
378
0


277
6
20
277
47
3
277
92
11
277
120
21
277
406
0
277
414
0


278
20
20
278
50
27
278
106
23
278
168
24
278
442
0
278
450
0


279
5
8
279
21
24
279
42
20
279
49
18
279
125
2
279
192
1


279
478
0
280
11
23
280
36
20
280
96
29
280
174
13
280
227
0


280
235
0
281
25
23
281
44
24
281
84
2
281
166
19
281
263
0


281
271
0
282
11
11
282
47
2
282
79
27
282
181
8
282
299
0


282
307
0
283
14
2
283
31
11
283
71
30
283
135
12
283
335
0


283
343
0
284
18
16
284
27
26
284
60
11
284
185
14
284
371
0


284
379
0
285
7
20
285
40
4
285
93
11
285
121
21
285
407
0


285
415
0
286
21
20
286
51
27
286
107
23
286
169
24
286
443
0


286
451
0
287
6
8
287
22
24
287
43
20
287
50
18
287
126
2


287
193
1
287
479
0
















APPENDIX TABLE C





Specification of the base matrix B1/2 for the rate-½ LDPC code
































0
6
16
0
24
12
0
42
16
0
101
9
0
153
21
0
234
3


0
240
0
0
248
0
1
15
24
1
21
1
1
42
30
1
93
17


1
155
15
1
228
29
1
270
0
1
278
0
2
20
3
2
54
19


2
73
23
2
146
2
2
211
18
2
300
0
2
308
0
3
28
23


3
44
13
3
84
3
3
153
11
3
205
0
3
330
0
3
338
0


4
4
29
4
14
22
4
45
25
4
77
28
4
129
9
4
241
0


4
360
0
4
368
0
5
4
13
5
25
22
5
32
8
5
56
30


5
146
9
5
238
8
5
390
0
5
398
0
6
0
4
6
10
6


6
35
29
6
54
7
6
166
23
6
219
0
6
420
0
6
428
0


7
16
0
7
26
29
7
52
1
7
107
11
7
171
5
7
450
0


7
458
0
8
7
16
8
25
12
8
43
16
8
102
9
8
154
21


8
235
3
8
241
0
8
249
0
9
8
25
9
22
1
9
43
30


9
94
17
9
156
15
9
229
29
9
271
0
9
279
0
10
21
3


10
55
19
10
74
23
10
147
2
10
212
18
10
301
0
10
309
0


11
29
23
11
45
13
11
85
3
11
154
11
11
206
0
11
331
0


11
339
0
12
5
29
12
15
22
12
46
25
12
78
28
12
130
9


12
242
0
12
361
0
12
369
0
13
5
13
13
26
22
13
33
8


13
57
30
13
147
9
13
239
8
13
391
0
13
399
0
14
1
4


14
11
6
14
36
29
14
55
7
14
167
23
14
220
0
14
421
0


14
429
0
15
17
0
15
27
29
15
53
1
15
108
11
15
172
5


15
451
0
15
459
0
16
0
17
16
26
12
16
44
16
16
103
9


16
155
21
16
236
3
16
242
0
16
250
0
17
15
18
17
28
26


17
32
25
17
85
24
17
136
0
17
208
0
17
272
0
17
280
0


18
22
3
18
48
20
18
75
23
18
148
2
18
213
18
18
302
0


18
310
0
19
30
23
19
46
13
19
86
3
19
155
11
19
207
0


19
332
0
19
340
0
20
6
29
20
8
23
20
47
25
20
79
28


20
131
9
20
243
0
20
362
0
20
370
0
21
14
1
21
50
7


21
59
1
21
145
2
21
187
27
21
392
0
21
400
0
22
2
4


22
12
6
22
37
29
22
48
8
22
160
24
22
221
0
22
422
0


22
430
0
23
18
0
23
28
29
23
54
1
23
109
11
23
173
5


23
452
0
23
460
0
24
1
17
24
27
12
24
45
16
24
96
10


24
156
21
24
237
3
24
243
0
24
251
0
25
8
19
25
29
26


25
33
25
25
86
24
25
137
0
25
209
0
25
273
0
25
281
0


26
23
3
26
49
20
26
76
23
26
149
2
26
214
18
26
303
0


26
311
0
27
31
23
27
47
13
27
87
3
27
156
11
27
200
1


27
333
0
27
341
0
28
7
29
28
9
23
28
40
26
28
72
29


28
132
9
28
244
0
28
363
0
28
371
0
29
15
1
29
51
7


29
60
1
29
146
2
29
188
27
29
393
0
29
401
0
30
3
4


30
13
6
30
38
29
30
49
8
30
161
24
30
222
0
30
423
0


30
431
0
31
19
0
31
29
29
31
55
1
31
110
11
31
174
5


31
453
0
31
461
0
32
2
17
32
28
12
32
46
16
32
97
10


32
157
21
32
238
3
32
244
0
32
252
0
33
9
19
33
30
26


33
34
25
33
87
24
33
138
0
33
210
0
33
274
0
33
282
0


34
17
29
34
52
6
34
68
8
34
152
9
34
193
0
34
304
0


34
312
0
35
24
24
35
40
14
35
80
4
35
157
11
35
201
1


35
334
0
35
342
0
36
0
30
36
10
23
36
41
26
36
73
29


36
133
9
36
245
0
36
364
0
36
372
0
37
8
2
37
52
7


37
61
1
37
147
2
37
189
27
37
394
0
37
402
0
38
0
11


38
8
6
38
54
21
38
97
23
38
121
16
38
168
6
38
424
0


38
432
0
39
20
0
39
30
29
39
48
2
39
111
11
39
175
5


39
454
0
39
462
0
40
3
17
40
29
12
40
47
16
40
98
10


40
158
21
40
239
3
40
245
0
40
253
0
41
10
19
41
31
26


41
35
25
41
80
25
41
139
0
41
211
0
41
275
0
41
283
0


42
18
29
42
53
6
42
69
8
42
153
9
42
194
0
42
305
0


42
313
0
43
25
24
43
41
14
43
81
4
43
158
11
43
202
1


43
335
0
43
343
0
44
1
30
44
11
23
44
42
26
44
74
29


44
134
9
44
246
0
44
365
0
44
373
0
45
9
2
45
53
7


45
62
1
45
148
2
45
190
27
45
395
0
45
403
0
46
1
11


46
9
6
46
55
21
46
98
23
46
122
16
46
169
6
46
425
0


46
433
0
47
21
0
47
31
29
47
49
2
47
104
12
47
168
6


47
455
0
47
463
0
48
4
17
48
30
12
48
40
17
48
99
10


48
159
21
48
232
4
48
246
0
48
254
0
49
11
19
49
24
27


49
36
25
49
81
25
49
140
0
49
212
0
49
276
0
49
284
0


50
19
29
50
54
6
50
70
8
50
154
9
50
195
0
50
306
0


50
314
0
51
20
24
51
29
25
51
55
16
51
58
17
51
123
16


51
186
16
51
336
0
51
344
0
52
2
30
52
12
23
52
43
26


52
75
29
52
135
9
52
247
0
52
366
0
52
374
0
53
10
2


53
54
7
53
63
1
53
149
2
53
191
27
53
396
0
53
404
0


54
2
11
54
10
6
54
48
22
54
99
23
54
123
16
54
170
6


54
426
0
54
434
0
55
21
9
55
37
14
55
105
16
55
138
31


55
183
18
55
456
0
55
464
0
56
5
17
56
31
12
56
41
17


56
100
10
56
152
22
56
233
4
56
247
0
56
255
0
57
12
19


57
25
27
57
37
25
57
82
25
57
141
0
57
213
0
57
277
0


57
285
0
58
20
29
58
55
6
58
71
8
58
155
9
58
196
0


58
307
0
58
315
0
59
21
24
59
30
25
59
48
17
59
59
17


59
124
16
59
187
16
59
337
0
59
345
0
60
3
30
60
13
23


60
44
26
60
76
29
60
128
10
60
240
1
60
367
0
60
375
0


61
11
2
61
55
7
61
56
2
61
150
2
61
184
28
61
397
0


61
405
0
62
3
11
62
11
6
62
49
22
62
100
23
62
124
16


62
171
6
62
427
0
62
435
0
63
22
9
63
38
14
63
106
16


63
139
31
63
176
19
63
457
0
63
465
0
64
5
0
64
22
16


64
40
23
64
99
15
64
147
18
64
230
15
64
248
0
64
256
0


65
13
19
65
26
27
65
38
25
65
83
25
65
142
0
65
214
0


65
278
0
65
286
0
66
21
29
66
48
7
66
64
9
66
156
9


66
197
0
66
308
0
66
316
0
67
22
24
67
31
25
67
49
17


67
60
17
67
125
16
67
188
16
67
338
0
67
346
0
68
3
20


68
24
6
68
45
11
68
68
3
68
135
18
68
197
4
68
368
0


68
376
0
69
12
2
69
48
8
69
57
2
69
151
2
69
185
28


69
398
0
69
406
0
70
4
11
70
12
6
70
50
22
70
101
23


70
125
16
70
172
6
70
428
0
70
436
0
71
23
9
71
39
14


71
107
16
71
140
31
71
177
19
71
458
0
71
466
0
72
6
0


72
23
16
72
41
23
72
100
15
72
148
18
72
231
15
72
249
0


72
257
0
73
14
19
73
27
27
73
39
25
73
84
25
73
143
0


73
215
0
73
279
0
73
287
0
74
22
29
74
49
7
74
65
9


74
157
9
74
198
0
74
309
0
74
317
0
75
23
24
75
24
26


75
50
17
75
61
17
75
126
16
75
189
16
75
339
0
75
347
0


76
4
20
76
25
6
76
46
11
76
69
3
76
128
19
76
198
4


76
369
0
76
377
0
77
13
2
77
49
8
77
58
2
77
144
3


77
186
28
77
399
0
77
407
0
78
5
11
78
13
6
78
51
22


78
102
23
78
126
16
78
173
6
78
429
0
78
437
0
79
16
10


79
32
15
79
108
16
79
141
31
79
178
19
79
459
0
79
467
0


80
7
0
80
16
17
80
42
23
80
101
15
80
149
18
80
224
16


80
250
0
80
258
0
81
5
0
81
27
0
81
44
31
81
91
31


81
131
10
81
237
24
81
280
0
81
288
0
82
23
29
82
50
7


82
66
9
82
158
9
82
199
0
82
310
0
82
318
0
83
16
25


83
25
26
83
51
17
83
62
17
83
127
16
83
190
16
83
340
0


83
348
0
84
5
20
84
26
6
84
47
11
84
70
3
84
129
19


84
199
4
84
370
0
84
378
0
85
14
12
85
25
20
85
54
9


85
101
30
85
126
7
85
191
14
85
400
0
85
408
0
86
6
11


86
14
6
86
52
22
86
103
23
86
127
16
86
174
6
86
430
0


86
438
0
87
17
10
87
33
15
87
109
16
87
142
31
87
179
19


87
460
0
87
468
0
88
0
1
88
17
17
88
43
23
88
102
15


88
150
18
88
225
16
88
251
0
88
259
0
89
6
0
89
28
0


89
45
31
89
92
31
89
132
10
89
238
24
89
281
0
89
289
0


90
16
30
90
51
7
90
67
9
90
159
9
90
192
1
90
311
0


90
319
0
91
17
25
91
26
26
91
52
17
91
63
17
91
120
17


91
191
16
91
341
0
91
349
0
92
6
20
92
27
6
92
40
12


92
71
3
92
130
19
92
192
5
92
371
0
92
379
0
93
15
12


93
26
20
93
55
9
93
102
30
93
127
7
93
184
15
93
401
0


93
409
0
94
7
11
94
15
6
94
53
22
94
96
24
94
120
17


94
175
6
94
431
0
94
439
0
95
18
10
95
34
15
95
110
16


95
143
31
95
180
19
95
461
0
95
469
0
96
1
1
96
18
17


96
44
23
96
103
15
96
151
18
96
226
16
96
252
0
96
260
0


97
7
0
97
29
0
97
46
31
97
93
31
97
133
10
97
239
24


97
282
0
97
290
0
98
16
2
98
44
11
98
91
8
98
129
5


98
196
9
98
312
0
98
320
0
99
18
25
99
27
26
99
53
17


99
56
18
99
121
17
99
184
17
99
342
0
99
350
0
100
7
20


100
28
6
100
41
12
100
64
4
100
131
19
100
193
5
100
372
0


100
380
0
101
8
13
101
27
20
101
48
10
101
103
30
101
120
8


101
185
15
101
402
0
101
410
0
102
7
9
102
19
25
102
50
11


102
75
27
102
160
28
102
220
29
102
432
0
102
440
0
103
19
10


103
35
15
103
111
16
103
136
0
103
181
19
103
462
0
103
470
0


104
2
1
104
19
17
104
45
23
104
96
16
104
144
19
104
227
16


104
253
0
104
261
0
105
0
1
105
30
0
105
47
31
105
94
31


105
134
10
105
232
25
105
283
0
105
291
0
106
17
2
106
45
11


106
92
8
106
130
5
106
197
9
106
313
0
106
321
0
107
19
25


107
28
26
107
54
17
107
57
18
107
122
17
107
185
17
107
343
0


107
351
0
108
0
21
108
29
6
108
42
12
108
65
4
108
132
19


108
194
5
108
373
0
108
381
0
109
9
13
109
28
20
109
49
10


109
96
31
109
121
8
109
186
15
109
403
0
109
411
0
110
0
10


110
20
25
110
51
11
110
76
27
110
161
28
110
221
29
110
433
0


110
441
0
111
20
10
111
36
15
111
104
17
111
137
0
111
182
19


111
463
0
111
471
0
112
3
1
112
20
17
112
46
23
112
97
16


112
145
19
112
228
16
112
254
0
112
262
0
113
1
1
113
31
0


113
40
0
113
95
31
113
135
10
113
233
25
113
284
0
113
292
0


114
18
2
114
46
11
114
93
8
114
131
5
114
198
9
114
314
0


114
322
0
115
19
14
115
24
11
115
34
31
115
84
18
115
137
12


115
206
4
115
344
0
115
352
0
116
1
21
116
30
6
116
43
12


116
66
4
116
133
19
116
195
5
116
374
0
116
382
0
117
10
13


117
29
20
117
50
10
117
97
31
117
122
8
117
187
15
117
404
0


117
412
0
118
1
10
118
21
25
118
52
11
118
77
27
118
162
28


118
222
29
118
434
0
118
442
0
119
8
20
119
38
17
119
45
24


119
72
22
119
117
0
119
181
7
119
464
0
119
472
0
120
4
1


120
21
17
120
47
23
120
98
16
120
146
19
120
229
16
120
255
0


120
263
0
121
2
1
121
24
1
121
41
0
121
88
0
121
128
11


121
234
25
121
285
0
121
293
0
122
19
2
122
47
11
122
94
8


122
132
5
122
199
9
122
315
0
122
323
0
123
20
14
123
25
11


123
35
31
123
85
18
123
138
12
123
207
4
123
345
0
123
353
0


124
2
21
124
31
6
124
44
12
124
67
4
124
134
19
124
196
5


124
375
0
124
383
0
125
11
13
125
30
20
125
51
10
125
98
31


125
123
8
125
188
15
125
405
0
125
413
0
126
2
10
126
22
25


126
53
11
126
78
27
126
163
28
126
223
29
126
435
0
126
443
0


127
9
20
127
39
17
127
46
24
127
73
22
127
118
0
127
182
7


127
465
0
127
473
0
128
2
22
128
32
0
128
45
8
128
93
27


128
162
18
128
221
27
128
256
0
128
264
0
129
3
1
129
25
1


129
42
0
129
89
0
129
129
11
129
235
25
129
286
0
129
294
0


130
20
2
130
40
12
130
95
8
130
133
5
130
192
10
130
316
0


130
324
0
131
21
14
131
26
11
131
36
31
131
86
18
131
139
12


131
200
5
131
346
0
131
354
0
132
0
31
132
10
7
132
38
7


132
70
21
132
106
23
132
168
29
132
376
0
132
384
0
133
12
13


133
31
20
133
52
10
133
99
31
133
124
8
133
189
15
133
406
0


133
414
0
134
3
10
134
23
25
134
54
11
134
79
27
134
164
28


134
216
30
134
436
0
134
444
0
135
10
20
135
32
18
135
47
24


135
74
22
135
119
0
135
183
7
135
466
0
135
474
0
136
3
22


136
33
0
136
46
8
136
94
27
136
163
18
136
222
27
136
257
0


136
265
0
137
4
1
137
26
1
137
43
0
137
90
0
137
130
11


137
236
25
137
287
0
137
295
0
138
21
2
138
41
12
138
88
9


138
134
5
138
193
10
138
317
0
138
325
0
139
22
14
139
27
11


139
37
31
139
87
18
139
140
12
139
201
5
139
347
0
139
355
0


140
1
31
140
11
7
140
39
7
140
71
21
140
107
23
140
169
29


140
377
0
140
385
0
141
13
13
141
24
21
141
53
10
141
100
31


141
125
8
141
190
15
141
407
0
141
415
0
142
4
10
142
16
26


142
55
11
142
72
28
142
165
28
142
217
30
142
437
0
142
445
0


143
11
20
143
33
18
143
40
25
143
75
22
143
112
1
143
176
8


143
467
0
143
475
0
144
4
22
144
34
0
144
47
8
144
95
27


144
164
18
144
223
27
144
258
0
144
266
0
145
26
6
145
35
5


145
84
7
145
121
9
145
206
14
145
288
0
145
296
0
146
22
2


146
42
12
146
89
9
146
135
5
146
194
10
146
318
0
146
326
0


147
23
14
147
28
11
147
38
31
147
80
19
147
141
12
147
202
5


147
348
0
147
356
0
148
2
31
148
12
7
148
32
8
148
64
22


148
108
23
148
170
29
148
378
0
148
386
0
149
13
20
149
32
11


149
55
27
149
139
12
149
170
15
149
408
0
149
416
0
150
5
10


150
17
26
150
48
12
150
73
28
150
166
28
150
218
30
150
438
0


150
446
0
151
12
20
151
34
18
151
41
25
151
76
22
15
113
1


151
177
8
151
468
0
151
476
0
152
5
22
152
35
0
152
40
9


152
88
28
152
165
18
152
216
28
152
259
0
152
267
0
153
27
6


153
36
5
153
85
7
153
122
9
153
207
14
153
289
0
153
297
0


154
23
2
154
43
12
154
90
9
154
128
6
154
195
10
154
319
0


154
327
0
155
16
15
155
29
11
155
39
31
155
81
19
155
142
12


155
203
5
155
349
0
155
357
0
156
3
31
156
13
7
156
33
8


156
65
22
156
109
23
156
171
29
156
379
0
156
387
0
157
14
20


157
33
11
157
48
28
157
140
12
157
171
15
157
409
0
157
417
0


158
6
10
158
18
26
158
49
12
158
74
28
158
167
28
158
219
30


158
439
0
158
447
0
159
13
20
159
35
18
159
42
25
159
77
22


159
114
1
159
178
8
159
469
0
159
477
0
160
6
22
160
36
0


160
41
9
160
89
28
160
166
18
160
217
28
160
260
0
160
268
0


161
28
6
161
37
5
161
86
7
161
123
9
161
200
15
161
290
0


161
298
0
162
9
13
162
26
25
162
44
9
162
68
25
162
119
14


162
228
2
162
320
0
162
328
0
163
17
15
163
30
11
163
32
0


163
82
19
163
143
12
163
204
5
163
350
0
163
358
0
164
4
31


164
14
7
164
34
8
164
66
22
164
110
23
164
172
29
164
380
0


164
388
0
165
15
20
165
34
11
165
49
28
165
141
12
165
172
15


165
410
0
165
418
0
166
23
5
166
37
10
166
53
31
166
116
5


166
209
25
166
440
0
166
448
0
167
14
20
167
36
18
167
43
25


167
78
22
167
115
1
167
179
8
167
470
0
167
478
0
168
7
22


168
37
0
168
42
9
168
90
28
168
167
18
168
218
28
168
261
0


168
269
0
169
29
6
169
38
5
169
87
7
169
124
9
169
201
15


169
291
0
169
299
0
170
10
13
170
27
25
170
45
9
170
69
25


170
112
15
170
229
2
170
321
0
170
329
0
171
18
15
171
31
11


171
33
0
171
83
19
171
136
13
171
205
5
171
351
0
171
359
0


172
5
31
172
15
7
172
35
8
172
67
22
172
111
23
172
173
29


172
381
0
172
389
0
173
8
21
173
35
11
173
50
28
173
142
12


173
173
15
173
411
0
173
419
0
174
16
6
174
38
10
174
54
31


174
117
5
174
210
25
174
441
0
174
449
0
175
15
20
175
37
18


175
44
25
175
79
22
175
116
1
175
180
8
175
471
0
175
479
0


176
0
23
176
38
0
176
43
9
176
91
28
176
160
19
176
219
28


176
262
0
176
270
0
177
30
6
177
39
5
177
80
8
177
125
9


177
202
15
177
292
0
177
300
0
178
11
13
178
28
25
178
46
9


178
70
25
178
113
15
178
230
2
178
322
0
178
330
0
179
6
26


179
22
0
179
41
25
179
60
4
179
105
21
179
176
31
179
352
0


179
360
0
180
6
31
180
8
8
180
36
8
180
68
22
180
104
24


180
174
29
180
382
0
180
390
0
181
9
21
181
36
11
181
51
28


181
143
12
181
174
15
181
412
0
181
420
0
182
17
6
182
39
10


182
55
31
182
118
5
182
211
25
182
442
0
182
450
0
183
9
15


183
37
19
183
48
3
183
118
12
183
165
12
183
242
0
183
472
0


184
1
23
184
39
0
184
44
9
184
92
28
184
161
19
184
220
28


184
263
0
184
271
0
185
31
6
185
32
6
185
81
8
185
126
9


185
203
15
185
293
0
185
301
0
186
12
13
186
29
25
186
47
9


186
73
25
186
114
15
186
231
2
186
323
0
186
331
0
187
7
26


187
23
0
187
42
25
187
61
4
187
106
21
187
177
31
187
353
0


187
361
0
188
7
31
188
9
8
188
37
8
188
69
22
188
105
24


188
175
29
188
383
0
188
391
0
189
10
21
189
37
11
189
52
28


189
136
13
189
175
15
189
413
0
189
421
0
190
18
6
190
32
11


190
48
0
190
119
5
190
212
25
190
443
0
190
451
0
191
10
15


191
38
19
191
49
3
191
119
12
191
166
12
191
243
0
191
473
0


192
9
24
192
23
0
192
44
29
192
95
16
192
157
14
192
230
28


192
264
0
192
272
0
193
24
7
193
33
6
193
82
8
193
127
9


193
204
15
193
294
0
193
302
0
194
13
13
194
30
25
194
40
10


194
64
26
194
115
15
194
224
3
194
324
0
194
332
0
195
0
27


195
16
1
195
43
25
195
62
4
195
107
21
195
178
31
195
354
0


195
362
0
196
6
12
196
27
21
196
34
7
196
58
29
196
148
8


196
232
8
196
384
0
196
392
0
197
11
21
197
38
11
197
53
28


197
137
13
197
168
16
197
414
0
197
422
0
198
19
6
198
33
11


198
49
0
198
112
6
198
213
25
198
444
0
198
452
0
199
11
15


199
39
19
199
50
3
199
112
13
199
167
12
199
244
0
199
474
0


200
10
24
200
16
1
200
45
29
200
88
17
200
158
14
200
231
28


200
265
0
200
273
0
201
25
7
201
34
6
201
83
8
201
120
10


201
205
15
201
295
0
201
303
0
202
14
13
202
31
25
202
41
10


202
65
26
202
116
15
202
225
3
202
325
0
202
333
0
203
1
27


203
17
1
203
44
25
203
63
4
203
108
21
203
179
31
203
355
0


203
363
0
204
7
12
204
28
21
204
35
7
204
59
29
204
149
8


204
233
8
204
385
0
204
393
0
205
12
21
205
39
11
205
54
28


205
138
13
205
169
16
205
415
0
205
423
0
206
20
6
206
34
11


206
50
0
206
113
6
206
214
25
206
445
0
206
453
0
207
12
15


207
32
20
207
51
3
207
113
13
207
160
13
207
245
0
207
475
0


208
11
24
208
17
1
208
46
29
208
89
17
208
159
14
208
224
29


208
266
0
208
274
0
209
16
3
209
50
19
209
77
22
209
150
1


209
215
17
209
296
0
209
304
0
210
15
13
210
24
26
210
42
10


210
66
26
210
117
15
210
226
3
210
326
0
210
334
0
211
2
27


211
18
1
211
45
25
211
56
5
211
109
21
211
180
31
211
356
0


211
364
0
212
0
13
212
29
21
212
36
7
212
60
29
212
150
8


212
234
8
212
386
0
212
394
0
213
4
3
213
14
5
213
39
28


213
50
7
213
162
23
213
223
31
213
416
0
213
424
0
214
21
6


214
35
11
214
51
0
214
114
6
214
215
25
214
446
0
214
454
0


215
13
15
215
33
20
215
52
3
215
114
13
215
161
13
215
246
0


215
476
0
216
12
24
216
18
1
216
47
29
216
90
17
216
152
15


216
225
29
216
267
0
216
275
0
217
17
3
217
51
19
217
78
22


217
151
1
217
208
18
217
297
0
217
305
0
218
8
14
218
25
26


218
43
10
218
67
26
218
118
15
218
227
3
218
327
0
218
335
0


219
3
27
219
19
1
219
46
25
219
57
5
219
110
21
219
181
31


219
357
0
219
365
0
220
1
13
220
30
21
220
37
7
220
61
29


220
151
8
220
235
8
220
387
0
220
395
0
221
5
3
221
15
5


221
32
29
221
51
7
221
163
23
221
216
0
221
417
0
221
425
0


222
22
6
222
36
11
222
52
0
222
115
6
222
208
26
222
447
0


222
455
0
223
14
15
223
34
20
223
53
3
223
115
13
223
162
13


223
247
0
223
477
0
224
13
24
224
19
1
224
40
30
224
91
17


224
153
15
224
226
29
224
268
0
224
276
0
225
18
3
225
52
19


225
79
22
225
144
2
225
209
18
225
298
0
225
306
0
226
26
23


226
42
13
226
82
3
226
159
10
226
203
0
226
328
0
226
336
0


227
4
27
227
20
1
227
47
25
227
58
5
227
111
21
227
182
31


227
358
0
227
366
0
228
2
13
228
31
21
228
38
7
228
62
29


228
144
9
228
236
8
228
388
0
228
396
0
229
6
3
229
8
6


229
33
29
229
52
7
229
164
23
229
217
0
229
418
0
229
426
0


230
22
31
230
24
29
230
50
1
230
105
11
230
169
5
230
448
0


230
456
0
231
15
15
231
35
20
231
54
3
231
116
13
231
163
13


231
240
1
231
478
0
232
14
24
232
20
1
232
41
30
232
92
17


232
154
15
232
227
29
232
269
0
232
277
0
233
19
3
233
53
19


233
72
23
233
145
2
233
210
18
233
299
0
233
307
0
234
27
23


234
43
13
234
83
3
234
152
11
234
204
0
234
329
0
234
337
0


235
5
27
235
21
1
235
40
26
235
59
5
235
104
22
235
183
31


235
359
0
235
367
0
236
3
13
236
24
22
236
39
7
236
63
29


236
145
9
236
237
8
236
389
0
236
397
0
237
7
3
237
9
6


237
34
29
237
53
7
237
165
23
237
218
0
237
419
0
237
427
0


238
23
31
238
25
29
238
51
1
238
106
11
238
170
5
238
449
0


238
457
0
239
8
16
239
36
20
239
55
3
239
117
13
239
164
13


239
241
1
239
479
0
















APPENDIX TABLE D





Specification of the base matrix B3/5 for the rate-⅗ LDPC code
































0
14
3
0
31
8
0
33
31
0
53
13
0
77
10
0
114
22


0
162
17
0
219
27
0
283
3
0
288
0
0
296
0
1
2
24


1
30
3
1
44
23
1
66
17
1
119
31
1
167
16
1
215
5


1
277
15
1
312
0
1
320
0
2
7
21
2
16
12
2
38
4


2
58
9
2
96
30
2
151
25
2
198
23
2
260
2
2
336
0


2
344
0
3
7
27
3
22
1
3
41
6
3
59
20
3
96
12


3
146
3
3
192
26
3
250
16
3
360
0
3
368
0
4
17
3


4
28
1
4
43
8
4
66
23
4
92
17
4
128
6
4
180
5


4
289
0
4
384
0
4
392
0
5
7
4
5
9
29
5
33
13


5
42
3
5
95
19
5
130
0
5
171
21
5
281
8
5
408
0


5
416
0
6
19
16
6
33
28
6
46
28
6
77
0
6
138
24


6
174
3
6
239
8
6
432
0
6
440
0
7
9
11
7
25
16


7
52
1
7
73
20
7
136
30
7
188
22
7
227
27
7
456
0


7
464
0
8
15
3
8
24
9
8
34
31
8
54
13
8
78
10


8
115
22
8
163
17
8
220
27
8
284
3
8
289
0
8
297
0


9
3
24
9
31
3
9
45
23
9
67
17
9
112
0
9
160
17


9
208
6
9
278
15
9
313
0
9
321
0
10
0
22
10
17
12


10
39
4
10
59
9
10
97
30
10
144
26
10
199
23
10
261
2


10
337
0
10
345
0
11
0
28
11
23
1
11
42
6
11
60
20


11
97
12
11
147
3
11
193
26
11
251
16
11
361
0
11
369
0


12
18
3
12
29
1
12
44
8
12
67
23
12
93
17
12
129
6


12
181
5
12
290
0
12
385
0
12
393
0
13
0
5
13
10
29


13
34
13
13
43
3
13
88
20
13
131
0
13
172
21
13
282
8


13
409
0
13
417
0
14
20
16
14
34
28
14
47
28
14
78
0


14
139
24
14
175
3
14
232
9
14
433
0
14
441
0
15
10
11


15
26
16
15
53
1
15
74
20
15
137
30
15
189
22
15
228
27


15
457
0
15
465
0
16
8
4
16
25
9
16
35
31
16
55
13


16
79
10
16
116
22
16
164
17
16
221
27
16
285
3
16
290
0


16
298
0
17
4
24
17
24
4
17
46
23
17
68
17
17
113
0


17
161
17
17
209
6
17
279
15
17
314
0
17
322
0
18
1
22


18
18
12
18
32
5
18
60
9
18
98
30
18
145
26
18
192
24


18
262
2
18
338
0
18
346
0
19
1
28
19
16
2
19
43
6


19
61
20
19
98
12
19
148
3
19
194
26
19
252
16
19
362
0


19
370
0
20
19
3
20
30
1
20
45
8
20
68
23
20
94
17


20
130
6
20
182
5
20
291
0
20
386
0
20
394
0
21
1
5


21
11
29
21
35
13
21
44
3
21
89
20
21
132
0
21
173
21


21
283
8
21
410
0
21
418
0
22
21
16
22
35
28
22
40
29


22
79
0
22
140
24
22
168
4
22
233
9
22
434
0
22
442
0


23
11
11
23
27
16
23
54
1
23
75
20
23
138
30
23
190
22


23
229
27
23
458
0
23
466
0
24
9
4
24
26
9
24
36
31


24
48
14
24
72
11
24
117
22
24
165
17
24
222
27
24
286
3


24
291
0
24
299
0
25
5
24
25
25
4
25
47
23
25
69
17


25
114
0
25
162
17
25
210
6
25
272
16
25
315
0
25
323
0


26
2
22
26
19
12
26
33
5
26
61
9
26
99
30
26
146
26


26
193
24
26
263
2
26
339
0
26
347
0
27
2
28
27
17
2


27
44
6
27
62
20
27
99
12
27
149
3
27
195
26
27
253
16


27
363
0
27
371
0
28
20
3
28
31
1
28
46
8
28
69
23


28
95
17
28
131
6
28
183
5
28
292
0
28
387
0
28
395
0


29
2
5
29
12
29
29
36
13
29
45
3
29
90
20
29
133
0


29
174
21
29
284
8
29
411
0
29
419
0
30
22
16
30
36
28


30
41
29
30
72
1
30
141
24
30
169
4
30
234
9
30
435
0


30
443
0
31
12
11
31
28
16
31
55
1
31
76
20
31
139
30


31
191
22
31
230
27
31
459
0
31
467
0
32
10
4
32
27
9


32
37
31
32
49
14
32
73
11
32
118
22
32
166
17
32
223
27


32
287
3
32
292
0
32
300
0
33
6
24
33
26
4
33
40
24


33
70
17
33
115
0
33
163
17
33
211
6
33
273
16
33
316
0


33
324
0
34
3
22
34
20
12
34
34
5
34
62
9
34
100
30


34
147
26
34
194
24
34
256
3
34
340
0
34
348
0
35
3
28


35
18
2
35
45
6
35
63
20
35
100
12
35
150
3
35
196
26


35
254
16
35
364
0
35
372
0
36
21
3
36
24
2
36
47
8


36
70
23
36
88
18
36
132
6
36
176
6
36
293
0
36
388
0


36
396
0
37
3
5
37
13
29
37
37
13
37
46
3
37
91
20


37
134
0
37
175
21
37
285
8
37
412
0
37
420
0
38
23
16


38
37
28
38
42
29
38
73
1
38
142
24
38
170
4
38
235
9


38
436
0
38
444
0
39
13
11
39
29
16
39
48
2
39
77
20


39
140
30
39
184
23
39
231
27
39
460
0
39
468
0
40
11
4


40
28
9
40
38
31
40
50
14
40
74
11
40
119
22
40
167
17


40
216
28
40
280
4
40
293
0
40
301
0
41
7
24
41
27
4


41
41
24
41
71
17
41
116
0
41
164
17
41
212
6
41
274
16


41
317
0
41
325
0
42
4
22
42
21
12
42
35
5
42
63
9


42
101
30
42
148
26
42
195
24
42
257
3
42
341
0
42
349
0


43
4
28
43
19
2
43
46
6
43
56
21
43
101
12
43
151
3


43
197
26
43
255
16
43
365
0
43
373
0
44
22
3
44
25
2


44
40
9
44
71
23
44
89
18
44
133
6
44
177
6
44
294
0


44
389
0
44
397
0
45
4
5
45
14
29
45
38
13
45
47
3


45
92
20
45
135
0
45
168
22
45
286
8
45
413
0
45
421
0


46
16
17
46
38
28
46
43
29
46
74
1
46
143
24
46
171
4


46
236
9
46
437
0
46
445
0
47
14
11
47
30
16
47
49
2


47
78
20
47
141
30
47
185
23
47
224
28
47
461
0
47
469
0


48
12
4
48
29
9
48
39
31
48
51
14
48
75
11
48
112
23


48
160
18
48
217
28
48
281
4
48
294
0
48
302
0
49
0
25


49
28
4
49
42
24
49
64
18
49
117
0
49
165
17
49
213
6


49
275
16
49
318
0
49
326
0
50
5
22
50
22
12
50
36
5


50
56
10
50
102
30
50
149
26
50
196
24
50
258
3
50
342
0


50
350
0
51
5
28
51
20
2
51
47
6
51
57
21
51
102
12


51
144
4
51
198
26
51
248
17
51
366
0
51
374
0
52
23
3


52
26
2
52
41
9
52
64
24
52
90
18
52
134
6
52
178
6


52
295
0
52
390
0
52
398
0
53
5
5
53
15
29
53
39
13


53
40
4
53
93
20
53
128
1
53
169
22
53
287
8
53
414
0


53
422
0
54
17
17
54
39
28
54
44
29
54
75
1
54
136
25


54
172
4
54
237
9
54
438
0
54
446
0
55
15
11
55
31
16


55
50
2
55
79
20
55
142
30
55
186
23
55
225
28
55
462
0


55
470
0
56
13
4
56
30
9
56
32
0
56
52
14
56
76
11


56
113
23
56
161
18
56
218
28
56
282
4
56
295
0
56
303
0


57
1
25
57
29
4
57
43
24
57
65
18
57
118
0
57
166
17


57
214
6
57
276
16
57
319
0
57
327
0
58
6
22
58
23
12


58
37
5
58
57
10
58
103
30
58
150
26
58
197
24
58
259
3


58
343
0
58
351
0
59
6
28
59
21
2
59
40
7
59
58
21


59
103
12
59
145
4
59
199
26
59
249
17
59
367
0
59
375
0


60
16
4
60
27
2
60
42
9
60
65
24
60
91
18
60
135
6


60
179
6
60
288
1
60
391
0
60
399
0
61
6
5
61
8
30


61
32
14
61
41
4
61
94
20
61
129
1
61
170
22
61
280
9


61
415
0
61
423
0
62
18
17
62
32
29
62
45
29
62
76
1


62
137
25
62
173
4
62
238
9
62
439
0
62
447
0
63
8
12


63
24
17
63
51
2
63
72
21
63
143
30
63
187
23
63
226
28


63
463
0
63
471
0
64
15
14
64
24
26
64
39
24
64
65
9


64
118
0
64
162
5
64
220
8
64
277
2
64
296
0
64
304
0


65
0
5
65
25
19
65
47
23
65
62
23
65
116
22
65
165
23


65
203
9
65
286
24
65
320
0
65
328
0
66
6
24
66
8
6


66
20
0
66
39
16
66
49
20
66
88
30
66
146
20
66
217
24


66
258
21
66
344
0
66
352
0
67
6
0
67
21
13
67
47
22


67
48
10
67
81
16
67
141
2
67
186
6
67
249
1
67
368
0


67
376
0
68
15
20
68
34
12
68
50
18
68
79
22
68
152
23


68
179
7
68
243
4
68
392
0
68
400
0
69
8
12
69
34
21


69
52
16
69
82
16
69
127
8
69
183
12
69
232
10
69
416
0


69
424
0
70
19
21
70
33
7
70
50
14
70
105
15
70
130
30


70
208
3
70
270
24
70
440
0
70
448
0
71
2
21
71
15
1


71
29
20
71
49
0
71
86
28
71
126
8
71
228
1
71
241
29


71
464
0
71
472
0
72
8
15
72
25
26
72
32
25
72
66
9


72
119
0
72
163
5
72
221
8
72
278
2
72
297
0
72
305
0


73
1
5
73
26
19
73
40
24
73
63
23
73
117
22
73
166
23


73
204
9
73
287
24
73
321
0
73
329
0
74
7
24
74
9
6


74
21
0
74
32
17
74
50
20
74
89
30
74
147
20
74
218
24


74
259
21
74
345
0
74
353
0
75
7
0
75
22
13
75
40
23


75
49
10
75
82
16
75
142
2
75
187
6
75
250
1
75
369
0


75
377
0
76
8
21
76
35
12
76
51
18
76
72
23
76
153
23


76
180
7
76
244
4
76
393
0
76
401
0
77
9
12
77
35
21


77
53
16
77
83
16
77
120
9
77
176
13
77
233
10
77
417
0


77
425
0
78
20
21
78
34
7
78
51
14
78
106
15
78
131
30


78
209
3
78
271
24
78
441
0
78
449
0
79
3
21
79
8
2


79
30
20
79
50
0
79
87
28
79
127
8
79
229
1
79
242
29


79
465
0
79
473
0
80
9
15
80
26
26
80
33
25
80
67
9


80
112
1
80
164
5
80
222
8
80
279
2
80
298
0
80
306
0


81
2
5
81
27
19
81
41
24
81
56
24
81
118
22
81
167
23


81
205
9
81
280
25
81
322
0
81
330
0
82
0
25
82
10
6


82
22
0
82
33
17
82
51
20
82
90
30
82
148
20
82
219
24


82
260
21
82
346
0
82
354
0
83
0
1
83
23
13
83
41
23


83
50
10
83
83
16
83
143
2
83
188
6
83
251
1
83
370
0


83
378
0
84
9
21
84
36
12
84
52
18
84
73
23
84
154
23


84
181
7
84
245
4
84
394
0
84
402
0
85
10
12
85
36
21


85
54
16
85
84
16
85
121
9
85
177
13
85
234
10
85
418
0


85
426
0
86
21
21
86
35
7
86
52
14
86
107
15
86
132
30


86
210
3
86
264
25
86
442
0
86
450
0
87
4
21
87
9
2


87
31
20
87
51
0
87
80
29
87
120
9
87
230
1
87
243
29


87
466
0
87
474
0
88
10
15
88
27
26
88
34
25
88
68
9


88
113
1
88
165
5
88
223
8
88
272
3
88
299
0
88
307
0


89
3
5
89
28
19
89
42
24
89
57
24
89
119
22
89
160
24


89
206
9
89
281
25
89
323
0
89
331
0
90
1
25
90
11
6


90
23
0
90
34
17
90
52
20
90
91
30
90
149
20
90
220
24


90
261
21
90
347
0
90
355
0
91
1
1
91
16
14
91
42
23


91
51
10
91
84
16
91
136
3
91
189
6
91
252
1
91
371
0


91
379
0
92
10
21
92
37
12
92
53
18
92
74
23
92
155
23


92
182
7
92
246
4
92
395
0
92
403
0
93
11
12
93
37
21


93
55
16
93
85
16
93
122
9
93
178
13
93
235
10
93
419
0


93
427
0
94
22
21
94
36
7
94
53
14
94
108
15
94
133
30


94
211
3
94
265
25
94
443
0
94
451
0
95
5
21
95
10
2


95
24
21
95
52
0
95
81
29
95
121
9
95
231
1
95
244
29


95
467
0
95
475
0
96
11
15
96
28
26
96
35
25
96
69
9


96
114
1
96
166
5
96
216
9
96
273
3
96
300
0
96
308
0


97
4
5
97
29
19
97
43
24
97
58
24
97
112
23
97
161
24


97
207
9
97
282
25
97
324
0
97
332
0
98
2
25
98
12
6


98
16
1
98
35
17
98
53
20
98
92
30
98
150
20
98
221
24


98
262
21
98
348
0
98
356
0
99
2
1
99
17
14
99
43
23


99
52
10
99
85
16
99
137
3
99
190
6
99
253
1
99
372
0


99
380
0
100
11
21
100
38
12
100
54
18
100
75
23
100
156
23


100
183
7
100
247
4
100
396
0
100
404
0
101
12
12
101
38
21


101
48
17
101
86
16
101
123
9
101
179
13
101
236
10
101
420
0


101
428
0
102
23
21
102
37
7
102
54
14
102
109
15
102
134
30


102
212
3
102
266
25
102
444
0
102
452
0
103
6
21
103
11
2


103
25
21
103
53
0
103
82
29
103
122
9
103
224
2
103
245
29


103
468
0
103
476
0
104
12
15
104
29
26
104
36
25
104
70
9


104
115
1
104
167
5
104
217
9
104
274
3
104
301
0
104
309
0


105
5
5
105
30
19
105
44
24
105
59
24
105
113
23
105
162
24


105
200
10
105
283
25
105
325
0
105
333
0
106
3
25
106
13
6


106
17
1
106
36
17
106
54
20
106
93
30
106
151
20
106
222
24


106
263
21
106
349
0
106
357
0
107
3
1
107
18
14
107
44
23


107
53
10
107
86
16
107
138
3
107
191
6
107
254
1
107
373
0


107
381
0
108
12
21
108
39
12
108
55
18
108
76
23
108
157
23


108
176
8
108
240
5
108
397
0
108
405
0
109
13
12
109
39
21


109
49
17
109
87
16
109
124
9
109
180
13
109
237
10
109
421
0


109
429
0
110
16
22
110
38
7
110
55
14
110
110
15
110
135
30


110
213
3
110
267
25
110
445
0
110
453
0
111
7
21
111
12
2


111
26
21
111
54
0
111
83
29
111
123
9
111
225
2
111
246
29


111
469
0
111
477
0
112
13
15
112
30
26
112
37
25
112
71
9


112
116
1
112
160
6
112
218
9
112
275
3
112
302
0
112
310
0


113
6
5
113
31
19
113
45
24
113
60
24
113
114
23
113
163
24


113
201
10
113
284
25
113
326
0
113
334
0
114
4
25
114
14
6


114
18
1
114
37
17
114
55
20
114
94
30
114
144
21
114
223
24


114
256
22
114
350
0
114
358
0
115
4
1
115
19
14
115
45
23


115
54
10
115
87
16
115
139
3
115
184
7
115
255
1
115
374
0


115
382
0
116
13
21
116
32
13
116
48
19
116
77
23
116
158
23


116
177
8
116
241
5
116
398
0
116
406
0
117
14
12
117
32
22


117
50
17
117
80
17
117
125
9
117
181
13
117
238
10
117
422
0


117
430
0
118
17
22
118
39
7
118
48
15
118
111
15
118
128
31


118
214
3
118
268
25
118
446
0
118
454
0
119
0
22
119
13
2


119
27
21
119
55
0
119
84
29
119
124
9
119
226
2
119
247
29


119
470
0
119
478
0
120
14
15
120
31
26
120
38
25
120
64
10


120
117
1
120
161
6
120
219
9
120
276
3
120
303
0
120
311
0


121
7
5
121
24
20
121
46
24
121
61
24
121
115
23
121
164
24


121
202
10
121
285
25
121
327
0
121
335
0
122
5
25
122
15
6


122
19
1
122
38
17
122
48
21
122
95
30
122
145
21
122
216
25


122
257
22
122
351
0
122
359
0
123
5
1
123
20
14
123
46
23


123
55
10
123
80
17
123
140
3
123
185
7
123
248
2
123
375
0


123
383
0
124
14
21
124
33
13
124
49
19
124
78
23
124
159
23


124
178
8
124
242
5
124
399
0
124
407
0
125
15
12
125
33
22


125
51
17
125
81
17
125
126
9
125
182
13
125
239
10
125
423
0


125
431
0
126
18
22
126
32
8
126
49
15
126
104
16
126
129
31


126
215
3
126
269
25
126
447
0
126
455
0
127
1
22
127
14
2


127
28
21
127
48
1
127
85
29
127
125
9
127
227
2
127
240
30


127
471
0
127
479
0
128
0
9
128
26
28
128
45
19
128
71
8


128
105
20
128
158
18
128
209
15
128
266
31
128
304
0
128
312
0


129
5
3
129
19
30
129
24
10
129
42
25
129
56
19
129
97
6


129
156
1
129
203
3
129
261
20
129
328
0
129
336
0
130
6
17


130
17
7
130
31
18
130
44
9
130
95
0
130
171
20
130
189
14


130
275
21
130
352
0
130
360
0
131
22
10
131
29
2
131
54
14


131
126
19
131
157
6
131
179
3
131
242
11
131
376
0
131
384
0


132
12
1
132
39
13
132
48
5
132
103
6
132
137
0
132
205
28


132
235
16
132
400
0
132
408
0
133
15
4
133
17
15
133
36
11


133
41
1
133
108
6
133
150
21
133
199
22
133
255
16
133
424
0


133
432
0
134
10
6
134
20
7
134
30
1
134
50
29
134
109
17


134
135
17
134
191
30
134
267
9
134
448
0
134
456
0
135
7
6


135
12
0
135
37
30
135
44
22
135
52
29
135
80
18
135
122
6


135
168
31
135
225
26
135
290
0
135
472
0
136
1
9
136
27
28


136
46
19
136
64
9
136
106
20
136
159
18
136
210
15
136
267
31


136
305
0
136
313
0
137
6
3
137
20
30
137
25
10
137
43
25


137
57
19
137
98
6
137
157
1
137
204
3
137
262
20
137
329
0


137
337
0
138
7
17
138
18
7
138
24
19
138
45
9
138
88
1


138
172
20
138
190
14
138
276
21
138
353
0
138
361
0
139
23
10


139
30
2
139
55
14
139
127
19
139
158
6
139
180
3
139
243
11


139
377
0
139
385
0
140
13
1
140
32
14
140
49
5
140
96
7


140
138
0
140
206
28
140
236
16
140
401
0
140
409
0
141
8
5


141
18
15
141
37
11
141
42
1
141
109
6
141
151
21
141
192
23


142
248
17
141
425
0
141
433
0
142
11
6
142
21
7
142
31
1


142
51
29
142
110
17
142
128
18
142
184
31
142
268
9
142
449
0


142
457
0
143
0
7
143
13
0
143
38
30
143
45
22
143
53
29


143
81
18
143
123
6
143
169
31
143
226
26
143
291
0
143
473
0


144
2
9
144
28
28
144
47
19
144
65
9
144
107
20
144
152
19


144
211
15
144
268
31
144
306
0
144
314
0
145
7
3
145
21
30


145
26
10
145
44
25
145
58
19
145
99
6
145
158
1
145
205
3


145
263
20
145
330
0
145
338
0
146
0
18
146
19
7
146
25
19


146
46
9
146
89
1
146
173
20
146
191
14
146
277
21
146
354
0


146
362
0
147
16
11
147
31
2
147
48
15
147
120
20
147
159
6


147
181
3
147
244
11
147
378
0
147
386
0
148
14
1
148
33
14


148
50
5
148
97
7
148
139
0
148
207
28
148
237
16
148
402
0


148
410
0
149
9
5
149
19
15
149
38
11
149
43
1
149
110
6


149
144
22
149
193
23
149
249
17
149
426
0
149
434
0
150
12
6


150
22
7
150
24
2
150
52
29
150
111
17
150
129
18
150
185
31


150
269
9
150
450
0
150
458
0
151
1
7
151
14
0
151
39
30


151
46
22
151
54
29
151
82
18
151
124
6
151
170
31
151
227
26


151
292
0
151
474
0
152
3
9
152
29
28
152
40
20
152
66
9


152
108
20
152
153
19
152
212
15
152
269
31
152
307
0
152
315
0


153
0
4
153
22
30
153
27
10
153
45
25
153
59
19
153
100
6


153
159
1
153
206
3
153
256
21
153
331
0
153
339
0
154
1
18


154
20
7
154
26
19
154
47
9
154
90
1
154
174
20
154
184
15


154
278
21
154
355
0
154
363
0
155
17
11
155
24
3
155
49
15


155
121
20
155
152
7
155
182
3
155
245
11
155
379
0
155
387
0


156
15
1
156
34
14
156
51
5
156
98
7
156
140
0
156
200
29


156
238
16
156
403
0
156
411
0
157
10
5
157
20
15
157
39
11


157
44
1
157
111
6
157
145
22
157
194
23
157
250
17
157
427
0


157
435
0
158
13
6
158
23
7
158
25
2
158
53
29
158
104
18


158
130
18
158
186
31
158
270
9
158
451
0
158
459
0
159
2
7


159
15
0
159
32
31
159
47
22
159
55
29
159
83
18
159
125
6


159
171
31
159
228
26
159
293
0
159
475
0
160
4
9
160
30
28


160
41
20
160
67
9
160
109
20
160
154
19
160
213
15
160
270
31


160
308
0
160
316
0
161
1
4
161
23
30
161
28
10
161
46
25


161
60
19
161
101
6
161
152
2
161
207
3
161
257
21
161
332
0


161
340
0
162
2
18
162
21
7
162
27
19
162
40
10
162
91
1


162
175
20
162
185
15
162
279
21
162
356
0
162
364
0
163
18
11


163
25
3
163
50
15
163
122
20
163
153
7
163
183
3
163
246
11


163
380
0
163
388
0
164
8
2
164
35
14
164
52
5
164
99
7


164
141
0
164
201
29
164
239
16
164
404
0
164
412
0
165
11
5


165
21
15
165
32
12
165
45
1
165
104
7
165
146
22
165
195
23


165
251
17
165
428
0
165
436
0
166
14
6
166
16
8
166
26
2


166
54
29
166
105
18
166
131
18
166
187
31
166
271
9
166
452
0


166
460
0
167
3
7
167
8
1
167
33
31
167
40
23
167
48
30


167
84
18
167
126
6
167
172
31
167
229
26
167
294
0
167
476
0


168
5
9
168
31
28
168
42
20
168
68
9
168
110
20
168
155
19


168
214
15
168
271
31
168
309
0
168
317
0
169
2
4
169
16
31


169
29
10
169
47
25
169
61
19
169
102
6
169
153
2
169
200
4


169
258
21
169
333
0
169
341
0
170
3
18
170
22
7
170
28
19


170
41
10
170
92
1
170
168
21
170
186
15
170
272
22
170
357
0


170
365
0
171
19
11
171
26
3
171
51
15
171
123
20
171
154
7


171
176
4
171
247
11
171
381
0
171
389
0
172
9
2
172
36
14


172
53
5
172
100
7
172
142
0
172
202
29
172
232
17
172
405
0


172
413
0
173
12
5
173
22
15
173
33
12
173
46
1
173
105
7


173
147
22
173
196
23
173
252
17
173
429
0
173
437
0
174
15
6


174
17
8
174
27
2
174
55
29
174
106
18
174
132
18
174
188
31


174
264
10
174
453
0
174
461
0
175
4
7
175
9
1
175
34
31


175
41
23
175
49
30
175
85
18
175
127
6
175
173
31
175
230
26


175
295
0
175
477
0
176
6
9
176
24
29
176
43
20
176
69
9


176
111
20
176
156
19
176
215
15
176
264
0
176
310
0
176
318
0


177
3
4
177
17
31
177
30
10
177
40
26
177
62
19
177
103
6


177
154
2
177
201
4
177
259
21
177
334
0
177
342
0
178
4
18


178
23
7
178
29
19
178
42
10
178
93
1
178
169
21
178
187
15


178
273
22
178
358
0
178
366
0
179
20
11
179
27
3
179
52
15


179
124
20
179
155
7
179
177
4
179
240
12
179
382
0
179
390
0


180
10
2
180
37
14
180
54
5
180
101
7
180
143
0
180
203
29


180
233
17
180
406
0
180
414
0
181
13
5
181
23
15
181
34
12


181
47
1
181
106
7
181
148
22
181
197
23
181
253
17
181
430
0


181
438
0
182
8
7
182
18
8
182
28
2
182
48
30
182
107
18


182
133
18
182
189
31
182
265
10
182
454
0
182
462
0
183
5
7


183
10
1
183
35
31
183
42
23
183
50
30
183
86
18
183
120
7


183
174
31
183
231
26
183
288
1
183
478
0
184
7
9
184
25
29


184
44
20
184
70
9
184
104
21
184
157
19
184
208
16
184
265
0


184
311
0
184
319
0
185
4
4
185
18
31
185
31
10
185
41
26


185
63
19
185
96
7
185
155
2
185
202
4
185
260
21
185
335
0


185
343
0
186
5
18
186
16
8
186
30
19
186
43
10
186
94
1


186
170
21
186
188
15
186
274
22
186
359
0
186
367
0
187
21
11


187
28
3
187
53
15
187
125
20
187
156
7
187
178
4
187
241
12


187
383
0
187
391
0
188
11
2
188
38
14
188
55
5
188
102
7


188
136
1
188
204
29
188
234
17
188
407
0
188
415
0
189
14
5


189
16
16
189
35
12
189
40
2
189
107
7
189
149
22
189
198
23


189
254
17
189
431
0
189
439
0
190
9
7
190
19
8
190
29
2


190
49
30
190
108
18
190
134
18
190
190
31
190
266
10
190
455
0


190
463
0
191
6
7
191
11
1
191
36
31
191
43
23
191
51
30


191
87
18
191
121
7
191
175
31
191
224
27
191
289
1
191
479
0
















APPENDIX TABLE E





Specification of the base matrix B2/3 for the rate-⅔ LDPC code
































0
6
31
0
13
26
0
38
22
0
43
5
0
74
9
0
83
4


0
120
16
0
162
5
0
211
28
0
259
16
0
314
3
0
320
0


0
328
0
1
0
23
1
8
27
1
31
7
1
47
5
1
78
19


1
119
17
1
154
29
1
202
14
1
240
19
1
297
2
1
340
0


1
348
0
2
0
4
2
9
15
2
30
12
2
46
31
2
66
22


2
117
2
2
170
15
2
192
29
2
258
28
2
291
27
2
360
0


2
368
0
3
5
2
3
11
7
3
28
18
3
34
5
3
94
28


3
106
2
3
156
23
3
197
21
3
265
1
3
305
5
3
380
0


3
388
0
4
23
16
4
28
19
4
35
5
4
54
11
4
86
18


4
101
23
4
148
7
4
181
3
4
237
26
4
321
0
4
400
0


4
408
0
5
0
17
5
17
28
5
26
27
5
37
29
5
61
0


5
128
30
5
150
1
5
177
0
5
223
0
5
316
8
5
420
0


5
428
0
6
8
17
6
16
3
6
41
15
6
55
3
6
129
20


6
163
28
6
206
12
6
248
14
6
302
4
6
440
0
6
448
0


7
14
19
7
22
30
7
35
19
7
60
15
7
94
9
7
179
11


7
184
14
7
237
2
7
286
11
7
460
0
7
468
0
8
7
31


8
14
26
8
39
22
8
44
5
8
75
9
8
84
4
8
121
16


8
163
5
8
212
28
8
260
16
8
315
3
8
321
0
8
329
0


9
1
23
9
9
27
9
24
8
9
40
6
9
79
19
9
112
18


9
155
29
9
203
14
9
241
19
9
298
2
9
341
0
9
349
0


10
1
4
10
10
15
10
31
12
10
47
31
10
67
22
10
118
2


10
171
15
10
193
29
10
259
28
10
292
27
10
361
0
10
369
0


11
6
2
11
12
7
11
29
18
11
35
5
11
95
28
11
107
2


11
157
23
11
198
21
11
266
1
11
306
5
11
381
0
11
389
0


12
16
17
12
29
19
12
36
5
12
55
11
12
87
18
12
102
23


12
149
7
12
182
3
12
238
26
12
322
0
12
401
0
12
409
0


13
1
17
13
18
28
13
27
27
13
38
29
13
62
0
13
129
30


13
151
1
13
178
0
13
216
1
13
317
8
13
421
0
13
429
0


14
9
17
14
17
3
14
42
15
14
48
4
14
130
20
14
164
28


14
207
12
14
249
14
14
303
4
14
441
0
14
449
0
15
15
19


15
23
30
15
36
19
15
61
15
15
95
9
15
180
11
15
185
14


15
238
2
15
287
11
15
461
0
15
469
0
16
0
0
16
15
26


16
32
23
16
45
5
16
76
9
16
85
4
16
122
16
16
164
5


16
213
28
16
261
16
16
316
3
16
322
0
16
330
0
17
2
23


17
10
27
17
25
8
17
41
6
17
72
20
17
113
18
17
156
29


17
204
14
17
242
19
17
299
2
17
342
0
17
350
0
18
2
4


18
11
15
18
24
13
18
40
0
18
68
22
18
119
2
18
172
15


18
194
29
18
260
28
18
293
27
18
362
0
18
370
0
19
7
2


19
13
7
19
30
18
19
36
5
19
88
29
19
108
2
19
158
23


19
199
21
19
267
1
19
307
5
19
382
0
19
390
0
20
17
17


20
30
19
20
37
5
20
48
12
20
80
19
20
103
23
20
150
7


20
183
3
20
239
26
20
323
0
20
402
0
20
410
0
21
2
17


21
19
28
21
28
27
21
39
29
21
63
0
21
130
30
21
144
2


21
179
0
21
217
1
21
318
8
21
422
0
21
430
0
22
10
17


22
18
3
22
43
15
22
49
4
22
131
20
22
165
28
22
200
13


22
250
14
22
296
5
22
442
0
22
450
0
23
8
20
23
16
31


23
37
19
23
62
15
23
88
10
23
181
11
23
186
14
23
239
2


23
280
12
23
462
0
23
470
0
24
1
0
24
8
27
24
33
23


24
46
5
24
77
9
24
86
4
24
123
16
24
165
5
24
214
28


24
262
16
24
317
3
24
323
0
24
331
0
25
3
23
25
11
27


25
26
8
25
42
6
25
73
20
25
114
18
25
157
29
25
205
14


25
243
19
25
300
2
25
343
0
25
351
0
26
3
4
26
12
15


26
25
13
26
41
0
26
69
22
26
112
3
26
173
15
26
195
29


26
261
28
26
294
27
26
363
0
26
371
0
27
0
3
27
14
7


27
31
18
27
37
5
27
89
29
27
109
2
27
159
23
27
192
22


27
268
1
27
308
5
27
383
0
27
391
0
28
18
17
28
31
19


28
38
5
28
49
12
28
81
19
28
96
24
28
151
7
28
176
4


28
232
27
28
324
0
28
403
0
28
411
0
29
3
17
29
20
28


29
29
27
29
32
30
29
56
1
29
131
30
29
145
2
29
180
0


29
218
1
29
319
8
29
423
0
29
431
0
30
11
17
30
19
3


30
44
15
30
50
4
30
132
20
30
166
28
30
201
13
30
251
14


30
297
5
30
443
0
30
451
0
31
9
20
31
17
31
31
38
19


31
63
15
31
89
10
31
182
11
31
187
14
31
232
3
31
281
12


31
463
0
31
471
0
32
2
0
32
9
27
32
34
23
32
47
5


32
78
9
32
87
4
32
124
16
32
166
5
32
215
28
32
263
16


32
318
3
32
324
0
32
332
0
33
1
5
33
14
30
33
29
21


33
47
1
33
76
15
33
127
23
33
154
7
33
192
3
33
246
23


33
317
24
33
344
0
33
352
0
34
4
4
34
13
15
34
26
13


34
42
0
34
70
22
34
113
3
34
174
15
34
196
29
34
262
28


34
295
27
34
364
0
34
372
0
35
4
21
35
11
18
35
17
7


35
33
30
35
74
4
35
126
29
35
153
28
35
189
30
35
242
1


35
282
31
35
384
0
35
392
0
36
19
17
36
24
20
36
39
5


36
50
12
36
82
19
36
97
24
36
144
8
36
177
4
36
233
27


36
325
0
36
404
0
36
412
0
37
21
0
37
26
6
37
33
9


37
54
14
37
91
30
37
143
15
37
175
18
37
253
10
37
273
8


37
424
0
37
432
0
38
12
17
38
20
3
38
45
15
38
51
4


38
133
20
38
167
28
38
202
13
38
252
14
38
298
5
38
444
0


38
452
0
39
19
0
39
32
25
39
40
29
39
65
11
39
80
27


39
130
5
39
175
11
39
229
3
39
274
31
39
464
0
39
472
0


40
3
0
40
10
27
40
35
23
40
40
6
40
79
9
40
80
5


40
125
16
40
167
5
40
208
29
40
256
17
40
319
3
40
325
0


40
333
0
41
2
5
41
15
30
41
30
21
41
40
2
41
77
15


41
120
24
41
155
7
41
193
3
41
247
23
41
318
24
41
345
0


41
353
0
42
5
4
42
14
15
42
27
13
42
43
0
42
71
22


42
114
3
42
175
15
42
197
29
42
263
28
42
288
28
42
365
0


42
373
0
43
5
21
43
12
18
43
18
7
43
34
30
43
75
4


43
127
29
43
154
28
43
190
30
43
243
1
43
283
31
43
385
0


43
393
0
44
20
17
44
25
20
44
32
6
44
51
12
44
83
19


44
98
24
44
145
8
44
178
4
44
234
27
44
326
0
44
405
0


44
413
0
45
22
0
45
27
6
45
34
9
45
55
14
45
92
30


45
136
16
45
168
19
45
254
10
45
274
8
45
425
0
45
433
0


46
13
17
46
21
3
46
46
15
46
52
4
46
134
20
46
160
29


46
203
13
46
253
14
46
299
5
46
445
0
46
453
0
47
20
0


47
33
25
47
41
29
47
66
11
47
81
27
47
131
5
47
168
12


47
230
3
47
275
31
47
465
0
47
473
0
48
4
0
48
11
27


48
36
23
48
41
6
48
72
10
48
81
5
48
126
16
48
160
6


48
209
29
48
257
17
48
312
4
48
326
0
48
334
0
49
3
5


49
8
31
49
31
21
49
41
2
49
78
15
49
121
24
49
156
7


49
194
3
49
240
24
49
319
24
49
346
0
49
354
0
50
6
4


50
15
15
50
28
13
50
44
0
50
64
23
50
115
3
50
168
16


50
198
29
50
256
29
50
289
28
50
366
0
50
374
0
51
6
21


51
13
18
51
19
7
51
35
30
51
76
4
51
120
30
51
155
28


51
191
30
51
244
1
51
284
31
51
386
0
51
394
0
52
21
17


52
26
20
52
33
6
52
52
12
52
84
19
52
99
24
52
146
8


52
179
4
52
235
27
52
327
0
52
406
0
52
414
0
53
23
0


53
28
6
53
35
9
53
48
15
53
93
30
53
137
16
53
169
19


53
255
10
53
275
8
53
426
0
53
434
0
54
14
17
54
22
3


54
47
15
54
53
4
54
135
20
54
161
29
54
204
13
54
254
14


54
300
5
54
446
0
54
454
0
55
21
0
55
34
25
55
42
29


55
67
11
55
82
27
55
132
5
55
169
12
55
231
3
55
276
31


55
466
0
55
474
0
56
5
0
56
12
27
56
37
23
56
42
6


56
73
10
56
82
5
56
127
16
56
161
6
56
210
29
56
258
17


56
313
4
56
327
0
56
335
0
57
4
5
57
9
31
57
24
22


57
42
2
57
79
15
57
122
24
57
157
7
57
195
3
57
241
24


57
312
25
57
347
0
57
355
0
58
7
4
58
8
16
58
29
13


58
45
0
58
65
23
58
116
3
58
169
16
58
199
29
58
257
29


58
290
28
58
367
0
58
375
0
59
7
21
59
14
18
59
20
7


59
36
30
59
77
4
59
121
30
59
156
28
59
184
31
59
245
1


59
285
31
59
387
0
59
395
0
60
22
17
60
27
20
60
34
6


60
53
12
60
85
19
60
100
24
60
147
8
60
180
4
60
236
27


60
320
1
60
407
0
60
415
0
61
16
1
61
29
6
61
36
9


61
49
15
61
94
30
61
138
16
61
170
19
61
248
11
61
276
8


61
427
0
61
435
0
62
15
17
62
23
3
62
40
16
62
54
4


62
128
21
62
162
29
62
205
13
62
255
14
62
301
5
62
447
0


62
455
0
63
22
0
63
35
25
63
43
29
63
68
11
63
83
27


63
133
5
63
170
12
63
224
4
63
277
31
63
467
0
63
475
0


64
3
21
64
11
21
64
25
23
64
41
11
64
101
13
64
121
2


64
162
2
64
201
27
64
253
24
64
311
17
64
328
0
64
336
0


65
5
5
65
10
31
65
25
22
65
43
2
65
72
16
65
123
24


65
158
7
65
196
3
65
242
24
65
313
25
65
348
0
65
356
0


66
11
28
66
26
2
66
32
29
66
45
19
66
92
11
66
111
2


66
141
31
66
196
11
66
259
5
66
288
17
66
368
0
66
376
0


67
0
22
67
15
18
67
21
7
67
37
30
67
78
4
67
122
30


67
157
28
67
185
31
67
246
1
67
286
31
67
388
0
67
396
0


68
2
11
68
18
23
68
25
14
68
38
18
68
52
15
68
103
2


68
151
27
68
182
13
68
269
11
68
309
9
68
408
0
68
416
0


69
17
1
69
30
6
69
37
9
69
50
15
69
95
30
69
139
16


69
171
19
69
249
11
69
277
8
69
428
0
69
436
0
70
13
1


70
19
1
70
43
9
70
62
5
70
108
8
70
133
24
70
169
3


70
216
19
70
301
4
70
448
0
70
456
0
71
23
0
71
36
25


71
44
29
71
69
11
71
84
27
71
134
5
71
171
12
71
225
4


71
278
31
71
468
0
71
476
0
72
4
21
72
12
21
72
26
23


72
42
11
72
102
13
72
122
2
72
163
2
72
202
27
72
254
24


72
304
18
72
329
0
72
337
0
73
6
5
73
11
31
73
26
22


73
44
2
73
73
16
73
124
24
73
159
7
73
197
3
73
243
24


73
314
25
73
349
0
73
357
0
74
12
28
74
27
2
74
33
29


74
46
19
74
93
11
74
104
3
74
142
31
74
197
11
74
260
5


74
289
17
74
369
0
74
377
0
75
1
22
75
8
19
75
22
7


75
38
30
75
79
4
75
123
30
75
158
28
75
186
31
75
247
1


75
287
31
75
389
0
75
397
0
76
3
11
76
19
23
76
26
14


76
39
18
76
53
15
76
96
3
76
144
28
76
183
13
76
270
11


76
310
9
76
409
0
76
417
0
77
18
1
77
31
6
77
38
9


77
51
15
77
88
31
77
140
16
77
172
19
77
250
11
77
278
8


77
429
0
77
437
0
78
14
1
78
20
1
78
44
9
78
63
5


78
109
8
78
134
24
78
170
3
78
217
19
78
302
4
78
449
0


78
457
0
79
16
1
79
37
25
79
45
29
79
70
11
79
85
27


79
135
5
79
172
12
79
226
4
79
279
31
79
469
0
79
477
0


80
5
21
80
13
21
80
27
23
80
43
11
80
103
13
80
123
2


80
164
2
80
203
27
80
255
24
80
305
18
80
330
0
80
338
0


81
7
5
81
12
31
81
27
22
81
45
2
81
74
16
81
125
24


81
152
8
81
198
3
81
244
24
81
315
25
81
350
0
81
358
0


82
13
28
82
28
2
82
34
29
82
47
19
82
94
11
82
105
3


82
143
31
82
198
11
82
261
5
82
290
17
82
370
0
82
378
0


83
2
22
83
9
19
83
23
7
83
39
30
83
72
5
83
124
30


83
159
28
83
187
31
83
240
2
83
280
0
83
390
0
83
398
0


84
4
11
84
20
23
84
27
14
84
32
19
84
54
15
84
97
3


84
145
28
84
176
14
84
271
11
84
311
9
84
410
0
84
418
0


85
19
1
85
24
7
85
39
9
85
52
15
85
89
31
85
141
16


85
173
19
85
251
11
85
279
8
85
430
0
85
438
0
86
15
1


86
21
1
86
45
9
86
56
6
86
110
8
86
135
24
86
171
3


86
218
19
86
303
4
86
450
0
86
458
0
87
17
1
87
38
25


87
46
29
87
71
11
87
86
27
87
128
6
87
173
12
87
227
4


87
272
0
87
470
0
87
478
0
88
6
21
88
14
21
88
28
23


88
44
11
88
96
14
88
124
2
88
165
2
88
204
27
88
248
25


88
306
18
88
331
0
88
339
0
89
0
6
89
13
31
89
28
22


89
46
2
89
75
16
89
126
24
89
153
8
89
199
3
89
245
24


89
316
25
89
351
0
89
359
0
90
14
28
90
29
2
90
35
29


90
40
20
90
95
11
90
106
3
90
136
0
90
199
11
90
262
5


90
291
17
90
371
0
90
379
0
91
3
22
91
10
19
91
16
8


91
32
31
91
73
5
91
125
30
91
152
29
91
188
31
91
241
2


91
281
0
91
391
0
91
399
0
92
5
11
92
21
23
92
28
14


92
33
19
92
55
15
92
98
3
92
146
28
92
177
14
92
264
12


92
304
10
92
411
0
92
419
0
93
20
1
93
25
7
93
32
10


93
53
15
93
90
31
93
142
16
93
174
19
93
252
11
93
272
9


93
431
0
93
439
0
94
8
2
94
22
1
94
46
9
94
57
6


94
111
8
94
128
25
94
172
3
94
219
19
94
296
5
94
451
0


94
459
0
95
18
1
95
39
25
95
47
29
95
64
12
95
87
27


95
129
6
95
174
12
95
228
4
95
273
0
95
471
0
95
479
0


96
7
21
96
15
21
96
29
23
96
45
11
96
97
14
96
125
2


96
166
2
96
205
27
96
249
25
96
307
18
96
332
0
96
340
0


97
6
8
97
10
24
97
30
23
97
41
11
97
85
3
97
114
23


97
149
25
97
212
10
97
232
24
97
295
9
97
352
0
97
360
0


98
15
28
98
30
2
98
36
29
98
41
20
98
88
12
98
107
3


98
137
0
98
192
12
98
263
5
98
292
17
98
372
0
98
380
0


99
6
29
99
17
8
99
26
19
99
38
1
99
61
28
99
117
26


99
140
23
99
187
15
99
224
15
99
286
17
99
392
0
99
400
0


100
6
11
100
22
23
100
29
14
100
34
19
100
48
16
100
99
3


100
147
28
100
178
14
100
265
12
100
305
10
100
412
0
100
420
0


101
19
11
101
35
29
101
43
8
101
66
20
101
100
1
101
165
3


101
208
13
101
224
25
101
277
2
101
432
0
101
440
0
102
9
2


102
23
1
102
47
9
102
58
6
102
104
9
102
129
25
102
173
3


102
220
19
102
297
5
102
452
0
102
460
0
103
6
4
103
18
4


103
46
23
103
64
7
103
107
13
103
143
0
103
187
30
103
223
18


103
268
25
103
322
0
103
472
0
104
0
22
104
8
22
104
30
23


104
46
11
104
98
14
104
126
2
104
167
2
104
206
27
104
250
25


104
308
18
104
333
0
104
341
0
105
7
8
105
11
24
105
31
23


105
42
11
105
86
3
105
115
23
105
150
25
105
213
10
105
233
24


105
288
10
105
353
0
105
361
0
106
8
29
106
31
2
106
37
29


106
42
20
106
89
12
106
108
3
106
138
0
106
193
12
106
256
6


106
293
17
106
373
0
106
381
0
107
7
29
107
18
8
107
27
19


107
39
1
107
62
28
107
118
26
107
141
23
107
188
15
107
225
15


107
287
17
107
393
0
107
401
0
108
7
11
108
23
23
108
30
14


108
35
19
108
49
16
108
100
3
108
148
28
108
179
14
108
266
12


108
306
10
108
413
0
108
421
0
109
20
11
109
36
29
109
44
8


109
67
20
109
101
1
109
166
3
109
209
13
109
225
25
109
278
2


109
433
0
109
441
0
110
10
2
110
16
2
110
40
10
110
59
6


110
105
9
110
130
25
110
174
3
110
221
19
110
298
5
110
453
0


110
461
0
111
7
4
111
19
4
111
47
23
111
65
7
111
108
13


111
136
1
111
188
30
111
216
19
111
269
25
111
323
0
111
473
0


112
1
22
112
9
22
112
31
23
112
47
11
112
99
14
112
127
2


112
160
3
112
207
27
112
251
25
112
309
18
112
334
0
112
342
0


113
0
9
113
12
24
113
24
24
113
43
11
113
87
3
113
116
23


113
151
25
113
214
10
113
234
24
113
289
10
113
354
0
113
362
0


114
9
29
114
24
3
114
38
29
114
43
20
114
90
12
114
109
3


114
139
0
114
194
12
114
257
6
114
294
17
114
374
0
114
382
0


115
0
30
115
19
8
115
28
19
115
32
2
115
63
28
115
119
26


115
142
23
115
189
15
115
226
15
115
280
18
115
394
0
115
402
0


116
0
12
116
16
24
116
31
14
116
36
19
116
50
16
116
101
3


116
149
28
116
180
14
116
267
12
116
307
10
116
414
0
116
422
0


117
21
11
117
37
29
117
45
8
117
68
20
117
102
1
117
167
3


117
210
13
117
226
25
117
279
2
117
434
0
117
442
0
118
11
2


118
17
2
118
41
10
118
60
6
118
106
9
118
131
25
118
175
3


118
222
19
118
299
5
118
454
0
118
462
0
119
0
5
119
20
4


119
40
24
119
66
7
119
109
13
119
137
1
119
189
30
119
217
19


119
270
25
119
324
0
119
474
0
120
2
22
120
10
22
120
24
24


120
40
12
120
100
14
120
120
3
120
161
3
120
200
28
120
252
25


120
310
18
120
335
0
120
343
0
121
1
9
121
13
24
121
25
24


121
44
11
121
80
4
121
117
23
121
144
26
121
215
10
121
235
24


121
290
10
121
355
0
121
363
0
122
10
29
122
25
3
122
39
29


122
44
20
122
91
12
122
110
3
122
140
0
122
195
12
122
258
6


122
295
17
122
375
0
122
383
0
123
1
30
123
20
8
123
29
19


123
33
2
123
56
29
123
112
27
123
143
23
123
190
15
123
227
15


123
281
18
123
395
0
123
403
0
124
1
12
124
17
24
124
24
15


124
37
19
124
51
16
124
102
3
124
150
28
124
181
14
124
268
12


124
308
10
124
415
0
124
423
0
125
22
11
125
38
29
125
46
8


125
69
20
125
103
1
125
160
4
125
211
13
125
227
25
125
272
3


125
435
0
125
443
0
126
12
2
126
18
2
126
42
10
126
61
6


126
107
9
126
132
25
126
168
4
126
223
19
126
300
5
126
455
0


126
463
0
127
1
5
127
21
4
127
41
24
127
67
7
127
110
13


127
138
1
127
190
30
127
218
19
127
271
25
127
325
0
127
475
0


128
4
22
128
12
26
128
27
7
128
43
5
128
74
19
128
115
17


128
158
28
128
206
13
128
244
18
128
301
1
128
336
0
128
344
0


129
2
9
129
14
24
129
26
24
129
45
11
129
81
4
129
118
23


129
145
26
129
208
11
129
236
24
129
291
10
129
356
0
129
364
0


130
1
2
130
15
6
130
24
18
130
38
4
130
90
28
130
110
1


130
152
23
130
193
21
130
269
0
130
309
4
130
376
0
130
384
0


131
2
30
131
21
8
131
30
19
131
34
2
131
57
29
131
113
27


131
136
24
131
191
15
131
228
15
131
282
18
131
396
0
131
404
0


132
4
16
132
21
27
132
30
26
132
33
29
132
57
0
132
132
29


132
146
1
132
181
31
132
219
0
132
312
8
132
416
0
132
424
0


133
23
11
133
39
29
133
47
8
133
70
20
133
96
2
133
161
4


133
212
13
133
228
25
133
273
3
133
436
0
133
444
0
134
10
19


134
18
30
134
39
18
134
56
15
134
90
9
134
183
10
134
188
13


134
233
2
134
282
11
134
456
0
134
464
0
135
2
5
135
22
4


135
42
24
135
68
7
135
111
13
135
139
1
135
191
30
135
219
19


135
264
26
135
326
0
135
476
0
136
5
22
136
13
26
136
28
7


136
44
5
136
75
19
136
116
17
136
159
28
136
207
13
136
245
18


136
302
1
136
337
0
136
345
0
137
3
9
137
15
24
137
27
24


137
46
11
137
82
4
137
119
23
137
146
26
137
209
11
137
237
24


137
292
10
137
357
0
137
365
0
138
2
2
138
8
7
138
25
18


138
39
4
138
91
28
138
111
1
138
153
23
138
194
21
138
270
0


138
310
4
138
377
0
138
385
0
139
3
30
139
22
8
139
31
19


139
35
2
139
58
29
139
114
27
139
137
24
139
184
16
139
229
15


139
283
18
139
397
0
139
405
0
140
5
16
140
22
27
140
31
26


140
34
29
140
58
0
140
133
29
140
147
1
140
182
31
140
220
0


140
313
8
140
417
0
140
425
0
141
16
12
141
32
30
141
40
9


141
71
20
141
97
2
141
162
4
141
213
13
141
229
25
141
274
3


141
437
0
141
445
0
142
11
19
142
19
30
142
32
19
142
57
15


142
91
9
142
176
11
142
189
13
142
234
2
142
283
11
142
457
0


142
465
0
143
3
5
143
23
4
143
43
24
143
69
7
143
104
14


143
140
1
143
184
31
143
220
19
143
265
26
143
327
0
143
477
0


144
6
22
144
14
26
144
29
7
144
45
5
144
76
19
144
117
17


144
152
29
144
200
14
144
246
18
144
303
1
144
338
0
144
346
0


145
4
9
145
8
25
145
28
24
145
47
11
145
83
4
145
112
24


145
147
26
145
210
11
145
238
24
145
293
10
145
358
0
145
366
0


146
3
2
146
9
7
146
26
18
146
32
5
146
92
28
146
104
2


146
154
23
146
195
21
146
271
0
146
311
4
146
378
0
146
386
0


147
4
30
147
23
8
147
24
20
147
36
2
147
59
29
147
115
27


147
138
24
147
185
16
147
230
15
147
284
18
147
398
0
147
406
0


148
6
16
148
23
27
148
24
27
148
35
29
148
59
0
148
134
29


148
148
1
148
183
31
148
221
0
148
314
8
148
418
0
148
426
0


149
17
12
149
33
30
149
41
9
149
64
21
149
98
2
149
163
4


149
214
13
149
230
25
149
275
3
149
438
0
149
446
0
150
12
19


150
20
30
150
33
19
150
58
15
150
92
9
150
177
11
150
190
13


150
235
2
150
284
11
150
458
0
150
466
0
151
4
5
151
16
5


151
44
24
151
70
7
151
105
14
151
141
1
151
185
31
151
221
19


151
266
26
151
320
1
151
478
0
152
7
22
152
15
26
152
30
7


152
46
5
152
77
19
152
118
17
152
153
29
152
201
14
152
247
18


152
296
2
152
339
0
152
347
0
153
5
9
153
9
25
153
29
24


153
40
12
153
84
4
153
113
24
153
148
26
153
211
11
153
239
24


153
294
10
153
359
0
153
367
0
154
4
2
154
10
7
154
27
18


154
33
5
154
93
28
154
105
2
154
155
23
154
196
21
154
264
1


154
304
5
154
379
0
154
387
0
155
5
30
155
16
9
155
25
20


155
37
2
155
60
29
155
116
27
155
139
24
155
186
16
155
231
15


155
285
18
155
399
0
155
407
0
156
7
16
156
16
28
156
25
27


156
36
29
156
60
0
156
135
29
156
149
1
156
176
0
156
222
0


156
315
8
156
419
0
156
427
0
157
18
12
157
34
30
157
42
9


157
65
21
157
99
2
157
164
4
157
215
13
157
231
25
157
276
3


157
439
0
157
447
0
158
13
19
158
21
30
158
34
19
158
59
15


158
93
9
158
178
11
158
191
13
158
236
2
158
285
11
158
459
0


158
467
0
159
5
5
159
17
5
159
45
24
159
71
7
159
106
14


159
142
1
159
186
31
159
222
19
159
267
26
159
321
1
159
479
0
















APPENDIX TABLE F





Specification of the base matrix B3/4 for the rate-¾ LDPC code
































0
3
8
0
12
23
0
16
6
0
27
5
0
36
19
0
48
3


0
84
19
0
114
9
0
143
27
0
179
21
0
206
10
0
238
0


0
274
21
0
314
3
0
353
18
0
360
0
0
368
0
1
1
14


1
12
12
1
23
26
1
37
6
1
70
14
1
84
6
1
105
23


1
143
25
1
174
0
1
204
22
1
233
2
1
268
2
1
307
4


1
345
15
1
375
0
1
383
0
2
2
4
2
12
10
2
22
21


2
35
19
2
48
15
2
84
7
2
118
4
2
134
28
2
170
13


2
189
13
2
231
4
2
272
2
2
308
4
2
337
2
2
390
0


2
398
0
3
8
3
3
20
22
3
26
5
3
42
0
3
86
10


3
107
7
3
139
4
3
167
31
3
205
2
3
234
26
3
298
5


3
311
12
3
337
1
3
405
0
3
413
0
4
7
25
4
13
1


4
22
8
4
25
10
4
41
2
4
78
11
4
99
3
4
147
1


4
156
28
4
201
27
4
243
14
4
249
11
4
315
15
4
365
0


4
420
0
4
428
0
5
4
27
5
12
27
5
21
30
5
30
28


5
36
11
5
66
3
5
107
10
5
127
8
5
150
26
5
185
19


5
221
4
5
268
1
5
285
7
5
328
4
5
435
0
5
443
0


6
1
24
6
9
22
6
29
20
6
33
3
6
60
29
6
89
29


6
132
10
6
148
13
6
192
21
6
209
31
6
240
28
6
288
25


6
334
2
6
450
0
6
458
0
7
2
10
7
26
27
7
39
7


7
41
26
7
63
2
7
91
21
7
123
22
7
158
9
7
185
3


7
208
7
7
244
2
7
272
0
7
321
25
7
465
0
7
473
0


8
4
8
8
13
23
8
17
6
8
28
5
8
37
19
8
49
3


8
85
19
8
115
9
8
136
28
8
180
21
8
207
10
8
239
0


8
275
21
8
315
3
8
354
18
8
361
0
8
369
0
9
4
20


9
8
11
9
21
22
9
34
0
9
53
0
9
75
16
9
109
20


9
136
22
9
175
4
9
199
11
9
231
14
9
256
22
9
302
27


9
356
7
9
376
0
9
384
0
10
3
4
10
13
10
10
23
21


10
36
19
10
49
15
10
85
7
10
119
4
10
135
28
10
171
13


10
190
13
10
224
5
10
273
2
10
309
4
10
338
2
10
391
0


10
399
0
11
9
3
11
21
22
11
27
5
11
43
0
11
87
10


11
108
7
11
140
4
11
160
0
11
206
2
11
235
26
11
299
5


11
304
13
11
338
1
11
406
0
11
414
0
12
0
26
12
14
1


12
23
8
12
26
10
12
42
2
12
79
11
12
100
3
12
148
1


12
157
28
12
202
27
12
244
14
12
250
11
12
316
15
12
366
0


12
421
0
12
429
0
13
5
27
13
13
27
13
22
30
13
31
28


13
37
11
13
67
3
13
108
10
13
120
9
13
151
26
13
186
19


13
222
4
13
269
1
13
286
7
13
329
4
13
436
0
13
444
0


14
2
24
14
10
22
14
30
20
14
34
3
14
61
29
14
90
29


14
133
10
14
149
13
14
193
21
14
210
31
14
241
28
14
289
25


14
335
2
14
451
0
14
459
0
15
3
10
15
27
27
15
32
8


15
42
26
15
56
3
15
92
21
15
124
22
15
159
9
15
186
3


15
209
7
15
245
2
15
273
0
15
322
25
15
466
0
15
474
0


16
5
8
16
14
23
16
18
6
16
29
5
16
38
19
16
50
3


16
86
19
16
116
9
16
137
28
16
181
21
16
200
11
16
232
1


16
276
21
16
316
3
16
355
18
16
362
0
16
370
0
17
5
20


17
9
11
17
22
22
17
35
0
17
54
0
17
76
16
17
110
20


17
137
22
17
168
5
17
192
12
17
224
15
17
257
22
17
303
27


17
357
7
17
377
0
17
385
0
18
10
13
18
17
15
18
29
19


18
36
7
18
48
2
18
79
11
18
112
2
18
133
11
18
161
17


18
195
26
18
231
27
18
260
2
18
296
11
18
336
6
18
392
0


18
400
0
19
10
3
19
22
22
19
28
5
19
44
0
19
80
11


19
109
7
19
141
4
19
161
0
19
207
2
19
236
26
19
300
5


19
305
13
19
339
1
19
407
0
19
415
0
20
1
26
20
15
1


20
16
9
20
27
10
20
43
2
20
72
12
20
101
3
20
149
1


20
158
28
20
203
27
20
245
14
20
251
11
20
317
15
20
367
0


20
422
0
20
430
0
21
6
27
21
14
27
21
23
30
21
24
29


21
38
11
21
68
3
21
109
10
21
121
9
21
144
27
21
187
19


21
223
4
21
270
1
21
287
7
21
330
4
21
437
0
21
445
0


22
3
24
22
11
22
22
31
20
22
35
3
22
62
29
22
91
29


22
134
10
22
150
13
22
194
21
22
211
31
22
242
28
22
290
25


22
328
3
22
452
0
22
460
0
23
4
10
23
28
27
23
33
8


23
43
26
23
57
3
23
93
21
23
125
22
23
152
10
23
187
3


23
210
7
23
246
2
23
274
0
23
323
25
23
467
0
23
475
0


24
6
8
24
15
23
24
19
6
24
30
5
24
39
19
24
51
3


24
87
19
24
117
9
24
138
28
24
182
21
24
201
11
24
233
1


24
277
21
24
317
3
24
356
18
24
363
0
24
371
0
25
6
20


25
10
11
25
23
22
25
36
0
25
55
0
25
77
16
25
111
20


25
138
22
25
169
5
25
193
12
25
225
15
25
258
22
25
296
28


25
358
7
25
378
0
25
386
0
26
11
13
26
18
15
26
30
19


26
37
7
26
49
2
26
72
12
26
113
2
26
134
11
26
162
17


26
196
26
26
224
28
26
261
2
26
297
11
26
337
6
26
393
0


26
401
0
27
7
13
27
8
9
27
23
3
27
24
0
27
44
26


27
78
0
27
96
10
27
129
1
27
163
31
27
196
0
27
219
9


27
256
21
27
289
20
27
331
24
27
408
0
27
416
0
28
2
26


28
8
2
28
17
9
28
28
10
28
44
2
28
73
12
28
102
3


28
150
1
28
159
28
28
204
27
28
246
14
28
252
11
28
318
15


28
360
1
28
423
0
28
431
0
29
7
27
29
15
27
29
16
31


29
25
29
29
39
11
29
69
3
29
110
10
29
122
9
29
145
27


29
188
19
29
216
5
29
271
1
29
280
8
29
331
4
29
438
0


29
446
0
30
4
24
30
12
22
30
24
21
30
36
3
30
63
29


30
92
29
30
135
10
30
151
13
30
195
21
30
212
31
30
243
28


30
291
25
30
329
3
30
453
0
30
461
0
31
5
10
31
29
27


31
34
8
31
44
26
31
58
3
31
94
21
31
126
22
31
153
10


31
188
3
31
211
7
31
247
2
31
275
0
31
324
25
31
468
0


31
476
0
32
7
8
32
8
24
32
20
6
32
31
5
32
32
20


32
52
3
32
80
20
32
118
9
32
139
28
32
183
21
32
202
11


32
234
1
32
278
21
32
318
3
32
357
18
32
364
0
32
372
0


33
7
20
33
11
11
33
16
23
33
37
0
33
48
1
33
78
16


33
104
21
33
139
22
33
170
5
33
194
12
33
226
15
33
259
22


33
297
28
33
359
7
33
379
0
33
387
0
34
12
13
34
19
15


34
31
19
34
38
7
34
50
2
34
73
12
34
114
2
34
135
11


34
163
17
34
197
26
34
225
28
34
262
2
34
298
11
34
338
6


34
394
0
34
402
0
35
0
14
35
9
9
35
16
4
35
25
0


35
45
26
35
79
0
35
97
10
35
130
1
35
164
31
35
197
0


35
220
9
35
257
21
35
290
20
35
332
24
35
409
0
35
417
0


36
13
21
36
22
26
36
26
7
36
35
11
36
65
22
36
103
12


36
147
14
36
173
30
36
185
6
36
216
18
36
269
10
36
280
26


36
345
15
36
424
0
36
432
0
37
0
28
37
8
28
37
17
31


37
26
29
37
32
12
37
70
3
37
111
10
37
123
9
37
146
27


37
189
19
37
217
5
37
264
2
37
281
8
37
332
4
37
439
0


37
447
0
38
5
24
38
13
22
38
25
21
38
37
3
38
56
30


38
93
29
38
128
11
38
144
14
38
196
21
38
213
31
38
244
28


38
292
25
38
330
3
38
454
0
38
462
0
39
6
10
39
30
27


39
35
8
39
45
26
39
59
3
39
95
21
39
127
22
39
154
10


39
189
3
39
212
7
39
240
3
39
276
0
39
325
25
39
469
0


39
477
0
40
0
9
40
9
24
40
21
6
40
24
6
40
33
20


40
53
3
40
81
20
40
119
9
40
140
28
40
176
22
40
203
11


40
235
1
40
279
21
40
319
3
40
358
18
40
365
0
40
373
0


41
0
21
41
12
11
41
17
23
41
38
0
41
49
1
41
79
16


41
105
21
41
140
22
41
171
5
41
195
12
41
227
15
41
260
22


41
298
28
41
352
8
41
380
0
41
388
0
42
13
13
42
20
15


42
24
20
42
39
7
42
51
2
42
74
12
42
115
2
42
128
12


42
164
17
42
198
26
42
226
28
42
263
2
42
299
11
42
339
6


42
395
0
42
403
0
43
1
14
43
10
9
43
17
4
43
26
0


43
46
26
43
72
1
43
98
10
43
131
1
43
165
31
43
198
0


43
221
9
43
258
21
43
291
20
43
333
24
43
410
0
43
418
0


44
14
21
44
23
26
44
27
7
44
36
11
44
66
22
44
96
13


44
148
14
44
174
30
44
186
6
44
217
18
44
270
10
44
281
26


44
346
15
44
425
0
44
433
0
45
3
20
45
19
19
45
30
15


45
37
9
45
69
0
45
102
28
45
121
2
45
161
7
45
179
2


45
212
19
45
251
5
45
327
18
45
353
9
45
440
0
45
448
0


46
6
24
46
14
22
46
26
21
46
38
3
46
57
30
46
94
29


46
129
11
46
145
14
46
197
21
46
214
31
46
245
28
46
293
25


46
331
3
46
455
0
46
463
0
47
7
10
47
31
27
47
36
8


47
46
26
47
60
3
47
88
22
47
120
23
47
155
10
47
190
3


47
213
7
47
241
3
47
277
0
47
326
25
47
470
0
47
478
0


48
1
9
48
10
24
48
22
6
48
25
6
48
34
20
48
54
3


48
82
20
48
112
10
48
141
28
48
177
22
48
204
11
48
236
1


48
272
22
48
312
4
48
359
18
48
366
0
48
374
0
49
1
21


49
13
11
49
18
23
49
39
0
49
50
1
49
72
17
49
106
21


49
141
22
49
172
5
49
196
12
49
228
15
49
261
22
49
299
28


49
353
8
49
381
0
49
389
0
50
14
13
50
21
15
50
25
20


50
32
8
50
52
2
50
75
12
50
116
2
50
129
12
50
165
17


50
199
26
50
227
28
50
256
3
50
300
11
50
340
6
50
396
0


50
404
0
51
2
14
51
11
9
51
18
4
51
27
0
51
47
26


51
73
1
51
99
10
51
132
1
51
166
31
51
199
0
51
222
9


51
259
21
51
292
20
51
334
24
51
411
0
51
419
0
52
15
21


52
16
27
52
28
7
52
37
11
52
67
22
52
97
13
52
149
14


52
175
30
52
187
6
52
218
18
52
271
10
52
282
26
52
347
15


52
426
0
52
434
0
53
4
20
53
20
19
53
31
15
53
38
9


53
70
0
53
103
28
53
122
2
53
162
7
53
180
2
53
213
19


53
252
5
53
320
19
53
354
9
53
441
0
53
449
0
54
3
7


54
8
0
54
24
15
54
34
5
54
60
2
54
94
0
54
113
9


54
156
20
54
182
0
54
216
11
54
284
28
54
288
31
54
348
18


54
456
0
54
464
0
55
0
11
55
24
28
55
37
8
55
47
26


55
61
3
55
89
22
55
121
23
55
156
10
55
191
3
55
214
7


55
242
3
55
278
0
55
327
25
55
471
0
55
479
0
56
2
9


56
11
24
56
23
6
56
26
6
56
35
20
56
55
3
56
83
20


56
113
10
56
142
28
56
178
22
56
205
11
56
237
1
56
273
22


56
313
4
56
352
19
56
367
0
56
375
0
57
2
21
57
14
11


57
19
23
57
32
1
57
51
1
57
73
17
57
107
21
57
142
22


57
173
5
57
197
12
57
229
15
57
262
22
57
300
28
57
354
8


57
382
0
57
390
0
58
15
13
58
22
15
58
26
20
58
33
8


58
53
2
58
76
12
58
117
2
58
130
12
58
166
17
58
192
27


58
228
28
58
257
3
58
301
11
58
341
6
58
397
0
58
405
0


59
3
14
59
12
9
59
19
4
59
28
0
59
40
27
59
74
1


59
100
10
59
133
1
59
167
31
59
192
1
59
223
9
59
260
21


59
293
20
59
335
24
59
412
0
59
420
0
60
8
22
60
17
27


60
29
7
60
38
11
60
68
22
60
98
13
60
150
14
60
168
31


60
188
6
60
219
18
60
264
11
60
283
26
60
348
15
60
427
0


60
435
0
61
5
20
61
21
19
61
24
16
61
39
9
61
71
0


61
96
29
61
123
2
61
163
7
61
181
2
61
214
19
61
253
5


61
321
19
61
355
9
61
442
0
61
450
0
62
4
7
62
9
0


62
25
15
62
35
5
62
61
2
62
95
0
62
114
9
62
157
20


62
183
0
62
217
11
62
285
28
62
289
31
62
349
18
62
457
0


62
465
0
63
1
18
63
16
6
63
30
27
63
34
23
63
63
0


63
94
6
63
126
11
63
155
23
63
177
29
63
212
23
63
251
16


63
315
30
63
320
2
63
362
0
63
472
0
64
2
13
64
13
11


64
16
26
64
38
5
64
71
13
64
85
5
64
106
22
64
136
25


64
175
31
64
205
21
64
234
1
64
269
1
64
308
3
64
346
14


64
368
0
64
376
0
65
3
21
65
15
11
65
20
23
65
33
1


65
52
1
65
74
17
65
108
21
65
143
22
65
174
5
65
198
12


65
230
15
65
263
22
65
301
28
65
355
8
65
383
0
65
391
0


66
8
14
66
23
15
66
27
20
66
34
8
66
54
2
66
77
12


66
118
2
66
131
12
66
167
17
66
193
27
66
229
28
66
258
3


66
302
11
66
342
6
66
398
0
66
406
0
67
4
14
67
13
9


67
20
4
67
29
0
67
41
27
67
75
1
67
101
10
67
134
1


67
160
0
67
193
1
67
216
10
67
261
21
67
294
20
67
328
25


67
413
0
67
421
0
68
9
22
68
18
27
68
30
7
68
39
11


68
69
22
68
99
13
68
151
14
68
169
31
68
189
6
68
220
18


68
265
11
68
284
26
68
349
15
68
428
0
68
436
0
69
6
20


69
22
19
69
25
16
69
32
10
69
64
1
69
97
29
69
124
2


69
164
7
69
182
2
69
215
19
69
254
5
69
322
19
69
356
9


69
443
0
69
451
0
70
5
7
70
10
0
70
26
15
70
36
5


70
62
2
70
88
1
70
115
9
70
158
20
70
176
1
70
218
11


70
286
28
70
290
31
70
350
18
70
458
0
70
466
0
71
2
18


71
17
6
71
31
27
71
35
23
71
56
1
71
95
6
71
127
11


71
156
23
71
178
29
71
213
23
71
252
16
71
316
30
71
321
2


71
363
0
71
473
0
72
3
13
72
14
11
72
17
26
72
39
5


72
64
14
72
86
5
72
107
22
72
137
25
72
168
0
72
206
21


72
235
1
72
270
1
72
309
3
72
347
14
72
369
0
72
377
0


73
4
3
73
14
9
73
16
21
73
37
18
73
50
14
73
86
6


73
112
4
73
128
28
73
172
12
73
191
12
73
225
4
73
274
1


73
310
3
73
339
1
73
384
0
73
392
0
74
9
14
74
16
16


74
28
20
74
35
8
74
55
2
74
78
12
74
119
2
74
132
12


74
160
18
74
194
27
74
230
28
74
259
3
74
303
11
74
343
6


74
399
0
74
407
0
75
5
14
75
14
9
75
21
4
75
30
0


75
42
27
75
76
1
75
102
10
75
135
1
75
161
0
75
194
1


75
217
10
75
262
21
75
295
20
75
329
25
75
414
0
75
422
0


76
10
22
76
19
27
76
31
7
76
32
12
76
70
22
76
100
13


76
144
15
76
170
31
76
190
6
76
221
18
76
266
11
76
285
26


76
350
15
76
429
0
76
437
0
77
7
20
77
23
19
77
26
16


77
33
10
77
65
1
77
98
29
77
125
2
77
165
7
77
183
2


77
208
20
77
255
5
77
323
19
77
357
9
77
444
0
77
452
0


78
6
7
78
11
0
78
27
15
78
37
5
78
63
2
78
89
1


78
116
9
78
159
20
78
177
1
78
219
11
78
287
28
78
291
31


78
351
18
78
459
0
78
467
0
79
3
18
79
18
6
79
24
28


79
36
23
79
57
1
79
88
7
79
120
12
79
157
23
79
179
29


79
214
23
79
253
16
79
317
30
79
322
2
79
364
0
79
474
0


80
4
13
80
15
11
80
18
26
80
32
6
80
65
14
80
87
5


80
108
22
80
138
25
80
169
0
80
207
21
80
236
1
80
271
1


80
310
3
80
348
14
80
370
0
80
378
0
81
5
3
81
15
9


81
17
21
81
38
18
81
51
14
81
87
6
81
113
4
81
129
28


81
173
12
81
184
13
81
226
4
81
275
1
81
311
3
81
340
1


81
385
0
81
393
0
82
11
2
82
23
21
82
29
4
82
45
31


82
81
10
82
110
6
82
142
3
82
162
31
82
200
2
82
237
25


82
301
4
82
306
12
82
340
0
82
400
0
82
408
0
83
6
14


83
15
9
83
22
4
83
31
0
83
43
27
83
77
1
83
103
10


83
128
2
83
162
0
83
195
1
83
218
10
83
263
21
83
288
21


83
330
25
83
415
0
83
423
0
84
11
22
84
20
27
84
24
8


84
33
12
84
71
22
84
101
13
84
145
15
84
171
31
84
191
6


84
222
18
84
267
11
84
286
26
84
351
15
84
430
0
84
438
0


85
0
21
85
16
20
85
27
16
85
34
10
85
66
1
85
99
29


85
126
2
85
166
7
85
176
3
85
209
20
85
248
6
85
324
19


85
358
9
85
445
0
85
453
0
86
7
7
86
12
0
86
28
15


86
38
5
86
56
3
86
90
1
86
117
9
86
152
21
86
178
1


86
220
11
86
280
29
86
292
31
86
344
19
86
460
0
86
468
0


87
4
18
87
19
6
87
25
28
87
37
23
87
58
1
87
89
7


87
121
12
87
158
23
87
180
29
87
215
23
87
254
16
87
318
30


87
323
2
87
365
0
87
475
0
88
5
13
88
8
12
88
19
26


88
33
6
88
66
14
88
80
6
88
109
22
88
139
25
88
170
0


88
200
22
88
237
1
88
264
2
88
311
3
88
349
14
88
371
0


88
379
0
89
6
3
89
8
10
89
18
21
89
39
18
89
52
14


89
80
7
89
114
4
89
130
28
89
174
12
89
185
13
89
227
4


89
276
1
89
304
4
89
341
1
89
386
0
89
394
0
90
12
2


90
16
22
90
30
4
90
46
31
90
82
10
90
111
6
90
143
3


90
163
31
90
201
2
90
238
25
90
302
4
90
307
12
90
341
0


90
401
0
90
409
0
91
3
25
91
9
1
91
18
8
91
29
9


91
45
1
91
74
11
91
103
2
91
151
0
91
152
28
91
205
26


91
247
13
91
253
10
91
319
14
91
361
0
91
416
0
91
424
0


92
12
22
92
21
27
92
25
8
92
34
12
92
64
23
92
102
13


92
146
15
92
172
31
92
184
7
92
223
18
92
268
11
92
287
26


92
344
16
92
431
0
92
439
0
93
1
21
93
17
20
93
28
16


93
35
10
93
67
1
93
100
29
93
127
2
93
167
7
93
177
3


93
210
20
93
249
6
93
325
19
93
359
9
93
446
0
93
454
0


94
0
8
94
13
0
94
29
15
94
39
5
94
57
3
94
91
1


94
118
9
94
153
21
94
179
1
94
221
11
94
281
29
94
293
31


94
345
19
94
461
0
94
469
0
95
5
18
95
20
6
95
26
28


95
38
23
95
59
1
95
90
7
95
122
12
95
159
23
95
181
29


95
208
24
95
255
16
95
319
30
95
324
2
95
366
0
95
476
0


96
6
13
96
9
12
96
20
26
96
34
6
96
67
14
96
81
6


96
110
22
96
140
25
96
171
0
96
201
22
96
238
1
96
265
2


96
304
4
96
350
14
96
372
0
96
380
0
97
7
3
97
9
10


97
19
21
97
32
19
97
53
14
97
81
7
97
115
4
97
131
28


97
175
12
97
186
13
97
228
4
97
277
1
97
305
4
97
342
1


97
387
0
97
395
0
98
13
2
98
17
22
98
31
4
98
47
31


98
83
10
98
104
7
98
136
4
98
164
31
98
202
2
98
239
25


98
303
4
98
308
12
98
342
0
98
402
0
98
410
0
99
4
25


99
10
1
99
19
8
99
30
9
99
46
1
99
75
11
99
96
3


99
144
1
99
153
28
99
206
26
99
240
14
99
254
10
99
312
15


99
362
0
99
417
0
99
425
0
100
1
27
100
9
27
100
18
30


100
27
28
100
33
11
100
71
2
100
104
10
100
124
8
100
147
26


100
190
18
100
218
4
100
265
1
100
282
7
100
333
3
100
432
0


100
440
0
101
2
21
101
18
20
101
29
16
101
36
10
101
68
1


101
101
29
101
120
3
101
160
8
101
178
3
101
211
20
101
250
6


101
326
19
101
352
10
101
447
0
101
455
0
102
1
8
102
14
0


102
30
15
102
32
6
102
58
3
102
92
1
102
119
9
102
154
21


102
180
1
102
222
11
102
282
29
102
294
31
102
346
19
102
462
0


102
470
0
103
6
18
103
21
6
103
27
28
103
39
23
103
60
1


103
91
7
103
123
12
103
152
24
103
182
29
103
209
24
103
248
17


103
312
31
103
325
2
103
367
0
103
477
0
104
7
13
104
10
12


104
21
26
104
35
6
104
68
14
104
82
6
104
111
22
104
141
25


104
172
0
104
202
22
104
239
1
104
266
2
104
305
4
104
351
14


104
373
0
104
381
0
105
0
4
105
10
10
105
20
21
105
33
19


105
54
14
105
82
7
105
116
4
105
132
28
105
168
13
105
187
13


105
229
4
105
278
1
105
306
4
105
343
1
105
388
0
105
396
0


106
14
2
106
18
22
106
24
5
106
40
0
106
84
10
106
105
7


106
137
4
106
165
31
106
203
2
106
232
26
106
296
5
106
309
12


106
343
0
106
403
0
106
411
0
107
5
25
107
11
1
107
20
8


107
31
9
107
47
1
107
76
11
107
97
3
107
145
1
107
154
28


107
207
26
107
241
14
107
255
10
107
313
15
107
363
0
107
418
0


107
426
0
108
2
27
108
10
27
108
19
30
108
28
28
108
34
11


108
64
3
108
105
10
108
125
8
108
148
26
108
191
18
108
219
4


108
266
1
108
283
7
108
334
3
108
433
0
108
441
0
109
7
23


109
15
21
109
27
20
109
39
2
109
58
29
109
95
28
109
130
10


109
146
13
109
198
20
109
215
30
109
246
27
109
294
24
109
332
2


109
448
0
109
456
0
110
2
8
110
15
0
110
31
15
110
33
6


110
59
3
110
93
1
110
112
10
110
155
21
110
181
1
110
223
11


110
283
29
110
295
31
110
347
19
110
463
0
110
471
0
111
7
18


111
22
6
111
28
28
111
32
24
111
61
1
111
92
7
111
124
12


111
153
24
111
183
29
111
210
24
111
249
17
111
313
31
111
326
2


111
360
1
111
478
0
112
0
14
112
11
12
112
22
26
112
36
6


112
69
14
112
83
6
112
104
23
112
142
25
112
173
0
112
203
22


112
232
2
112
267
2
112
306
4
112
344
15
112
374
0
112
382
0


113
1
4
113
11
10
113
21
21
113
34
19
113
55
14
113
83
7


113
117
4
113
133
28
113
169
13
113
188
13
113
230
4
113
279
1


113
307
4
113
336
2
113
389
0
113
397
0
114
15
2
114
19
22


114
25
5
114
41
0
114
85
10
114
106
7
114
138
4
114
166
31


114
204
2
114
233
26
114
297
5
114
310
12
114
336
1
114
404
0


114
412
0
115
6
25
115
12
1
115
21
8
115
24
10
115
40
2


115
77
11
115
98
3
115
146
1
115
155
28
115
200
27
115
242
14


115
248
11
115
314
15
115
364
0
115
419
0
115
427
0
116
3
27


116
11
27
116
20
30
116
29
28
116
35
11
116
65
3
116
106
10


116
126
8
116
149
26
116
184
19
116
220
4
116
267
1
116
284
7


116
335
3
116
434
0
116
442
0
117
0
24
117
8
22
117
28
20


117
32
3
117
59
29
117
88
29
117
131
10
117
147
13
117
199
20


117
208
31
117
247
27
117
295
24
117
333
2
117
449
0
117
457
0


118
1
10
118
25
27
118
38
7
118
40
26
118
62
2
118
90
21


118
122
22
118
157
9
118
184
3
118
215
6
118
243
2
118
279
31


118
320
25
118
464
0
118
472
0
119
0
19
119
23
6
119
29
28


119
33
24
119
62
1
119
93
7
119
125
12
119
154
24
119
176
30


119
211
24
119
250
17
119
314
31
119
327
2
119
361
1
119
479
0
















APPENDIX TABLE G





Specification of the base matrix B4/5 for the rate-⅘ LDPC code
































0
6
27
0
9
9
0
20
10
0
29
13
0
33
11
0
53
26


0
58
28
0
76
2
0
102
0
0
121
0
0
145
0
0
171
0


0
189
30
0
226
16
0
254
20
0
282
25
0
325
1
0
351
20


0
380
10
0
384
0
0
392
0
1
3
23
1
14
5
1
20
20


1
25
8
1
33
24
1
44
5
1
77
5
1
102
3
1
123
1


1
148
1
1
188
15
1
196
7
1
219
7
1
252
1
1
281
5


1
312
24
1
345
23
1
374
21
1
396
0
1
404
0
2
2
19


2
11
8
2
21
13
2
30
6
2
34
9
2
72
31
2
88
0


2
112
0
2
136
0
2
167
10
2
188
19
2
223
15
2
247
19


2
280
17
2
319
0
2
339
9
2
371
11
2
408
0
2
416
0


3
7
19
3
13
5
3
16
23
3
31
7
3
34
24
3
41
3


3
69
3
3
88
1
3
124
17
3
142
0
3
164
13
3
180
13


3
214
9
3
256
9
3
279
28
3
307
1
3
334
9
3
361
29


3
420
0
3
428
0
4
3
0
4
9
0
4
21
0
4
29
1


4
33
9
4
58
3
4
86
2
4
107
10
4
131
5
4
161
8


4
177
7
4
206
17
4
233
13
4
267
13
4
300
8
4
355
5


4
385
0
4
432
0
4
440
0
5
0
1
5
10
1
5
16
20


5
25
20
5
34
13
5
69
27
5
97
19
5
114
10
5
141
5


5
155
10
5
179
28
5
205
0
5
233
11
5
270
30
5
300
5


5
323
13
5
354
23
5
444
0
5
452
0
6
0
0
6
15
1


6
23
29
6
29
17
6
37
9
6
53
31
6
83
13
6
104
22


6
130
4
6
154
1
6
193
8
6
213
25
6
224
18
6
279
3


6
290
29
6
334
4
6
362
4
6
456
0
6
464
0
7
1
8


7
13
6
7
19
18
7
26
26
7
33
4
7
49
3
7
76
25


7
103
0
7
128
8
7
148
8
7
168
6
7
192
22
7
245
2


7
257
7
7
293
1
7
337
28
7
363
2
7
468
0
7
476
0


8
7
27
8
10
9
8
21
10
8
30
13
8
34
11
8
54
26


8
59
28
8
77
2
8
103
0
8
122
0
8
146
0
8
172
0


8
190
30
8
227
16
8
255
20
8
283
25
8
326
1
8
344
21


8
381
10
8
385
0
8
393
0
9
4
23
9
15
5
9
21
20


9
26
8
9
34
24
9
45
5
9
78
5
9
103
3
9
124
1


9
149
1
9
189
15
9
197
7
9
220
7
9
253
1
9
282
5


9
313
24
9
346
23
9
375
21
9
397
0
9
405
0
10
3
19


10
12
8
10
22
13
10
31
6
10
35
9
10
73
31
10
89
0


10
113
0
10
137
0
10
160
11
10
189
19
10
216
16
10
240
20


10
281
17
10
312
1
10
340
9
10
372
11
10
409
0
10
417
0


11
0
20
11
14
5
11
17
23
11
24
8
11
35
24
11
42
3


11
70
3
11
89
1
11
125
17
11
143
0
11
165
13
11
181
13


11
215
9
11
257
9
11
272
29
11
308
1
11
335
9
11
362
29


11
421
0
11
429
0
12
4
0
12
10
0
12
22
0
12
30
1


12
34
9
12
59
3
12
87
2
12
108
10
12
132
5
12
162
8


12
178
7
12
207
17
12
234
13
12
268
13
12
301
8
12
356
5


12
386
0
12
433
0
12
441
0
13
1
1
13
11
1
13
17
20


13
26
20
13
35
13
13
70
27
13
98
19
13
115
10
13
142
5


13
156
10
13
180
28
13
206
0
13
234
11
13
271
30
13
301
5


13
324
13
13
355
23
13
445
0
13
453
0
14
1
0
14
8
2


14
16
30
14
30
17
14
38
9
14
54
31
14
84
13
14
105
22


14
131
4
14
155
1
14
194
8
14
214
25
14
225
18
14
272
4


14
291
29
14
335
4
14
363
4
14
457
0
14
465
0
15
2
8


15
14
6
15
20
18
15
27
26
15
34
4
15
50
3
15
77
25


15
96
1
15
129
8
15
149
8
15
169
6
15
193
22
15
246
2


15
258
7
15
294
1
15
338
28
15
364
2
15
469
0
15
477
0


16
0
28
16
11
9
16
22
10
16
31
13
16
35
11
16
55
26


16
60
28
16
78
2
16
96
1
16
123
0
16
147
0
16
173
0


16
191
30
16
228
16
16
248
21
16
284
25
16
327
1
16
345
21


16
382
10
16
386
0
16
394
0
17
5
23
17
8
6
17
22
20


17
27
8
17
35
24
17
46
5
17
79
5
17
96
4
17
125
1


17
150
1
17
190
15
17
198
7
17
221
7
17
254
1
17
283
5


17
314
24
17
347
23
17
368
22
17
398
0
17
406
0
18
4
19


18
13
8
18
23
13
18
24
7
18
36
9
18
74
31
18
90
0


18
114
0
18
138
0
18
161
11
18
190
19
18
217
16
18
241
20


18
282
17
18
313
1
18
341
9
18
373
11
18
410
0
18
418
0


19
1
20
19
15
5
19
18
23
19
25
8
19
36
24
19
43
3


19
71
3
19
90
1
19
126
17
19
136
1
19
166
13
19
182
13


19
208
10
19
258
9
19
273
29
19
309
1
19
328
10
19
363
29


19
422
0
19
430
0
20
5
0
20
11
0
20
23
0
20
31
1


20
35
9
20
60
3
20
80
3
20
109
10
20
133
5
20
163
8


20
179
7
20
200
18
20
235
13
20
269
13
20
302
8
20
357
5


20
387
0
20
434
0
20
442
0
21
2
1
21
12
1
21
18
20


21
27
20
21
36
13
21
71
27
21
99
19
21
116
10
21
143
5


21
157
10
21
181
28
21
207
0
21
235
11
21
264
31
21
302
5


21
325
13
21
356
23
21
446
0
21
454
0
22
2
0
22
9
2


22
17
30
22
31
17
22
39
9
22
55
31
22
85
13
22
106
22


22
132
4
22
156
1
22
195
8
22
215
25
22
226
18
22
273
4


22
292
29
22
328
5
22
364
4
22
458
0
22
466
0
23
3
8


23
15
6
23
21
18
23
28
26
23
35
4
23
51
3
23
78
25


23
97
1
23
130
8
23
150
8
23
170
6
23
194
22
23
247
2


23
259
7
23
295
1
23
339
28
23
365
2
23
470
0
23
478
0


24
1
28
24
12
9
24
23
10
24
24
14
24
36
11
24
48
27


24
61
28
24
79
2
24
97
1
24
124
0
24
148
0
24
174
0


24
184
31
24
229
16
24
249
21
24
285
25
24
320
2
24
346
21


24
383
10
24
387
0
24
395
0
25
6
23
25
9
6
25
23
20


25
28
8
25
36
24
25
47
5
25
72
6
25
97
4
25
126
1


25
151
1
25
191
15
25
199
7
25
222
7
25
255
1
25
284
5


25
315
24
25
348
23
25
369
22
25
399
0
25
407
0
26
5
19


26
14
8
26
16
14
26
25
7
26
37
9
26
75
31
26
91
0


26
115
0
26
139
0
26
162
11
26
191
19
26
218
16
26
242
20


26
283
17
26
314
1
26
342
9
26
374
11
26
411
0
26
419
0


27
2
20
27
8
6
27
19
23
27
26
8
27
37
24
27
44
3


27
64
4
27
91
1
27
127
17
27
137
1
27
167
13
27
183
13


27
209
10
27
259
9
27
274
29
27
310
1
27
329
10
27
364
29


27
423
0
27
431
0
28
6
0
28
12
0
28
16
1
28
24
2


28
36
9
28
61
3
28
81
3
28
110
10
28
134
5
28
164
8


28
180
7
28
201
18
28
236
13
28
270
13
28
303
8
28
358
5


28
388
0
28
435
0
28
443
0
29
3
1
29
13
1
29
19
20


29
28
20
29
37
13
29
64
28
29
100
19
29
117
10
29
136
6


29
158
10
29
182
28
29
200
1
29
236
11
29
265
31
29
303
5


29
326
13
29
357
23
29
447
0
29
455
0
30
3
0
30
10
2


30
18
30
30
24
18
30
32
10
30
48
0
30
86
13
30
107
22


30
133
4
30
157
1
30
196
8
30
208
26
30
227
18
30
274
4


30
293
29
30
329
5
30
365
4
30
459
0
30
467
0
31
4
8


31
8
7
31
22
18
31
29
26
31
36
4
31
52
3
31
79
25


31
98
1
31
131
8
31
151
8
31
171
6
31
195
22
31
240
3


31
260
7
31
288
2
31
340
28
31
366
2
31
471
0
31
479
0


32
2
28
32
13
9
32
16
11
32
25
14
32
37
11
32
49
27


32
62
28
32
72
3
32
98
1
32
125
0
32
149
0
32
175
0


32
185
31
32
230
16
32
250
21
32
286
25
32
321
2
32
347
21


32
376
11
32
388
0
32
396
0
33
2
28
33
14
12
33
22
0


33
31
18
33
35
6
33
40
1
33
70
28
33
94
17
33
118
26


33
140
29
33
171
5
33
188
29
33
217
0
33
251
9
33
273
21


33
319
11
33
341
14
33
383
31
33
400
0
33
408
0
34
6
19


34
15
8
34
17
14
34
26
7
34
38
9
34
76
31
34
92
0


34
116
0
34
140
0
34
163
11
34
184
20
34
219
16
34
243
20


34
284
17
34
315
1
34
343
9
34
375
11
34
412
0
34
420
0


35
2
7
35
13
29
35
16
30
35
30
21
35
35
2
35
50
10


35
57
26
35
92
6
35
116
4
35
152
6
35
162
0
35
178
6


35
209
1
35
244
1
35
265
28
35
304
13
35
347
29
35
373
2


35
424
0
35
432
0
36
7
0
36
13
0
36
17
1
36
25
2


36
37
9
36
62
3
36
82
3
36
111
10
36
135
5
36
165
8


36
181
7
36
202
18
36
237
13
36
271
13
36
296
9
36
359
5


36
389
0
36
436
0
36
444
0
37
4
9
37
11
1
37
19
0


37
30
7
37
38
5
37
65
15
37
81
1
37
106
0
37
128
0


37
152
2
37
194
7
37
200
9
37
236
21
37
258
9
37
306
24


37
333
8
37
380
1
37
448
0
37
456
0
38
4
0
38
11
2


38
19
30
38
25
18
38
33
10
38
49
0
38
87
13
38
108
22


38
134
4
38
158
1
38
197
8
38
209
26
38
228
18
38
275
4


38
294
29
38
330
5
38
366
4
38
460
0
38
468
0
39
5
8


39
13
28
39
18
21
39
25
24
39
34
16
39
47
19
39
57
14


39
81
20
39
110
13
39
127
24
39
144
0
39
169
20
39
200
22


39
225
1
39
294
30
39
297
4
39
320
2
39
354
1
39
386
0


39
472
0
40
3
28
40
14
9
40
17
11
40
26
14
40
38
11


40
50
27
40
63
28
40
73
3
40
99
1
40
126
0
40
150
0


40
168
1
40
186
31
40
231
16
40
251
21
40
287
25
40
322
2


40
348
21
40
377
11
40
389
0
40
397
0
41
3
28
41
15
12


41
23
0
41
24
19
41
36
6
41
41
1
41
71
28
41
95
17


41
119
26
41
141
29
41
172
5
41
189
29
41
218
0
41
252
9


41
274
21
41
312
12
41
342
14
41
376
0
41
401
0
41
409
0


42
7
19
42
8
9
42
18
14
42
27
7
42
39
9
42
77
31


42
93
0
42
117
0
42
141
0
42
164
11
42
185
20
42
220
16


42
244
20
42
285
17
42
316
1
42
336
10
42
368
12
42
413
0


42
421
0
43
3
7
43
14
29
43
17
30
43
31
21
43
36
2


43
51
10
43
58
26
43
93
6
43
117
4
43
153
6
43
163
0


43
179
6
43
210
1
43
245
1
43
266
28
43
305
13
43
348
29


43
374
2
43
425
0
43
433
0
44
0
1
44
14
0
44
18
1


44
26
2
44
38
9
44
63
3
44
83
3
44
104
11
44
128
6


44
166
8
44
182
7
44
203
18
44
238
13
44
264
14
44
297
9


44
352
6
44
390
0
44
437
0
44
445
0
45
5
9
45
12
1


45
20
0
45
31
7
45
39
5
45
66
15
45
82
1
45
107
0


45
129
0
45
153
2
45
195
7
45
201
9
45
237
21
45
259
9


45
307
24
45
334
8
45
381
1
45
449
0
45
457
0
46
5
0


46
12
2
46
20
30
46
26
18
46
34
10
46
50
0
46
80
14


46
109
22
46
135
4
46
159
1
46
198
8
46
210
26
46
229
18


46
276
4
46
295
29
46
331
5
46
367
4
46
461
0
46
469
0


47
6
8
47
14
28
47
19
21
47
26
24
47
35
16
47
40
20


47
58
14
47
82
20
47
111
13
47
120
25
47
145
0
47
170
20


47
201
22
47
226
1
47
295
30
47
298
4
47
321
2
47
355
1


47
387
0
47
473
0
48
4
28
48
15
9
48
18
11
48
27
14


48
39
11
48
51
27
48
56
29
48
74
3
48
100
1
48
127
0


48
151
0
48
169
1
48
187
31
48
224
17
48
252
21
48
280
26


48
323
2
48
349
21
48
378
11
48
390
0
48
398
0
49
4
28


49
8
13
49
16
1
49
25
19
49
37
6
49
42
1
49
64
29


49
88
18
49
112
27
49
142
29
49
173
5
49
190
29
49
219
0


49
253
9
49
275
21
49
313
12
49
343
14
49
377
0
49
402
0


49
410
0
50
0
20
50
9
9
50
19
14
50
28
7
50
32
10


50
78
31
50
94
0
50
118
0
50
142
0
50
165
11
50
186
20


50
221
16
50
245
20
50
286
17
50
317
1
50
337
10
50
369
12


50
414
0
50
422
0
51
4
7
51
15
29
51
18
30
51
24
22


51
37
2
51
52
10
51
59
26
51
94
6
51
118
4
51
154
6


51
164
0
51
180
6
51
211
1
51
246
1
51
267
28
51
306
13


51
349
29
51
375
2
51
426
0
51
434
0
52
1
1
52
15
0


52
19
1
52
27
2
52
39
9
52
56
4
52
84
3
52
105
11


52
129
6
52
167
8
52
183
7
52
204
18
52
239
13
52
265
14


52
298
9
52
353
6
52
391
0
52
438
0
52
446
0
53
6
9


53
13
1
53
21
0
53
24
8
53
32
6
53
67
15
53
83
1


53
108
0
53
130
0
53
154
2
53
196
7
53
202
9
53
238
21


53
260
9
53
308
24
53
335
8
53
382
1
53
450
0
53
458
0


54
6
0
54
13
2
54
21
30
54
27
18
54
35
10
54
51
0


54
81
14
54
110
22
54
128
5
54
152
2
54
199
8
54
211
26


54
230
18
54
277
4
54
288
30
54
332
5
54
360
5
54
462
0


54
470
0
55
7
8
55
15
28
55
20
21
55
27
24
55
36
16


55
41
20
55
59
14
55
83
20
55
104
14
55
121
25
55
146
0


55
171
20
55
202
22
55
227
1
55
288
31
55
299
4
55
322
2


55
356
1
55
388
0
55
474
0
56
5
28
56
8
10
56
19
11


56
28
14
56
32
12
56
52
27
56
57
29
56
75
3
56
101
1


56
120
1
56
144
1
56
170
1
56
188
31
56
225
17
56
253
21


56
281
26
56
324
2
56
350
21
56
379
11
56
391
0
56
399
0


57
5
28
57
9
13
57
17
1
57
26
19
57
38
6
57
43
1


57
65
29
57
89
18
57
113
27
57
143
29
57
174
5
57
191
29


57
220
0
57
254
9
57
276
21
57
314
12
57
336
15
57
378
0


57
403
0
57
411
0
58
1
20
58
10
9
58
20
14
58
29
7


58
33
10
58
79
31
58
95
0
58
119
0
58
143
0
58
166
11


58
187
20
58
222
16
58
246
20
58
287
17
58
318
1
58
338
10


58
370
12
58
415
0
58
423
0
59
5
7
59
8
30
59
19
30


59
25
22
59
38
2
59
53
10
59
60
26
59
95
6
59
119
4


59
155
6
59
165
0
59
181
6
59
212
1
59
247
1
59
268
28


59
307
13
59
350
29
59
368
3
59
427
0
59
435
0
60
2
1


60
8
1
60
20
1
60
28
2
60
32
10
60
57
4
60
85
3


60
106
11
60
130
6
60
160
9
60
176
8
60
205
18
60
232
14


60
266
14
60
299
9
60
354
6
60
384
1
60
439
0
60
447
0


61
7
9
61
14
1
61
22
0
61
25
8
61
33
6
61
68
15


61
84
1
61
109
0
61
131
0
61
155
2
61
197
7
61
203
9


61
239
21
61
261
9
61
309
24
61
328
9
61
383
1
61
451
0


61
459
0
62
7
0
62
14
2
62
22
30
62
28
18
62
36
10


62
52
0
62
82
14
62
111
22
62
129
5
62
153
2
62
192
9


62
212
26
62
231
18
62
278
4
62
289
30
62
333
5
62
361
5


62
463
0
62
471
0
63
0
9
63
8
29
63
21
21
63
28
24


63
37
16
63
42
20
63
60
14
63
84
20
63
105
14
63
122
25


63
147
0
63
172
20
63
203
22
63
228
1
63
289
31
63
300
4


63
323
2
63
357
1
63
389
0
63
475
0
64
7
22
64
10
5


64
16
20
64
29
7
64
37
23
64
40
5
64
73
5
64
98
3


64
127
0
64
144
1
64
184
15
64
192
7
64
223
6
64
248
1


64
285
4
64
316
23
64
349
22
64
370
21
64
392
0
64
400
0


65
6
28
65
10
13
65
18
1
65
27
19
65
39
6
65
44
1


65
66
29
65
90
18
65
114
27
65
136
30
65
175
5
65
184
30


65
221
0
65
255
9
65
277
21
65
315
12
65
337
15
65
379
0


65
404
0
65
412
0
66
3
19
66
9
5
66
20
22
66
27
7


66
38
23
66
45
2
66
65
3
66
92
0
66
120
17
66
138
0


66
160
13
66
176
13
66
210
9
66
260
8
66
275
28
66
311
0


66
330
9
66
365
28
66
416
0
66
424
0
67
6
7
67
9
30


67
20
30
67
26
22
67
39
2
67
54
10
67
61
26
67
88
7


67
112
5
67
156
6
67
166
0
67
182
6
67
213
1
67
240
2


67
269
28
67
308
13
67
351
29
67
369
3
67
428
0
67
436
0


68
4
0
68
14
0
68
20
19
68
29
19
68
38
12
68
65
27


68
101
18
68
118
9
68
137
5
68
159
9
68
183
27
68
201
0


68
237
10
68
266
30
68
296
5
68
327
12
68
358
22
68
440
0


68
448
0
69
0
10
69
15
1
69
23
0
69
26
8
69
34
6


69
69
15
69
85
1
69
110
0
69
132
0
69
156
2
69
198
7


69
204
9
69
232
22
69
262
9
69
310
24
69
329
9
69
376
2


69
452
0
69
460
0
70
5
7
70
9
6
70
23
17
70
30
25


70
37
3
70
53
2
70
72
25
70
99
0
70
132
7
70
144
8


70
172
5
70
196
21
70
241
2
70
261
6
70
289
1
70
341
27


70
367
1
70
464
0
70
472
0
71
1
9
71
9
29
71
22
21


71
29
24
71
38
16
71
43
20
71
61
14
71
85
20
71
106
14


71
123
25
71
148
0
71
173
20
71
204
22
71
229
1
71
290
31


71
301
4
71
324
2
71
358
1
71
390
0
71
476
0
72
0
23


72
11
5
72
17
20
72
30
7
72
38
23
72
41
5
72
74
5


72
99
3
72
120
1
72
145
1
72
185
15
72
193
7
72
216
7


72
249
1
72
286
4
72
317
23
72
350
22
72
371
21
72
393
0


72
401
0
73
7
28
73
11
13
73
19
1
73
28
19
73
32
7


73
45
1
73
67
29
73
91
18
73
115
27
73
137
30
73
168
6


73
185
30
73
222
0
73
248
10
73
278
21
73
316
12
73
338
15


73
380
0
73
405
0
73
413
0
74
4
19
74
10
5
74
21
22


74
28
7
74
39
23
74
46
2
74
66
3
74
93
0
74
121
17


74
139
0
74
161
13
74
177
13
74
211
9
74
261
8
74
276
28


74
304
1
74
331
9
74
366
28
74
417
0
74
425
0
75
7
7


75
10
30
75
21
30
75
27
22
75
32
3
75
55
10
75
62
26


75
89
7
75
113
5
75
157
6
75
167
0
75
183
6
75
214
1


75
241
2
75
270
28
75
309
13
75
344
30
75
370
3
75
429
0


75
437
0
76
5
0
76
15
0
76
21
19
76
30
19
76
39
12


76
66
27
76
102
18
76
119
9
76
138
5
76
152
10
76
176
28


76
202
0
76
238
10
76
267
30
76
297
5
76
320
13
76
359
22


76
441
0
76
449
0
77
1
10
77
8
2
77
16
1
77
27
8


77
35
6
77
70
15
77
86
1
77
111
0
77
133
0
77
157
2


77
199
7
77
205
9
77
233
22
77
263
9
77
311
24
77
330
9


77
377
2
77
453
0
77
461
0
78
6
7
78
10
6
78
16
18


78
31
25
78
38
3
78
54
2
78
73
25
78
100
0
78
133
7


78
145
8
78
173
5
78
197
21
78
242
2
78
262
6
78
290
1


78
342
27
78
360
2
78
465
0
78
473
0
79
2
9
79
10
29


79
23
21
79
30
24
79
39
16
79
44
20
79
62
14
79
86
20


79
107
14
79
124
25
79
149
0
79
174
20
79
205
22
79
230
1


79
291
31
79
302
4
79
325
2
79
359
1
79
391
0
79
477
0


80
1
23
80
12
5
80
18
20
80
31
7
80
39
23
80
42
5


80
75
5
80
100
3
80
121
1
80
146
1
80
186
15
80
194
7


80
217
7
80
250
1
80
287
4
80
318
23
80
351
22
80
372
21


80
394
0
80
402
0
81
0
29
81
12
13
81
20
1
81
29
19


81
33
7
81
46
1
81
68
29
81
92
18
81
116
27
81
138
30


81
169
6
81
186
30
81
223
0
81
249
10
81
279
21
81
317
12


81
339
15
81
381
0
81
406
0
81
414
0
82
5
19
82
11
5


82
22
22
82
29
7
82
32
24
82
47
2
82
67
3
82
94
0


82
122
17
82
140
0
82
162
13
82
178
13
82
212
9
82
262
8


82
277
28
82
305
1
82
332
9
82
367
28
82
418
0
82
426
0


83
0
8
83
11
30
83
22
30
83
28
22
83
33
3
83
48
11


83
63
26
83
90
7
83
114
5
83
158
6
83
160
1
83
176
7


83
215
1
83
242
2
83
271
28
83
310
13
83
345
30
83
371
3


83
430
0
83
438
0
84
6
0
84
8
1
84
22
19
84
31
19


84
32
13
84
67
27
84
103
18
84
112
10
84
139
5
84
153
10


84
177
28
84
203
0
84
239
10
84
268
30
84
298
5
84
321
13


84
352
23
84
442
0
84
450
0
85
2
10
85
9
2
85
17
1


85
28
8
85
36
6
85
71
15
85
87
1
85
104
1
85
134
0


85
158
2
85
192
8
85
206
9
85
234
22
85
256
10
85
304
25


85
331
9
85
378
2
85
454
0
85
462
0
86
7
7
86
11
6


86
17
18
86
24
26
86
39
3
86
55
2
86
74
25
86
101
0


86
134
7
86
146
8
86
174
5
86
198
21
86
243
2
86
263
6


86
291
1
86
343
27
86
361
2
86
466
0
86
474
0
87
3
9


87
11
29
87
16
22
87
31
24
87
32
17
87
45
20
87
63
14


87
87
20
87
108
14
87
125
25
87
150
0
87
175
20
87
206
22


87
231
1
87
292
31
87
303
4
87
326
2
87
352
2
87
384
1


87
478
0
88
2
23
88
13
5
88
19
20
88
24
8
88
32
24


88
43
5
88
76
5
88
101
3
88
122
1
88
147
1
88
187
15


88
195
7
88
218
7
88
251
1
88
280
5
88
319
23
88
344
23


88
373
21
88
395
0
88
403
0
89
1
29
89
13
13
89
21
1


89
30
19
89
34
7
89
47
1
89
69
29
89
93
18
89
117
27


89
139
30
89
170
6
89
187
30
89
216
1
89
250
10
89
272
22


89
318
12
89
340
15
89
382
0
89
407
0
89
415
0
90
6
19


90
12
5
90
23
22
90
30
7
90
33
24
90
40
3
90
68
3


90
95
0
90
123
17
90
141
0
90
163
13
90
179
13
90
213
9


90
263
8
90
278
28
90
306
1
90
333
9
90
360
29
90
419
0


90
427
0
91
1
8
91
12
30
91
23
30
91
29
22
91
34
3


91
49
11
91
56
27
91
91
7
91
115
5
91
159
6
91
161
1


91
177
7
91
208
2
91
243
2
91
264
29
91
311
13
91
346
30


91
372
3
91
431
0
91
439
0
92
7
0
92
9
1
92
23
19


92
24
20
92
33
13
92
68
27
92
96
19
92
113
10
92
140
5


92
154
10
92
178
28
92
204
0
92
232
11
92
269
30
92
299
5


92
322
13
92
353
23
92
443
0
92
451
0
93
3
10
93
10
2


93
18
1
93
29
8
93
37
6
93
64
16
93
80
2
93
105
1


93
135
0
93
159
2
93
193
8
93
207
9
93
235
22
93
257
10


93
305
25
93
332
9
93
379
2
93
455
0
93
463
0
94
0
8


94
12
6
94
18
18
94
25
26
94
32
4
94
48
3
94
75
25


94
102
0
94
135
7
94
147
8
94
175
5
94
199
21
94
244
2


94
256
7
94
292
1
94
336
28
94
362
2
94
467
0
94
475
0


95
4
9
95
12
29
95
17
22
95
24
25
95
33
17
95
46
20


95
56
15
95
80
21
95
109
14
95
126
25
95
151
0
95
168
21


95
207
22
95
224
2
95
293
31
95
296
5
95
327
2
95
353
2


95
385
1
95
479
0
















APPENDIX TABLE H





Specification of the base matrix B5/6 for the rate-⅚ LDPC code
































0
7
16
0
15
20
0
19
28
0
26
11
0
35
1
0
40
16


0
56
31
0
74
18
0
88
12
0
105
5
0
126
18
0
144
27


0
163
1
0
187
6
0
202
0
0
230
0
0
241
13
0
266
10


0
293
31
0
326
6
0
349
1
0
368
7
0
399
18
0
400
0


0
408
0
1
4
1
1
11
0
1
17
1
1
25
1
1
36
16


1
40
24
1
58
17
1
76
14
1
107
28
1
126
1
1
139
1


1
162
3
1
177
28
1
202
2
1
229
3
1
240
22
1
259
6


1
295
7
1
316
10
1
339
30
1
373
22
1
396
8
1
410
0


1
418
0
2
0
15
2
15
30
2
23
11
2
26
0
2
32
8


2
46
15
2
49
4
2
75
18
2
86
22
2
100
22
2
117
13


2
141
9
2
153
27
2
182
1
2
194
17
2
216
16
2
245
15


2
262
3
2
282
1
2
315
1
2
348
12
2
360
15
2
389
20


2
420
0
2
428
0
3
2
10
3
13
3
3
20
4
3
30
24


3
38
0
3
44
6
3
52
31
3
79
23
3
100
10
3
119
18


3
157
2
3
164
1
3
183
1
3
204
7
3
218
2
3
242
28


3
256
15
3
282
22
3
306
11
3
343
4
3
363
20
3
387
0


3
430
0
3
438
0
4
4
21
4
10
1
4
23
22
4
30
24


4
34
27
4
41
15
4
55
31
4
65
0
4
91
15
4
114
31


4
149
17
4
155
2
4
187
6
4
197
1
4
210
16
4
233
14


4
251
10
4
274
7
4
300
30
4
332
29
4
355
27
4
401
0


4
440
0
4
448
0
5
0
1
5
8
27
5
16
5
5
29
30


5
36
30
5
45
11
5
65
1
5
90
0
5
118
25
5
134
23


5
151
10
5
172
0
5
187
4
5
211
9
5
238
10
5
251
1


5
265
25
5
301
4
5
330
11
5
357
16
5
380
11
5
450
0


5
458
0
6
5
20
6
13
25
6
20
11
6
31
8
6
35
17


6
44
5
6
71
15
6
80
26
6
90
11
6
106
13
6
124
0


6
146
1
6
163
12
6
199
3
6
202
23
6
233
3
6
249
18


6
308
29
6
314
11
6
322
1
6
373
15
6
395
10
6
460
0


6
468
0
7
3
1
7
8
1
7
18
1
7
30
0
7
37
8


7
44
3
7
63
4
7
80
10
7
110
4
7
134
20
7
140
10


7
175
23
7
186
1
7
213
31
7
225
13
7
248
0
7
278
21


7
299
2
7
328
1
7
352
15
7
377
5
7
470
0
7
478
0


8
0
17
8
8
21
8
20
28
8
27
11
8
36
1
8
41
16


8
57
31
8
75
18
8
89
12
8
106
5
8
127
18
8
145
27


8
164
1
8
188
6
8
203
0
8
231
0
8
242
13
8
267
10


8
294
31
8
327
6
8
350
1
8
369
7
8
392
19
8
401
0


8
409
0
9
5
1
9
12
0
9
18
1
9
26
1
9
37
16


9
41
24
9
59
17
9
77
14
9
108
28
9
127
1
9
140
1


9
163
3
9
178
28
9
203
2
9
230
3
9
241
22
9
260
6


9
288
8
9
317
10
9
340
30
9
374
22
9
397
8
9
411
0


9
419
0
10
1
15
10
8
31
10
16
12
10
27
0
10
33
8


10
47
15
10
50
4
10
76
18
10
87
22
10
101
22
10
118
13


10
142
9
10
154
27
10
183
1
10
195
17
10
217
16
10
246
15


10
263
3
10
283
1
10
316
1
10
349
12
10
361
15
10
390
20


10
421
0
10
429
0
11
3
10
11
14
3
11
21
4
11
31
24


11
39
0
11
45
6
11
53
31
11
72
24
11
101
10
11
112
19


11
158
2
11
165
1
11
176
2
11
205
7
11
219
2
11
243
28


11
257
15
11
283
22
11
307
11
11
336
5
11
364
20
11
388
0


11
431
0
11
439
0
12
5
21
12
11
1
12
16
23
12
31
24


12
35
27
12
42
15
12
48
0
12
66
0
12
92
15
12
115
31


12
150
17
12
156
2
12
188
6
12
198
1
12
211
16
12
234
14


12
252
10
12
275
7
12
301
30
12
333
29
12
356
27
12
402
0


12
441
0
12
449
0
13
1
1
13
9
27
13
17
5
13
30
30


13
37
30
13
46
11
13
66
1
13
91
0
13
119
25
13
135
23


13
144
11
13
173
0
13
188
4
13
212
9
13
239
10
13
252
1


13
266
25
13
302
4
13
331
11
13
358
16
13
381
11
13
451
0


13
459
0
14
6
20
14
14
25
14
21
11
14
24
9
14
36
17


14
45
5
14
64
16
14
81
26
14
91
11
14
107
13
14
125
0


14
147
1
14
164
12
14
192
4
14
203
23
14
234
3
14
250
18


14
309
29
14
315
11
14
323
1
14
374
15
14
396
10
14
461
0


14
469
0
15
4
1
15
9
1
15
19
1
15
31
0
15
38
8


15
45
3
15
56
5
15
81
10
15
111
4
15
135
20
15
141
10


15
168
24
15
187
1
15
214
31
15
226
13
15
249
0
15
279
21


15
300
2
15
329
1
15
353
15
15
378
5
15
471
0
15
479
0


16
1
17
16
9
21
16
21
28
16
28
11
16
37
1
16
42
16


16
58
31
16
76
18
16
90
12
16
107
5
16
120
19
16
146
27


16
165
1
16
189
6
16
204
0
16
224
1
16
243
13
16
268
10


16
295
31
16
320
7
16
351
1
16
370
7
16
393
19
16
402
0


16
410
0
17
6
1
17
13
0
17
19
1
17
27
1
17
38
16


17
42
24
17
60
17
17
78
14
17
109
28
17
120
2
17
141
1


17
164
3
17
179
28
17
204
2
17
231
3
17
242
22
17
261
6


17
289
8
17
318
10
17
341
30
17
375
22
17
398
8
17
412
0


17
420
0
18
2
15
18
9
31
18
17
12
18
28
0
18
34
8


18
40
16
18
51
4
18
77
18
18
80
23
18
102
22
18
119
13


18
143
9
18
155
27
18
176
2
18
196
17
18
218
16
18
247
15


18
256
4
18
284
1
18
317
1
18
350
12
18
362
15
18
391
20


18
422
0
18
430
0
19
5
11
19
10
22
19
21
2
19
31
20


19
32
20
19
40
12
19
51
2
19
66
10
19
97
2
19
122
1


19
130
15
19
156
0
19
175
26
19
193
1
19
218
8
19
239
24


19
258
12
19
280
20
19
307
0
19
338
14
19
361
11
19
384
25


19
432
0
19
440
0
20
6
21
20
12
1
20
17
23
20
24
25


20
36
27
20
43
15
20
49
0
20
67
0
20
93
15
20
116
31


20
151
17
20
157
2
20
189
6
20
199
1
20
212
16
20
235
14


20
253
10
20
276
7
20
302
30
20
334
29
20
357
27
20
403
0


20
442
0
20
450
0
21
2
1
21
10
27
21
18
5
21
31
30


21
38
30
21
47
11
21
67
1
21
92
0
21
112
26
21
128
24


21
145
11
21
174
0
21
189
4
21
213
9
21
232
11
21
253
1


21
267
25
21
303
4
21
332
11
21
359
16
21
382
11
21
452
0


21
460
0
22
7
20
22
15
25
22
22
11
22
25
9
22
37
17


22
46
5
22
65
16
22
82
26
22
92
11
22
108
13
22
126
0


22
148
1
22
165
12
22
193
4
22
204
23
22
235
3
22
251
18


22
310
29
22
316
11
22
324
1
22
375
15
22
397
10
22
462
0


22
470
0
23
7
20
23
15
27
23
22
4
23
27
16
23
34
22


23
40
17
23
59
1
23
83
26
23
99
17
23
133
10
23
137
5


23
169
13
23
183
16
23
214
17
23
216
25
23
225
15
23
268
5


23
276
24
23
294
24
23
322
0
23
345
9
23
383
1
23
402
0


23
472
0
24
2
17
24
10
21
24
22
28
24
29
11
24
38
1


24
43
16
24
59
31
24
77
18
24
91
12
24
108
5
24
121
19


24
147
27
24
166
1
24
190
6
24
205
0
24
225
1
24
244
13


24
269
10
24
288
0
24
321
7
24
344
2
24
371
7
24
394
19


24
403
0
24
411
0
25
7
1
25
14
0
25
20
1
25
28
1


25
39
16
25
43
24
25
61
17
25
79
14
25
110
28
25
121
2


25
142
1
25
165
3
25
180
28
25
205
2
25
224
4
25
243
22


25
262
6
25
290
8
25
319
10
25
342
30
25
368
23
25
399
8


25
413
0
25
421
0
26
3
15
26
10
31
26
18
12
26
29
0


26
35
8
26
41
16
26
52
4
26
78
18
26
81
23
26
103
22


26
112
14
26
136
10
26
156
27
26
177
2
26
197
17
26
219
16


26
240
16
26
257
4
26
285
1
26
318
1
26
351
12
26
363
15


26
384
21
26
423
0
26
431
0
27
6
11
27
11
22
27
22
2


27
24
21
27
33
20
27
41
12
27
52
2
27
67
10
27
98
2


27
123
1
27
131
15
27
157
0
27
168
27
27
194
1
27
219
8


27
232
25
27
259
12
27
281
20
27
308
0
27
339
14
27
362
11


27
385
25
27
433
0
27
441
0
28
7
21
28
13
1
28
18
23


28
25
25
28
37
27
28
44
15
28
50
0
28
68
0
28
94
15


28
117
31
28
144
18
28
158
2
28
190
6
28
192
2
28
213
16


28
236
14
28
254
10
28
277
7
28
303
30
28
335
29
28
358
27


28
404
0
28
443
0
28
451
0
29
3
1
29
11
27
29
19
5


29
24
31
29
39
30
29
40
12
29
68
1
29
93
0
29
113
26


29
129
24
29
146
11
29
175
0
29
190
4
29
214
9
29
233
11


29
254
1
29
268
25
29
296
5
29
333
11
29
352
17
29
383
11


29
453
0
29
461
0
30
0
21
30
8
26
30
23
11
30
26
9


30
38
17
30
47
5
30
66
16
30
83
26
30
93
11
30
109
13


30
127
0
30
149
1
30
166
12
30
194
4
30
205
23
30
236
3


30
252
18
30
311
29
30
317
11
30
325
1
30
368
16
30
398
10


30
463
0
30
471
0
31
0
21
31
8
28
31
23
4
31
28
16


31
35
22
31
41
17
31
60
1
31
84
26
31
100
17
31
134
10


31
138
5
31
170
13
31
176
17
31
215
17
31
217
25
31
226
15


31
269
5
31
277
24
31
295
24
31
323
0
31
346
9
31
376
2


31
403
0
31
473
0
32
3
17
32
11
21
32
23
28
32
30
11


32
39
1
32
44
16
32
60
31
32
78
18
32
92
12
32
109
5


32
122
19
32
148
27
32
167
1
32
191
6
32
206
0
32
226
1


32
245
13
32
270
10
32
289
0
32
322
7
32
345
2
32
372
7


32
395
19
32
404
0
32
412
0
33
0
2
33
15
0
33
21
1


33
29
1
33
32
17
33
44
24
33
62
17
33
72
15
33
111
28


33
122
2
33
143
1
33
166
3
33
181
28
33
206
2
33
225
4


33
244
22
33
263
6
33
291
8
33
312
11
33
343
30
33
369
23


33
392
9
33
414
0
33
422
0
34
4
9
34
15
2
34
22
3


34
24
24
34
32
0
34
46
5
34
54
30
34
73
23
34
102
9


34
113
18
34
159
1
34
166
0
34
177
1
34
206
6
34
220
1


34
244
27
34
258
14
34
284
21
34
308
10
34
337
4
34
365
19


34
389
31
34
424
0
34
432
0
35
7
11
35
12
22
35
23
2


35
25
21
35
34
20
35
42
12
35
53
2
35
68
10
35
99
2


35
124
1
35
132
15
35
158
0
35
169
27
35
195
1
35
220
8


35
233
25
35
260
12
35
282
20
35
309
0
35
340
14
35
363
11


35
386
25
35
434
0
35
442
0
36
0
22
36
14
1
36
19
23


36
26
25
36
38
27
36
45
15
36
51
0
36
69
0
36
95
15


36
118
31
36
145
18
36
159
2
36
191
6
36
193
2
36
214
16


36
237
14
36
255
10
36
278
7
36
296
31
36
328
30
36
359
27


36
405
0
36
444
0
36
452
0
37
4
1
37
12
27
37
20
5


37
25
31
37
32
31
37
41
12
37
69
1
37
94
0
37
114
26


37
130
24
37
147
11
37
168
1
37
191
4
37
215
9
37
234
11


37
255
1
37
269
25
37
297
5
37
334
11
37
353
17
37
376
12


37
454
0
37
462
0
38
5
0
38
10
0
38
20
0
38
24
0


38
39
7
38
46
2
38
57
4
38
82
9
38
104
4
38
128
20


38
142
9
38
169
23
38
188
0
38
215
30
38
227
12
38
250
31


38
272
21
38
301
1
38
330
0
38
354
14
38
379
4
38
464
0


38
472
0
39
1
21
39
9
28
39
16
5
39
29
16
39
36
22


39
42
17
39
61
1
39
85
26
39
101
17
39
135
10
39
139
5


39
171
13
39
177
17
39
208
18
39
218
25
39
227
15
39
270
5


39
278
24
39
288
25
39
324
0
39
347
9
39
377
2
39
404
0


39
474
0
40
4
17
40
12
21
40
16
29
40
31
11
40
32
2


40
45
16
40
61
31
40
79
18
40
93
12
40
110
5
40
123
19


40
149
27
40
160
2
40
184
7
40
207
0
40
227
1
40
246
13


40
271
10
40
290
0
40
323
7
40
346
2
40
373
7
40
396
19


40
405
0
40
413
0
41
1
2
41
8
1
41
22
1
41
30
1


41
33
17
41
45
24
41
63
17
41
73
15
41
104
29
41
123
2


41
136
2
41
167
3
41
182
28
41
207
2
41
226
4
41
245
22


41
256
7
41
292
8
41
313
11
41
336
31
41
370
23
41
393
9


41
415
0
41
423
0
42
5
9
42
8
3
42
23
3
42
25
24


42
33
0
42
47
5
42
55
30
42
74
23
42
103
9
42
114
18


42
152
2
42
167
0
42
178
1
42
207
6
42
221
1
42
245
27


42
259
14
42
285
21
42
309
10
42
338
4
42
366
19
42
390
31


42
425
0
42
433
0
43
0
12
43
13
22
43
16
3
43
26
21


43
35
20
43
43
12
43
54
2
43
69
10
43
100
2
43
125
1


43
133
15
43
159
0
43
170
27
43
196
1
43
221
8
43
234
25


43
261
12
43
283
20
43
310
0
43
341
14
43
364
11
43
387
25


43
435
0
43
443
0
44
1
22
44
15
1
44
20
23
44
27
25


44
39
27
44
46
15
44
52
0
44
70
0
44
88
16
44
119
31


44
146
18
44
152
3
44
184
7
44
194
2
44
215
16
44
238
14


44
248
11
44
279
7
44
297
31
44
329
30
44
352
28
44
406
0


44
445
0
44
453
0
45
5
1
45
13
27
45
21
5
45
26
31


45
33
31
45
42
12
45
70
1
45
95
0
45
115
26
45
131
24


45
148
11
45
169
1
45
184
5
45
208
10
45
235
11
45
248
2


45
270
25
45
298
5
45
335
11
45
354
17
45
377
12
45
455
0


45
463
0
46
6
0
46
11
0
46
21
0
46
25
0
46
32
8


46
47
2
46
58
4
46
83
9
46
105
4
46
129
20
46
143
9


46
170
23
46
189
0
46
208
31
46
228
12
46
251
31
46
273
21


46
302
1
46
331
0
46
355
14
46
380
4
46
465
0
46
473
0


47
2
21
47
10
28
47
17
5
47
30
16
47
37
22
47
43
17


47
62
1
47
86
26
47
102
17
47
128
11
47
140
5
47
172
13


47
178
17
47
209
18
47
219
25
47
228
15
47
271
5
47
279
24


47
289
25
47
325
0
47
348
9
47
378
2
47
405
0
47
475
0


48
5
17
48
13
21
48
17
29
48
24
12
48
33
2
48
46
16


48
62
31
48
72
19
48
94
12
48
111
5
48
124
19
48
150
27


48
161
2
48
185
7
48
200
1
48
228
1
48
247
13
48
264
11


48
291
0
48
324
7
48
347
2
48
374
7
48
397
19
48
406
0


48
414
0
49
4
14
49
11
30
49
19
11
49
30
31
49
36
7


49
42
15
49
53
3
49
79
17
49
82
22
49
96
22
49
113
13


49
137
9
49
157
26
49
178
1
49
198
16
49
220
15
49
241
15


49
258
3
49
286
0
49
319
0
49
344
12
49
364
14
49
385
20


49
416
0
49
424
0
50
6
9
50
9
3
50
16
4
50
26
24


50
34
0
50
40
6
50
48
31
50
75
23
50
96
10
50
115
18


50
153
2
50
160
1
50
179
1
50
200
7
50
222
1
50
246
27


50
260
14
50
286
21
50
310
10
50
339
4
50
367
19
50
391
31


50
426
0
50
434
0
51
1
12
51
14
22
51
17
3
51
27
21


51
36
20
51
44
12
51
55
2
51
70
10
51
101
2
51
126
1


51
134
15
51
152
1
51
171
27
51
197
1
51
222
8
51
235
25


51
262
12
51
284
20
51
311
0
51
342
14
51
365
11
51
388
25


51
436
0
51
444
0
52
2
22
52
8
2
52
21
23
52
28
25


52
32
28
52
47
15
52
53
0
52
71
0
52
89
16
52
112
0


52
147
18
52
153
3
52
185
7
52
195
2
52
208
17
52
239
14


52
249
11
52
272
8
52
298
31
52
330
30
52
353
28
52
407
0


52
446
0
52
454
0
53
1
20
53
9
25
53
16
11
53
27
8


53
39
16
53
40
5
53
67
15
53
84
25
53
94
10
53
110
12


53
120
0
53
150
0
53
167
11
53
195
3
53
206
22
53
237
2


53
253
17
53
304
29
53
318
10
53
326
0
53
369
15
53
399
9


53
456
0
53
464
0
54
7
0
54
12
0
54
22
0
54
26
0


54
33
8
54
40
3
54
59
4
54
84
9
54
106
4
54
130
20


54
136
10
54
171
23
54
190
0
54
209
31
54
229
12
54
252
31


54
274
21
54
303
1
54
332
0
54
356
14
54
381
4
54
466
0


54
474
0
55
3
21
55
11
28
55
18
5
55
31
16
55
38
22


55
44
17
55
63
1
55
87
26
55
103
17
55
129
11
55
141
5


55
173
13
55
179
17
55
210
18
55
220
25
55
229
15
55
264
6


55
272
25
55
290
25
55
326
0
55
349
9
55
379
2
55
406
0


55
476
0
56
6
17
56
14
21
56
18
29
56
25
12
56
34
2


56
47
16
56
63
31
56
73
19
56
95
12
56
104
6
56
125
19


56
151
27
56
162
2
56
186
7
56
201
1
56
229
1
56
240
14


56
265
11
56
292
0
56
325
7
56
348
2
56
375
7
56
398
19


56
407
0
56
415
0
57
5
14
57
12
30
57
20
11
57
31
31


57
37
7
57
43
15
57
54
3
57
72
18
57
83
22
57
97
22


57
114
13
57
138
9
57
158
26
57
179
1
57
199
16
57
221
15


57
242
15
57
259
3
57
287
0
57
312
1
57
345
12
57
365
14


57
386
20
57
417
0
57
425
0
58
7
9
58
10
3
58
17
4


58
27
24
58
35
0
58
41
6
58
49
31
58
76
23
58
97
10


58
116
18
58
154
2
58
161
1
58
180
1
58
201
7
58
223
1


58
247
27
58
261
14
58
287
21
58
311
10
58
340
4
58
360
20


58
384
0
58
427
0
58
435
0
59
2
12
59
15
22
59
18
3


59
28
21
59
37
20
59
45
12
59
48
3
59
71
10
59
102
2


59
127
1
59
135
15
59
153
1
59
172
27
59
198
1
59
223
8


59
236
25
59
263
12
59
285
20
59
304
1
59
343
14
59
366
11


59
389
25
59
437
0
59
445
0
60
3
22
60
9
2
60
22
23


60
29
25
60
33
28
60
40
16
60
54
0
60
64
1
60
90
16


60
113
0
60
148
18
60
154
3
60
186
7
60
196
2
60
209
17


60
232
15
60
250
11
60
273
8
60
299
31
60
331
30
60
354
28


60
400
1
60
447
0
60
455
0
61
2
20
61
10
25
61
17
11


61
28
8
61
32
17
61
41
5
61
68
15
61
85
25
61
95
10


61
111
12
61
121
0
61
151
0
61
160
12
61
196
3
61
207
22


61
238
2
61
254
17
61
305
29
61
319
10
61
327
0
61
370
15


61
392
10
61
457
0
61
465
0
62
0
1
62
13
0
62
23
0


62
27
0
62
34
8
62
41
3
62
60
4
62
85
9
62
107
4


62
131
20
62
137
10
62
172
23
62
191
0
62
210
31
62
230
12


62
253
31
62
275
21
62
296
2
62
333
0
62
357
14
62
382
4


62
467
0
62
475
0
63
4
21
63
12
28
63
19
5
63
24
17


63
39
22
63
45
17
63
56
2
63
80
27
63
96
18
63
130
11


63
142
5
63
174
13
63
180
17
63
211
18
63
221
25
63
230
15


63
265
6
63
273
25
63
291
25
63
327
0
63
350
9
63
380
2


63
407
0
63
477
0
64
2
1
64
9
0
64
23
0
64
31
0


64
34
16
64
46
23
64
56
17
64
74
14
64
105
28
64
124
1


64
137
1
64
160
3
64
183
27
64
200
2
64
227
3
64
246
21


64
257
6
64
293
7
64
314
10
64
337
30
64
371
22
64
394
8


64
408
0
64
416
0
65
6
14
65
13
30
65
21
11
65
24
0


65
38
7
65
44
15
65
55
3
65
73
18
65
84
22
65
98
22


65
115
13
65
139
9
65
159
26
65
180
1
65
192
17
65
222
15


65
243
15
65
260
3
65
280
1
65
313
1
65
346
12
65
366
14


65
387
20
65
418
0
65
426
0
66
0
10
66
11
3
66
18
4


66
28
24
66
36
0
66
42
6
66
50
31
66
77
23
66
98
10


66
117
18
66
155
2
66
162
1
66
181
1
66
202
7
66
216
2


66
240
28
66
262
14
66
280
22
66
304
11
66
341
4
66
361
20


66
385
0
66
428
0
66
436
0
67
3
12
67
8
23
67
19
3


67
29
21
67
38
20
67
46
12
67
49
3
67
64
11
67
103
2


67
120
2
67
128
16
67
154
1
67
173
27
67
199
1
67
216
9


67
237
25
67
256
13
67
286
20
67
305
1
67
336
15
67
367
11


67
390
25
67
438
0
67
446
0
68
6
0
68
14
26
68
22
4


68
27
30
68
34
30
68
43
11
68
71
0
68
88
0
68
116
25


68
132
23
68
149
10
68
170
0
68
185
4
68
209
9
68
236
10


68
249
1
68
271
24
68
299
4
68
328
11
68
355
16
68
378
11


68
448
0
68
456
0
69
3
20
69
11
25
69
18
11
69
29
8


69
33
17
69
42
5
69
69
15
69
86
25
69
88
11
69
104
13


69
122
0
69
144
1
69
161
12
69
197
3
69
200
23
69
239
2


69
255
17
69
306
29
69
312
11
69
320
1
69
371
15
69
393
10


69
458
0
69
466
0
70
1
1
70
14
0
70
16
1
70
28
0


70
35
8
70
42
3
70
61
4
70
86
9
70
108
4
70
132
20


70
138
10
70
173
23
70
184
1
70
211
31
70
231
12
70
254
31


70
276
21
70
297
2
70
334
0
70
358
14
70
383
4
70
468
0


70
476
0
71
5
21
71
13
28
71
20
5
71
25
17
71
32
23


71
46
17
71
57
2
71
81
27
71
97
18
71
131
11
71
143
5


71
175
13
71
181
17
71
212
18
71
222
25
71
231
15
71
266
6


71
274
25
71
292
25
71
320
1
71
351
9
71
381
2
71
400
1


71
478
0
72
3
1
72
10
0
72
16
1
72
24
1
72
35
16


72
47
23
72
57
17
72
75
14
72
106
28
72
125
1
72
138
1


72
161
3
72
176
28
72
201
2
72
228
3
72
247
21
72
258
6


72
294
7
72
315
10
72
338
30
72
372
22
72
395
8
72
409
0


72
417
0
73
7
14
73
14
30
73
22
11
73
25
0
73
39
7


73
45
15
73
48
4
73
74
18
73
85
22
73
99
22
73
116
13


73
140
9
73
152
27
73
181
1
73
193
17
73
223
15
73
244
15


73
261
3
73
281
1
73
314
1
73
347
12
73
367
14
73
388
20


73
419
0
73
427
0
74
1
10
74
12
3
74
19
4
74
29
24


74
37
0
74
43
6
74
51
31
74
78
23
74
99
10
74
118
18


74
156
2
74
163
1
74
182
1
74
203
7
74
217
2
74
241
28


74
263
14
74
281
22
74
305
11
74
342
4
74
362
20
74
386
0


74
429
0
74
437
0
75
4
12
75
9
23
75
20
3
75
30
21


75
39
20
75
47
12
75
50
3
75
65
11
75
96
3
75
121
2


75
129
16
75
155
1
75
174
27
75
192
2
75
217
9
75
238
25


75
257
13
75
287
20
75
306
1
75
337
15
75
360
12
75
391
25


75
439
0
75
447
0
76
7
0
76
15
26
76
23
4
76
28
30


76
35
30
76
44
11
76
64
1
76
89
0
76
117
25
76
133
23


76
150
10
76
171
0
76
186
4
76
210
9
76
237
10
76
250
1


76
264
25
76
300
4
76
329
11
76
356
16
76
379
11
76
449
0


76
457
0
77
4
20
77
12
25
77
19
11
77
30
8
77
34
17


77
43
5
77
70
15
77
87
25
77
89
11
77
105
13
77
123
0


77
145
1
77
162
12
77
198
3
77
201
23
77
232
3
77
248
18


77
307
29
77
313
11
77
321
1
77
372
15
77
394
10
77
459
0


77
467
0
78
2
1
78
15
0
78
17
1
78
29
0
78
36
8


78
43
3
78
62
4
78
87
9
78
109
4
78
133
20
78
139
10


78
174
23
78
185
1
78
212
31
78
224
13
78
255
31
78
277
21


78
298
2
78
335
0
78
359
14
78
376
5
78
469
0
78
477
0


79
6
21
79
14
28
79
21
5
79
26
17
79
33
23
79
47
17


79
58
2
79
82
27
79
98
18
79
132
11
79
136
6
79
168
14


79
182
17
79
213
18
79
223
25
79
224
16
79
267
6
79
275
25


79
293
25
79
321
1
79
344
10
79
382
2
79
401
1
79
479
0
















APPENDIX TABLE I





Specification of the base matrix B13/15 for the rate- 13/15 LDPC code
































0
2
15
0
9
6
0
21
0
0
25
1
0
48
11
0
81
29


0
90
5
0
108
11
0
119
19
0
121
12
0
145
30
0
166
9


0
181
18
0
189
11
0
196
5
0
214
8
0
225
11
0
261
19


0
266
3
0
284
11
0
310
0
0
335
1
0
349
7
0
368
20


0
390
10
0
409
0
0
416
0
0
424
0
1
3
23
1
10
27


1
17
28
1
26
3
1
52
5
1
63
0
1
84
26
1
94
21


1
108
6
1
125
27
1
147
22
1
164
11
1
178
8
1
193
4


1
208
3
1
224
1
1
242
1
1
270
4
1
283
10
1
304
0


1
327
9
1
347
0
1
374
3
1
384
17
1
412
21
1
424
0


1
432
0
2
1
0
2
8
5
2
21
1
2
29
26
2
41
1


2
49
2
2
71
21
2
81
28
2
110
14
2
127
23
2
141
4


2
157
30
2
179
21
2
207
17
2
208
29
2
225
20
2
238
19


2
261
6
2
277
2
2
299
18
2
319
22
2
341
29
2
365
4


2
397
21
2
404
27
2
432
0
2
440
0
3
4
1
3
11
0


3
17
1
3
31
1
3
41
13
3
69
28
3
87
19
3
100
4


3
110
25
3
141
0
3
152
24
3
167
6
3
173
29
3
188
13


3
203
15
3
225
18
3
239
3
3
260
1
3
274
27
3
301
2


3
316
0
3
339
0
3
362
31
3
380
28
3
401
3
3
440
0


3
448
0
4
7
12
4
11
2
4
18
14
4
28
6
4
38
0


4
50
6
4
67
18
4
74
23
4
96
20
4
134
0
4
138
0


4
153
13
4
171
14
4
190
1
4
207
3
4
218
4
4
240
3


4
249
11
4
274
0
4
292
24
4
317
28
4
329
11
4
356
12


4
392
3
4
417
0
4
448
0
4
456
0
5
3
3
5
10
0


5
17
5
5
26
4
5
32
25
5
62
6
5
79
29
5
89
25


5
118
0
5
132
2
5
142
26
5
149
7
5
163
0
5
177
5


5
206
9
5
221
4
5
234
18
5
249
0
5
283
23
5
321
12


5
335
18
5
351
12
5
370
10
5
389
10
5
408
26
5
456
0


5
464
0
6
12
25
6
22
15
6
27
2
6
39
17
6
46
16


6
60
29
6
77
2
6
98
8
6
116
6
6
131
24
6
147
4


6
170
23
6
195
20
6
210
29
6
218
23
6
247
7
6
250
7


6
295
31
6
303
10
6
305
5
6
353
0
6
363
3
6
380
18


6
407
9
6
464
0
6
472
0
7
3
27
7
32
2
7
41
22


7
56
4
7
65
8
7
76
27
7
94
4
7
98
18
7
116
13


7
125
12
7
129
2
7
156
6
7
168
10
7
188
21
7
199
20


7
223
21
7
234
3
7
244
30
7
268
13
7
289
30
7
321
18


7
338
5
7
358
1
7
379
21
7
396
1
7
418
0
7
472
0


8
3
15
8
10
6
8
22
0
8
26
1
8
49
11
8
82
29


8
91
5
8
109
11
8
112
20
8
122
12
8
146
30
8
167
9


8
182
18
8
190
11
8
197
5
8
215
8
8
226
11
8
262
19


8
267
3
8
285
11
8
311
0
8
328
2
8
350
7
8
369
20


8
391
10
8
410
0
8
417
0
8
425
0
9
4
23
9
11
27


9
18
28
9
27
3
9
53
5
9
56
1
9
85
26
9
95
21


9
109
6
9
126
27
9
148
22
9
165
11
9
179
8
9
194
4


9
209
3
9
225
1
9
243
1
9
271
4
9
284
10
9
305
0


9
320
10
9
348
0
9
375
3
9
385
17
9
413
21
9
425
0


9
433
0
10
2
0
10
9
5
10
22
1
10
30
26
10
42
1


10
50
2
10
64
22
10
82
28
10
111
14
10
120
24
10
142
4


10
158
30
10
180
21
10
200
18
10
209
29
10
226
20
10
239
19


10
262
6
10
278
2
10
300
18
10
312
23
10
342
29
10
366
4


10
398
21
10
405
27
10
433
0
10
441
0
11
5
1
11
12
0


11
18
1
11
24
2
11
42
13
11
70
28
11
80
20
11
101
4


11
111
25
11
142
0
11
153
24
11
160
7
11
174
29
11
189
13


11
204
15
11
226
18
11
232
4
11
261
1
11
275
27
11
302
2


11
317
0
11
340
0
11
363
31
11
381
28
11
402
3
11
441
0


11
449
0
12
0
13
12
12
2
12
19
14
12
29
6
12
39
0


12
51
6
12
68
18
12
75
23
12
97
20
12
135
0
12
139
0


12
154
13
12
172
14
12
191
1
12
200
4
12
219
4
12
241
3


12
250
11
12
275
0
12
293
24
12
318
28
12
330
11
12
357
12


12
393
3
12
418
0
12
449
0
12
457
0
13
4
3
13
11
0


13
18
5
13
27
4
13
33
25
13
63
6
13
72
30
13
90
25


13
119
0
13
133
2
13
143
26
13
150
7
13
164
0
13
178
5


13
207
9
13
222
4
33
235
18
13
250
0
13
284
23
13
322
12


13
328
19
13
344
13
13
371
10
13
390
10
13
409
26
13
457
0


13
465
0
14
13
25
14
23
15
14
28
2
14
32
18
14
47
16


14
61
29
14
78
2
14
99
8
14
117
6
14
132
24
14
148
4


14
171
23
14
196
20
14
211
29
14
219
23
14
240
8
14
251
7


14
288
0
14
296
11
14
306
5
14
354
0
14
364
3
14
381
18


14
400
10
14
465
0
14
473
0
15
4
27
15
33
2
15
42
22


15
57
4
15
66
8
15
77
27
15
95
4
15
99
18
15
117
13


15
126
12
15
130
2
15
157
6
15
169
10
15
189
21
15
192
21


15
216
22
15
235
3
15
245
30
15
269
13
15
290
30
15
322
18


15
339
5
15
359
1
15
380
21
15
397
1
15
419
0
15
473
0


16
4
15
16
11
6
16
23
0
16
27
1
16
50
11
16
83
29


16
92
5
16
110
11
16
113
20
16
123
12
16
147
30
16
160
10


16
183
18
16
191
11
16
198
5
16
208
9
16
227
11
16
263
19


16
268
3
16
286
11
16
304
1
16
329
2
16
351
7
16
370
20


16
384
11
16
411
0
16
418
0
16
426
0
17
5
23
17
12
27


17
19
28
17
28
3
17
54
5
17
57
1
17
86
26
17
88
22


17
110
6
17
127
27
17
149
22
17
166
11
17
180
8
17
195
4


17
210
3
17
226
1
17
244
1
17
264
5
17
285
10
17
306
0


17
321
10
17
349
0
17
368
4
17
386
17
17
414
21
17
426
0


17
434
0
18
3
0
18
10
5
18
23
1
18
31
26
18
43
1


18
51
2
18
65
22
18
83
28
18
104
15
18
121
24
18
143
4


18
159
30
18
181
21
18
201
18
18
210
29
18
227
20
18
232
20


18
263
6
18
279
2
18
301
18
18
313
23
18
343
29
18
367
4


18
399
21
18
406
27
18
434
0
18
442
0
19
6
1
19
13
0


19
19
1
19
25
2
19
43
13
19
71
28
19
81
20
19
102
4


19
104
26
19
143
0
19
154
24
19
161
7
19
175
29
19
190
13


19
205
15
19
227
18
19
233
4
19
262
1
19
276
27
19
303
2


19
318
0
19
341
0
19
364
31
19
382
28
19
403
3
19
442
0


19
450
0
20
1
13
20
13
2
20
20
14
20
30
6
20
32
1


20
52
6
20
69
18
20
76
23
20
98
20
20
128
1
20
140
0


20
155
13
20
173
14
20
184
2
20
201
4
20
220
4
20
242
3


20
251
11
20
276
0
20
294
24
20
319
28
20
331
11
20
358
12


20
394
3
20
419
0
20
450
0
20
458
0
21
5
3
21
12
0


21
19
5
21
28
4
21
34
25
21
56
7
21
73
30
21
91
25


21
112
1
21
134
2
21
136
27
21
151
7
21
165
0
21
179
5


21
200
10
21
223
4
21
236
18
21
251
0
21
285
23
21
323
12


21
329
19
21
345
13
21
372
10
21
391
10
21
410
26
21
458
0


21
466
0
22
14
25
22
16
16
22
29
2
22
33
18
22
40
17


22
62
29
22
79
2
22
100
8
22
118
6
22
133
24
22
149
4


22
172
23
22
197
20
22
212
29
22
220
23
22
241
8
22
252
7


22
289
0
22
297
11
22
307
5
22
355
0
22
365
3
22
382
18


22
401
10
22
466
0
22
474
0
23
5
27
23
34
2
23
43
22


23
58
4
23
67
8
23
78
27
23
88
5
23
100
18
23
118
13


23
127
12
23
131
2
23
158
6
23
170
10
23
190
21
23
193
21


23
217
22
23
236
3
23
246
30
23
270
13
23
291
30
23
323
18


23
340
5
23
352
2
23
381
21
23
398
1
23
420
0
23
474
0


24
5
15
24
12
6
24
16
1
24
28
1
24
51
11
24
84
29


24
93
5
24
111
11
24
114
20
24
124
12
24
148
30
24
161
10


24
176
19
24
184
12
24
199
5
24
209
9
24
228
11
24
256
20


24
269
3
24
287
11
24
305
1
24
330
2
24
344
8
24
371
20


24
385
11
24
412
0
24
419
0
24
427
0
25
6
23
25
13
27


25
20
28
25
29
3
25
55
5
25
58
1
25
87
26
25
89
22


25
111
6
25
120
28
25
150
22
25
167
11
25
181
8
25
196
4


25
211
3
25
227
1
25
245
1
25
265
5
25
286
10
25
307
0


25
322
10
25
350
0
25
369
4
25
387
17
25
415
21
25
427
0


25
435
0
26
4
0
26
11
5
26
16
2
26
24
27
26
44
1


26
52
2
26
66
22
26
84
28
26
105
15
26
122
24
26
136
5


26
152
31
26
182
21
26
202
18
26
211
29
26
228
20
26
233
20


26
256
7
26
272
3
26
302
18
26
314
23
26
336
30
26
360
5


26
392
22
26
407
27
26
435
0
26
443
0
27
7
1
27
14
0


27
20
1
27
26
2
27
44
13
27
64
29
27
82
20
27
103
4


27
105
26
27
136
1
27
155
24
27
162
7
27
168
30
27
191
13


27
206
15
27
228
18
27
234
4
27
263
1
27
277
27
27
296
3


27
319
0
27
342
0
27
365
31
27
383
28
27
404
3
27
443
0


27
451
0
28
2
13
28
14
2
28
21
14
28
31
6
28
33
1


28
53
6
28
70
18
28
77
23
28
99
20
28
129
1
28
141
0


28
156
13
28
174
14
28
185
2
28
202
4
28
221
4
28
243
3


28
252
11
28
277
0
28
295
24
28
312
29
28
332
11
28
359
12


28
395
3
28
420
0
28
451
0
28
459
0
29
6
3
29
13
0


29
20
5
29
29
4
29
35
25
29
57
7
29
74
30
29
92
25


29
113
1
29
135
2
29
137
27
29
144
8
29
166
0
29
180
5


29
201
10
29
216
5
29
237
18
29
252
0
29
286
23
29
324
12


29
330
19
29
346
13
29
373
10
29
384
11
29
411
26
29
459
0


29
467
0
30
15
25
30
17
16
30
30
2
30
34
18
30
41
17


30
63
29
30
72
3
30
101
8
30
119
6
30
134
24
30
150
4


30
173
23
30
198
20
30
213
29
30
221
23
30
242
8
30
253
7


30
290
0
30
298
11
30
308
5
30
356
0
30
366
3
30
383
18


30
402
10
30
467
0
30
475
0
31
6
27
31
35
2
31
44
22


31
59
4
31
68
8
31
79
27
31
89
5
31
101
18
31
119
13


31
120
13
31
132
2
31
159
6
31
171
10
31
191
21
31
194
21


31
218
22
31
237
3
31
247
30
31
271
13
31
292
30
31
324
18


31
341
5
31
353
2
31
382
21
31
399
1
31
421
0
31
475
0


32
6
15
32
13
6
32
17
1
32
29
1
32
52
11
32
85
29


32
94
5
32
104
12
32
115
20
32
125
12
32
149
30
32
162
10


32
177
19
32
185
12
32
192
6
32
210
9
32
229
11
32
257
20


32
270
3
32
280
12
32
306
1
32
331
2
32
345
8
32
372
20


32
386
11
32
413
0
32
420
0
32
428
0
33
7
23
33
14
27


33
21
28
33
30
3
33
48
6
33
59
1
33
80
27
33
90
22


33
104
7
33
121
28
33
151
22
33
160
12
33
182
8
33
197
4


33
212
3
33
228
1
33
246
1
33
266
5
33
287
10
33
308
0


33
323
10
33
351
0
33
370
4
33
388
17
33
408
22
33
428
0


33
436
0
34
5
0
34
12
5
34
17
2
34
25
27
34
45
1


34
53
2
34
67
22
34
85
28
34
106
15
34
123
24
34
137
5


34
153
31
34
183
21
34
203
18
34
212
29
34
229
20
34
234
20


34
257
7
34
273
3
34
303
18
34
315
23
34
337
30
34
361
5


34
393
22
34
400
28
34
436
0
34
444
0
35
0
2
35
15
0


35
21
1
35
27
2
35
45
13
35
65
29
35
83
20
35
96
5


35
106
26
35
137
1
35
156
24
35
163
7
35
169
30
35
184
14


35
207
15
35
229
18
35
235
4
35
256
2
35
278
27
35
297
3


35
312
1
35
343
0
35
366
31
35
376
29
35
405
3
35
444
0


35
452
0
36
3
13
36
15
2
36
22
14
36
24
7
36
34
1


36
54
6
36
71
18
36
78
23
36
100
20
36
130
1
36
142
0


36
157
13
36
175
14
36
186
2
36
203
4
36
222
4
36
244
3


36
253
11
36
278
0
36
288
25
36
313
29
36
333
11
36
352
13


36
396
3
36
421
0
36
452
0
36
460
0
37
7
3
37
14
0


37
21
5
37
30
4
37
36
25
37
58
7
37
75
30
37
93
25


37
114
1
37
128
3
37
138
27
37
145
8
37
167
0
37
181
5


37
202
10
37
217
5
37
238
18
37
253
0
37
287
23
37
325
12


37
331
19
37
347
13
37
374
10
37
385
11
37
412
26
37
460
0


37
468
0
38
8
26
38
18
16
38
31
2
38
35
18
38
42
17


38
56
30
38
73
3
38
102
8
38
112
7
38
135
24
38
151
4


38
174
23
38
199
20
38
214
29
38
222
23
38
243
8
38
254
7


38
291
0
38
299
11
38
309
5
38
357
0
38
367
3
38
376
19


38
403
10
38
468
0
38
476
0
39
7
27
39
36
2
39
45
22


39
60
4
39
69
8
39
72
28
39
90
5
39
102
18
39
112
14


39
121
13
39
133
2
39
152
7
39
172
10
39
184
22
39
195
21


39
219
22
39
238
3
39
240
31
39
264
14
39
293
30
39
325
18


39
342
5
39
354
2
39
383
21
39
392
2
39
422
0
39
476
0


40
7
15
40
14
6
40
18
1
40
30
1
40
53
11
40
86
29


40
95
5
40
105
12
40
116
20
40
126
12
40
150
30
40
163
10


40
178
19
40
186
12
40
193
6
40
211
9
40
230
11
40
258
20


40
271
3
40
281
12
40
307
1
40
332
2
40
346
8
40
373
20


40
387
11
40
414
0
40
421
0
40
429
0
41
0
24
41
15
27


41
22
28
41
31
3
41
49
6
41
60
1
41
81
27
41
91
22


41
105
7
41
122
28
41
144
23
41
161
12
41
183
8
41
198
4


41
213
3
41
229
1
43
247
1
41
267
5
41
280
11
41
309
0


41
324
10
41
344
1
41
371
4
41
389
17
41
409
22
41
429
0


41
437
0
42
6
0
42
13
5
42
18
2
42
26
27
42
46
1


42
54
2
42
68
22
42
86
28
42
107
15
42
124
24
42
138
5


42
154
31
42
176
22
42
204
18
42
213
29
42
230
20
42
235
20


42
258
7
42
274
3
42
296
19
42
316
23
42
338
30
42
362
5


42
394
22
42
401
28
42
437
0
42
445
0
43
1
2
43
8
1


43
22
1
43
28
2
43
46
13
43
66
29
43
84
20
43
97
5


43
107
26
43
138
1
43
157
24
43
164
7
43
170
30
43
185
14


43
200
16
43
230
18
43
236
4
43
257
2
43
279
27
43
298
3


43
313
1
43
336
1
43
367
31
43
377
29
43
406
3
43
445
0


43
453
0
44
4
13
44
8
3
44
23
14
44
25
7
44
35
1


44
55
6
44
64
19
44
79
23
44
101
20
44
131
1
44
143
0


44
158
13
44
168
15
44
187
2
44
204
4
44
223
4
44
245
3


44
254
11
44
279
0
44
289
25
44
314
29
44
334
11
44
353
13


44
397
3
44
422
0
44
453
0
44
461
0
45
0
4
45
15
0


45
22
5
45
31
4
45
37
25
45
59
7
45
76
30
45
94
25


45
115
1
45
129
3
45
139
27
45
146
8
45
160
1
45
182
5


45
203
10
45
218
5
45
239
18
45
254
0
45
280
24
45
326
12


45
332
19
45
348
13
45
375
10
45
386
11
45
413
26
45
461
0


45
469
0
46
9
26
46
19
16
46
24
3
46
36
18
46
43
17


46
57
30
46
74
3
46
103
8
46
113
7
46
128
25
46
144
5


46
175
23
46
192
21
46
215
29
46
223
23
46
244
8
46
255
7


46
292
0
46
300
11
46
310
5
46
358
0
46
360
4
46
377
19


46
404
10
46
469
0
46
477
0
47
0
28
47
37
2
47
46
22


47
61
4
47
70
8
47
73
28
47
91
5
47
103
18
47
113
14


47
122
13
47
134
2
47
153
7
47
173
10
47
185
22
47
196
21


47
220
22
47
239
3
47
241
31
47
265
14
47
294
30
47
326
18


47
343
5
47
355
2
47
376
22
47
393
2
47
423
0
47
477
0


48
0
16
48
15
6
48
19
1
48
31
1
48
54
11
48
87
29


48
88
6
48
106
12
48
117
20
48
127
12
48
151
30
48
164
10


48
179
19
48
187
12
48
194
6
48
212
9
48
231
11
48
259
20


48
264
4
48
282
12
48
308
1
48
333
2
48
347
8
48
374
20


48
388
11
48
415
0
48
422
0
48
430
0
49
1
24
49
8
28


49
23
28
49
24
4
49
50
6
49
61
1
49
82
27
49
92
22


49
106
7
49
123
28
49
145
23
49
162
12
49
176
9
49
199
4


49
214
3
49
230
1
49
240
2
49
268
5
49
281
11
49
310
0


49
325
10
49
345
1
49
372
4
49
390
17
49
410
22
49
430
0


49
438
0
50
7
0
50
14
5
50
19
2
50
27
27
50
47
1


50
55
2
50
69
22
50
87
28
50
108
15
50
125
24
50
139
5


50
155
31
50
177
22
50
205
18
50
214
29
50
231
20
50
236
20


50
259
7
50
275
3
50
297
19
50
317
23
50
339
30
50
363
5


50
395
22
50
402
28
50
438
0
50
446
0
51
2
2
51
9
1


51
23
1
51
29
2
51
47
13
51
67
29
51
85
20
51
98
5


51
108
26
51
139
1
51
158
24
51
165
7
51
171
30
51
186
14


51
201
16
51
231
18
51
237
4
51
258
2
51
272
28
51
299
3


51
314
1
51
337
1
51
360
0
51
378
29
51
407
3
51
446
0


51
454
0
52
5
13
52
9
3
52
16
15
52
26
7
52
36
1


52
48
7
52
65
19
52
72
24
52
102
20
52
132
1
52
136
1


52
159
13
52
169
15
52
188
2
52
205
4
52
216
5
52
246
3


52
255
11
52
272
1
52
290
25
52
315
29
52
335
11
52
354
13


52
398
3
52
423
0
52
454
0
52
462
0
53
1
4
53
8
1


53
23
5
53
24
5
53
38
25
53
60
7
53
77
30
53
95
25


53
116
1
53
130
3
53
140
27
53
147
8
53
161
1
53
183
5


53
204
10
53
219
5
53
232
19
53
255
0
53
281
24
53
327
12


53
333
19
53
349
13
53
368
11
53
387
11
53
414
26
53
462
0


53
470
0
54
10
26
54
20
16
54
25
3
54
37
18
54
44
17


54
58
30
54
75
3
54
96
9
54
114
7
54
129
25
54
145
5


54
168
24
54
193
21
54
208
30
54
216
24
54
245
8
54
248
8


54
293
0
54
301
11
54
311
5
54
359
0
54
361
4
54
378
19


54
405
10
54
470
0
54
478
0
55
1
28
55
38
2
55
47
22


55
62
4
55
71
8
55
74
28
55
92
5
55
96
19
55
114
14


55
123
13
55
135
2
55
154
7
55
174
10
55
186
22
55
197
21


55
221
22
55
232
4
55
242
31
55
266
14
55
295
30
55
327
18


55
336
6
55
356
2
55
377
22
55
394
2
55
416
1
55
478
0


56
1
16
56
8
7
56
20
1
56
24
2
56
55
11
56
80
30


56
89
6
56
107
12
56
118
20
56
120
13
56
144
31
56
165
10


56
180
19
56
188
12
56
195
6
56
213
9
56
224
12
56
260
20


56
265
4
56
283
12
56
309
1
56
334
2
56
348
8
56
375
20


56
389
11
56
408
1
56
423
0
56
431
0
57
2
24
57
9
28


57
16
29
57
25
4
57
51
6
57
62
1
57
83
27
57
93
22


57
107
7
57
124
28
57
146
23
57
163
12
57
177
9
57
192
5


57
215
3
57
231
1
57
241
2
57
269
5
57
282
11
57
311
0


57
326
10
57
346
1
57
373
4
57
391
17
57
411
22
57
431
0


57
439
0
58
0
1
58
15
5
58
20
2
58
28
27
58
40
2


58
48
3
58
70
22
58
80
29
58
109
15
58
126
24
58
140
5


58
156
31
58
178
22
58
206
18
58
215
29
58
224
21
58
237
20


58
260
7
58
276
3
58
298
19
58
318
23
58
340
30
58
364
5


58
396
22
58
403
28
58
439
0
58
447
0
59
3
2
59
10
1


59
16
2
59
30
2
59
40
14
59
68
29
59
86
20
59
99
5


59
109
26
59
140
1
59
159
24
59
166
7
59
172
30
59
187
14


59
202
16
59
224
19
59
238
4
59
259
2
59
273
28
59
300
3


59
315
1
59
338
1
59
361
0
59
379
29
59
400
4
59
447
0


59
455
0
60
6
13
60
30
3
60
17
15
60
27
7
60
37
1


60
49
7
60
66
19
60
73
24
60
103
20
60
133
1
60
137
1


60
152
14
60
170
15
60
189
2
60
206
4
60
217
5
60
247
3


60
248
12
60
273
1
60
291
25
60
316
29
60
328
12
60
355
13


60
399
3
60
416
1
60
455
0
60
463
0
61
2
4
61
9
1


61
16
6
61
25
5
61
39
25
61
61
7
61
78
30
61
88
26


61
117
1
61
131
3
61
141
27
61
148
8
61
162
1
61
176
6


61
205
10
61
220
5
61
233
19
61
248
1
61
282
24
61
320
13


61
334
19
61
350
13
61
369
11
61
388
11
61
415
26
61
463
0


61
471
0
62
11
26
62
21
16
62
26
3
62
38
18
62
45
17


62
59
30
62
76
3
62
97
9
62
115
7
62
130
25
62
146
5


62
169
24
62
194
21
62
209
30
62
217
24
62
246
8
62
249
8


62
294
0
62
302
11
62
304
6
62
352
1
62
362
4
62
379
19


62
406
10
62
471
0
62
479
0
63
2
28
63
39
2
63
40
23


63
63
4
63
64
9
63
75
28
63
93
5
63
97
19
63
115
14


63
124
13
63
128
3
63
155
7
63
175
10
63
187
22
63
198
21


63
222
22
63
233
4
63
243
31
63
267
14
63
288
31
63
320
19


63
337
6
63
357
2
63
378
22
63
395
2
63
417
1
63
479
0
















APPENDIX TABLE J





Specification of the base matrix B9/10 for the rate- 9/10 LDPC code
































0
13
0
0
16
0
0
33
1
0
46
22
0
56
0
0
65
30


0
80
0
0
92
29
0
134
27
0
144
17
0
161
9
0
174
29


0
187
22
0
197
18
0
204
28
0
209
26
0
227
16
0
238
7


0
245
8
0
249
5
0
263
22
0
270
29
0
274
16
0
282
5


0
308
14
0
318
1
0
325
0
0
331
19
0
347
11
0
361
29


0
382
28
0
400
22
0
423
13
0
426
29
0
432
0
0
440
0


1
11
1
1
22
0
1
39
1
1
44
23
1
62
0
1
71
30


1
86
0
1
90
30
1
132
28
1
150
17
1
167
9
1
172
30


1
185
23
1
195
19
1
202
29
1
215
26
1
225
17
1
236
8


1
243
9
1
255
5
1
261
23
1
268
30
1
272
17
1
280
6


1
306
15
1
316
2
1
323
1
1
329
20
1
345
12
1
367
29


1
380
29
1
406
22
1
421
14
1
424
30
1
438
0
1
446
0


2
14
20
2
21
1
2
34
14
2
45
0
2
59
9
2
69
0


2
80
8
2
94
0
2
104
7
2
116
1
2
131
19
2
139
4


2
145
1
2
167
20
2
175
15
2
183
2
2
184
5
2
192
23


2
212
16
2
226
24
2
242
17
2
256
15
2
265
30
2
283
2


2
299
29
2
305
3
2
313
13
2
329
25
2
344
7
2
363
3


2
381
3
2
393
9
2
413
25
2
425
19
2
444
0
2
452
0


3
7
18
3
18
4
3
30
18
3
43
1
3
50
27
3
70
1


3
78
24
3
94
0
3
99
29
3
113
2
3
122
0
3
134
5


3
148
0
3
158
0
3
161
26
3
172
9
3
199
18
3
208
6


3
222
9
3
225
4
3
244
0
3
261
22
3
264
4
3
285
30


3
294
11
3
317
8
3
321
4
3
335
15
3
349
8
3
366
27


3
380
22
3
393
4
3
414
1
3
422
21
3
450
0
3
458
0


4
0
0
4
21
14
4
28
0
4
44
11
4
51
0
4
66
4


4
73
0
4
91
1
4
99
0
4
105
19
4
124
9
4
135
2


4
141
10
4
158
1
4
182
2
4
192
26
4
201
10
4
214
15


4
223
8
4
231
20
4
239
21
4
254
25
4
274
29
4
280
17


4
290
2
4
303
4
4
318
10
4
343
17
4
358
30
4
374
12


4
389
27
4
395
27
4
411
1
4
433
0
4
456
0
4
464
0


5
6
0
5
19
15
5
26
1
5
42
12
5
49
1
5
64
5


5
79
0
5
89
2
5
97
1
5
111
19
5
122
10
5
133
3


5
139
11
5
156
2
5
180
3
5
198
26
5
207
10
5
212
16


5
221
9
5
229
21
5
237
22
5
252
26
5
272
30
5
286
17


5
288
3
5
301
5
5
316
11
5
341
18
5
356
31
5
372
13


5
387
28
5
393
28
5
409
2
5
439
0
5
462
0
5
470
0


6
7
3
6
15
15
6
24
7
6
35
31
6
52
0
6
56
10


6
72
2
6
87
13
6
99
1
6
110
0
6
117
0
6
122
27


6
138
2
6
157
28
6
161
2
6
174
0
6
181
22
6
188
26


6
205
7
6
220
10
6
239
6
6
251
29
6
258
9
6
273
23


6
292
11
6
302
0
6
311
7
6
322
3
6
340
13
6
356
21


6
372
27
6
385
31
6
400
6
6
429
23
6
468
0
6
476
0


7
3
7
7
9
0
7
24
3
7
35
23
7
50
1
7
63
4


7
78
7
7
84
16
7
99
0
7
110
30
7
118
0
7
125
22


7
138
10
7
151
17
7
152
9
7
176
5
7
190
4
7
204
0


7
223
29
7
232
12
7
245
26
7
255
8
7
268
21
7
274
0


7
295
0
7
303
2
7
305
14
7
327
3
7
340
2
7
356
0


7
371
7
7
385
6
7
404
7
7
416
27
7
436
0
7
474
0


8
14
0
8
17
0
8
34
1
8
47
22
8
57
0
8
66
30


8
81
0
8
93
29
8
135
27
8
145
17
8
162
9
8
175
29


8
188
22
8
198
18
8
205
28
8
210
26
8
228
16
8
239
7


8
246
8
8
250
5
8
256
23
8
271
29
8
275
16
8
283
5


8
309
14
8
319
1
8
326
0
8
332
19
8
348
11
8
362
29


8
383
28
8
401
22
8
416
14
8
427
29
8
433
0
8
441
0


9
12
1
9
23
0
9
32
2
9
45
23
9
63
0
9
64
31


9
87
0
9
91
30
9
133
28
9
151
17
9
160
10
9
173
30


9
186
23
9
196
19
9
203
29
9
208
27
9
226
17
9
237
8


9
244
9
9
248
6
9
262
23
9
269
30
9
273
17
9
281
6


9
307
15
9
317
2
9
324
1
9
330
20
9
346
12
9
360
30


9
381
29
9
407
22
9
422
14
9
425
30
9
439
0
9
447
0


10
15
20
10
22
1
10
35
14
10
46
0
10
60
9
10
70
0


10
81
8
10
95
0
10
105
7
10
117
1
10
132
19
10
140
4


10
146
1
10
160
21
10
168
16
10
176
3
10
185
5
10
193
23


10
213
16
10
227
24
10
243
17
10
257
15
10
266
30
10
284
2


10
300
29
10
306
3
10
314
13
10
330
25
10
345
7
10
364
3


10
382
3
10
394
9
10
414
25
10
426
19
10
445
0
10
453
0


11
0
19
11
19
4
11
31
18
11
44
1
11
51
27
11
71
1


11
79
24
11
95
0
11
100
29
11
114
2
11
123
0
11
135
5


11
149
0
11
159
0
11
162
26
11
173
9
11
192
19
11
209
6


11
223
9
11
226
4
11
245
0
11
262
22
11
265
4
11
286
30


11
295
11
11
318
8
11
322
4
11
328
16
11
350
8
11
367
27


11
381
22
11
394
4
11
415
1
11
423
21
11
451
0
11
459
0


12
1
0
12
22
14
12
29
0
12
45
11
12
52
0
12
67
4


12
74
0
12
92
1
12
100
0
12
106
19
12
125
9
12
128
3


12
142
10
12
159
1
12
183
2
12
193
26
12
202
10
12
215
15


12
216
9
12
224
21
12
232
22
12
255
25
12
275
29
12
281
17


12
291
2
12
296
5
12
319
10
12
336
18
12
359
30
12
375
12


12
390
27
12
396
27
12
412
1
12
434
0
12
457
0
12
465
0


13
7
0
13
20
15
13
27
1
13
43
12
13
50
1
13
65
5


13
72
1
13
90
2
13
98
1
13
104
20
13
123
10
13
134
3


13
140
11
13
157
2
13
181
3
13
199
26
13
200
11
13
213
16


13
222
9
13
230
21
13
238
22
13
253
26
13
273
30
13
287
17


13
289
3
13
302
5
13
317
11
13
342
18
13
357
31
13
373
13


13
388
28
13
394
28
13
410
2
13
432
1
13
463
0
13
471
0


14
0
4
14
8
16
14
25
7
14
36
31
14
53
0
14
57
10


14
73
2
14
80
14
14
100
1
14
111
0
14
118
0
14
123
27


14
139
2
14
158
28
14
162
2
14
175
0
14
182
22
14
189
26


14
206
7
14
221
10
14
232
7
14
252
29
14
259
9
14
274
23


14
293
11
14
303
0
14
304
8
14
323
3
14
341
13
14
357
21


14
373
27
14
386
31
14
401
6
14
430
23
14
469
0
14
477
0


15
4
7
15
10
0
15
25
3
15
36
23
15
51
1
15
56
5


15
79
7
15
85
16
15
100
0
15
111
30
15
119
0
15
126
22


15
139
10
15
144
18
15
153
9
15
177
5
15
191
4
15
205
0


15
216
30
15
233
12
15
246
26
15
248
9
15
269
21
15
275
0


15
288
1
15
296
3
15
306
14
15
320
4
15
341
2
15
357
0


15
372
7
15
386
6
15
405
7
15
417
27
15
437
0
15
475
0


16
15
0
16
18
0
16
35
1
16
40
23
16
58
0
16
67
30


16
82
0
16
94
29
16
128
28
16
146
17
16
163
9
16
168
30


16
189
22
16
199
18
16
206
28
16
211
26
16
229
16
16
232
8


16
247
8
16
251
5
16
257
23
16
264
30
16
276
16
16
284
5


16
310
14
16
312
2
16
327
0
16
333
19
16
349
11
16
363
29


16
376
29
16
402
22
16
417
14
16
428
29
16
434
0
16
442
0


17
10
20
17
17
1
17
38
13
17
41
0
17
63
8
17
65
0


17
84
7
17
90
0
17
108
6
17
112
1
17
135
18
17
143
3


17
149
0
17
163
20
17
171
15
17
179
2
17
188
4
17
196
22


17
208
16
17
230
23
17
246
16
17
260
14
17
269
29
17
287
1


17
303
28
17
309
2
17
317
12
17
333
24
17
348
6
17
367
2


17
377
3
17
397
8
17
409
25
17
429
18
17
440
0
17
448
0


18
8
21
18
23
1
18
36
14
18
47
0
18
61
9
18
71
0


18
82
8
18
88
1
18
106
7
18
118
1
18
133
19
18
141
4


18
147
1
18
161
21
18
169
16
18
177
3
18
186
5
18
194
23


18
214
16
18
228
24
18
244
17
18
258
15
18
267
30
18
285
2


18
301
29
18
307
3
18
315
13
18
331
25
18
346
7
18
365
3


18
383
3
18
395
9
18
415
25
18
427
19
18
446
0
18
454
0


19
1
19
19
20
4
19
24
19
19
45
1
19
52
27
19
64
2


19
72
25
19
88
1
19
101
29
19
115
2
19
124
0
19
128
6


19
150
0
19
152
1
19
163
26
19
174
9
19
193
19
19
210
6


19
216
10
19
227
4
19
246
0
19
263
22
19
266
4
19
287
30


19
288
12
19
319
8
19
323
4
19
329
16
19
351
8
19
360
28


19
382
22
19
395
4
19
408
2
19
416
22
19
452
0
19
460
0


20
2
0
20
23
14
20
30
0
20
46
11
20
53
0
20
68
4


20
75
0
20
93
1
20
101
0
20
107
19
20
126
9
20
129
3


20
143
10
20
152
2
20
176
3
20
194
26
20
203
10
20
208
16


20
217
9
20
225
21
20
233
22
20
248
26
20
276
29
20
282
17


20
292
2
20
297
5
20
312
11
20
337
18
20
352
31
20
368
13


20
391
27
20
397
27
20
413
1
20
435
0
20
458
0
20
466
0


21
3
3
21
11
15
21
28
6
21
39
30
21
48
0
21
60
9


21
76
1
21
83
13
21
103
0
21
106
0
21
113
0
21
126
26


21
142
1
21
153
28
21
165
1
21
170
0
21
177
22
21
184
26


21
201
7
21
216
10
21
235
6
21
255
28
21
262
8
21
277
22


21
288
11
21
298
0
21
307
7
21
326
2
21
336
13
21
352
21


21
368
27
21
389
30
21
404
5
21
425
23
21
464
0
21
472
0


22
1
4
22
9
16
22
26
7
22
37
31
22
54
0
22
58
10


22
74
2
22
81
14
22
101
1
22
104
1
22
119
0
22
124
27


22
140
2
22
159
28
22
163
2
22
168
1
22
183
22
22
190
26


22
207
7
22
222
10
22
233
7
22
253
29
22
260
9
22
275
23


22
294
11
22
296
1
22
305
8
22
324
3
22
342
13
22
358
21


22
374
27
22
387
31
22
402
6
22
431
23
22
470
0
22
478
0


23
5
7
23
11
0
23
26
3
23
37
23
23
52
1
23
57
5


23
72
8
23
86
16
23
101
0
23
104
31
23
112
1
23
127
22


23
140
10
23
145
18
23
154
9
23
178
5
23
184
5
23
206
0


23
217
30
23
234
12
23
247
26
23
249
9
23
270
21
23
276
0


23
289
1
23
297
3
23
307
14
23
321
4
23
342
2
23
358
0


23
373
7
23
387
6
23
406
7
23
418
27
23
438
0
23
476
0


24
8
1
24
19
0
24
36
1
24
41
23
24
59
0
24
68
30


24
83
0
24
95
29
24
129
28
24
147
17
24
164
9
24
169
30


24
190
22
24
192
19
24
207
28
24
212
26
24
230
16
24
233
8


24
240
9
24
252
5
24
258
23
24
265
30
24
277
16
24
285
5


24
311
14
24
313
2
24
320
1
24
334
19
24
350
11
24
364
29


24
377
29
24
403
22
24
418
14
24
429
29
24
435
0
24
443
0


25
11
20
25
18
1
25
39
13
25
42
0
25
56
9
25
66
0


25
85
7
25
91
0
25
109
6
25
113
1
25
128
19
25
136
4


25
150
0
25
164
20
25
172
15
25
180
2
25
189
4
25
197
22


25
209
16
25
231
23
25
247
16
25
261
14
25
270
29
25
280
2


25
296
29
25
310
2
25
318
12
25
334
24
25
349
6
25
360
3


25
378
3
25
398
8
25
410
25
25
430
18
25
441
0
25
449
0


26
9
21
26
16
2
26
37
14
26
40
1
26
62
9
26
64
1


26
83
8
26
89
1
26
107
7
26
119
1
26
134
19
26
142
4


26
148
1
26
162
21
26
170
16
26
178
3
26
187
5
26
195
23


26
215
16
26
229
24
26
245
17
26
259
15
26
268
30
26
286
2


26
302
29
26
308
3
26
316
13
26
332
25
26
347
7
26
366
3


26
376
4
26
396
9
26
408
26
26
428
19
26
447
0
26
455
0


27
2
19
27
21
4
27
25
19
27
46
1
27
53
27
27
65
2


27
73
25
27
89
1
27
102
29
27
116
2
27
125
0
27
129
6


27
151
0
27
153
1
27
164
26
27
175
9
27
194
19
27
211
6


27
217
10
27
228
4
27
247
0
27
256
23
27
267
4
27
280
31


27
289
12
27
312
9
27
324
4
27
330
16
27
344
9
27
361
28


27
383
22
27
396
4
27
409
2
27
417
22
27
453
0
27
461
0


28
3
0
28
16
15
28
31
0
28
47
11
28
54
0
28
69
4


28
76
0
28
94
1
28
102
0
28
108
19
28
127
9
28
130
3


28
136
11
28
153
2
28
177
3
28
195
26
28
204
10
28
209
16


28
218
9
28
226
21
28
234
22
28
249
26
28
277
29
28
283
17


28
293
2
28
298
5
28
313
11
28
338
18
28
353
31
28
369
13


28
384
28
28
398
27
28
414
1
28
436
0
28
459
0
28
467
0


29
4
3
29
12
15
29
29
6
29
32
31
29
49
0
29
61
9


29
77
1
29
84
13
29
96
1
29
107
0
29
114
0
29
127
26


29
143
1
29
154
28
29
166
1
29
171
0
29
178
22
29
185
26


29
202
7
29
217
10
29
236
6
29
248
29
29
263
8
29
278
22


29
289
11
29
299
0
29
308
7
29
327
2
29
337
13
29
353
21


29
369
27
29
390
30
29
405
5
29
426
23
29
465
0
29
473
0


30
2
4
30
10
16
30
27
7
30
38
31
30
55
0
30
59
10


30
75
2
30
82
14
30
102
1
30
105
1
30
112
1
30
125
27


30
141
2
30
152
29
30
164
2
30
169
1
30
176
23
30
191
26


30
200
8
30
223
10
30
234
7
30
254
29
30
261
9
30
276
23


30
295
11
30
297
1
30
306
8
30
325
3
30
343
13
30
359
21


30
375
27
30
388
31
30
403
6
30
424
24
30
471
0
30
479
0


31
6
7
31
12
0
31
27
3
31
38
23
31
53
1
31
58
5


31
73
8
31
87
16
31
102
0
31
105
31
31
113
1
31
120
23


31
141
10
31
146
18
31
155
9
31
179
5
31
185
5
31
207
0


31
218
30
31
235
12
31
240
27
31
250
9
31
271
21
31
277
0


31
290
1
31
298
3
31
308
14
31
322
4
31
343
2
31
359
0


31
374
7
31
388
6
31
407
7
31
419
27
31
439
0
31
477
0


32
9
1
32
20
0
32
37
1
32
42
23
32
60
0
32
69
30


32
84
0
32
88
30
32
130
28
32
148
17
32
165
9
32
170
30


32
191
22
32
193
19
32
200
29
32
213
26
32
231
16
32
234
8


32
241
9
32
253
5
32
259
23
32
266
30
32
278
16
32
286
5


32
304
15
32
314
2
32
321
1
32
335
19
32
351
11
32
365
29


32
378
29
32
404
22
32
419
14
32
430
29
32
436
0
32
444
0


33
12
20
33
19
1
33
32
14
33
43
0
33
57
9
33
67
0


33
86
7
33
92
0
33
110
6
33
114
1
33
129
19
33
137
4


33
151
0
33
165
20
33
173
15
33
181
2
33
190
4
33
198
22


33
210
16
33
224
24
33
240
17
33
262
14
33
271
29
33
281
2


33
297
29
33
311
2
33
319
12
33
335
24
33
350
6
33
361
3


33
379
3
33
399
8
33
411
25
33
431
18
33
442
0
33
450
0


34
5
18
34
16
4
34
28
18
34
41
1
34
48
27
34
68
1


34
76
24
34
92
0
34
97
29
34
119
1
34
120
0
34
132
5


34
146
0
34
156
0
34
167
25
34
170
9
34
197
18
34
214
5


34
220
9
34
231
3
34
242
0
34
259
22
34
270
3
34
283
30


34
292
11
34
315
8
34
327
3
34
333
15
34
347
8
34
364
27


34
378
22
34
399
3
34
412
1
34
420
21
34
448
0
34
456
0


35
3
19
35
22
4
35
26
19
35
47
1
35
54
27
35
66
2


35
74
25
35
90
1
35
103
29
35
117
2
35
126
0
35
130
6


35
144
1
35
154
1
35
165
26
35
168
10
35
195
19
35
212
6


35
218
10
35
229
4
35
240
1
35
257
23
35
268
4
35
281
31


35
290
12
35
313
9
35
325
4
35
331
16
35
345
9
35
362
28


35
376
23
35
397
4
35
410
2
35
418
22
35
454
0
35
462
0


36
4
0
36
17
15
36
24
1
36
40
12
36
55
0
36
70
4


36
77
0
36
95
1
36
103
0
36
109
19
36
120
10
36
131
3


36
137
11
36
154
2
36
178
3
36
196
26
36
205
10
36
210
16


36
219
9
36
227
21
36
235
22
36
250
26
36
278
29
36
284
17


36
294
2
36
299
5
36
314
11
36
339
18
36
354
31
36
370
13


36
385
28
36
399
27
36
415
1
36
437
0
36
460
0
36
468
0


37
5
3
37
13
15
37
30
6
37
33
31
37
50
0
37
62
9


37
78
1
37
85
13
37
97
1
37
108
0
37
115
0
37
120
27


37
136
2
37
155
28
37
167
1
37
172
0
37
179
22
37
186
26


37
203
7
37
218
10
37
237
6
37
249
29
37
256
9
37
279
22


37
290
11
37
300
0
37
309
7
37
320
3
37
338
13
37
354
21


37
370
27
37
391
30
37
406
5
37
427
23
37
466
0
37
474
0


38
1
7
38
15
31
38
30
2
38
33
23
38
48
1
38
61
4


38
76
7
38
82
16
38
97
0
38
108
30
38
116
0
38
123
22


38
136
10
38
149
17
38
158
8
38
182
4
38
188
4
38
202
0


38
221
29
38
238
11
38
243
26
38
253
8
38
266
21
38
272
0


38
293
0
38
301
2
38
311
13
38
325
3
38
338
2
38
354
0


38
369
7
38
391
5
38
402
7
38
422
26
38
434
0
38
472
0


39
7
7
39
13
0
39
28
3
39
39
23
39
54
1
39
59
5


39
74
8
39
80
17
39
103
0
39
106
31
39
114
1
39
121
23


39
142
10
39
147
18
39
156
9
39
180
5
39
186
5
39
200
1


39
219
30
39
236
12
39
241
27
39
251
9
39
264
22
39
278
0


39
291
1
39
299
3
39
309
14
39
323
4
39
336
3
39
352
1


39
375
7
39
389
6
39
400
8
39
420
27
39
432
1
39
478
0


40
10
1
40
21
0
40
38
1
40
43
23
40
61
0
40
70
30


40
85
0
40
89
30
40
131
28
40
149
17
40
166
9
40
171
30


40
184
23
40
194
19
40
201
29
40
214
26
40
224
17
40
235
8


40
242
9
40
254
5
40
260
23
40
267
30
40
279
16
40
287
5


40
305
15
40
315
2
40
322
1
40
328
20
40
344
12
40
366
29


40
379
29
40
405
22
40
420
14
40
431
29
40
437
0
40
445
0


41
13
20
41
20
1
41
33
14
41
44
0
41
58
9
41
68
0


41
87
7
41
93
0
41
111
6
41
115
1
41
130
19
41
138
4


41
144
1
41
166
20
41
174
15
41
182
2
41
191
4
41
199
22


41
211
16
41
225
24
41
241
17
41
263
14
41
264
30
41
282
2


41
298
29
41
304
3
41
312
13
41
328
25
41
351
6
41
362
3


41
380
3
41
392
9
41
412
25
41
424
19
41
443
0
41
451
0


42
6
18
42
17
4
42
29
18
42
42
1
42
49
27
42
69
1


42
77
24
42
93
0
42
98
29
42
112
2
42
121
0
42
133
5


42
147
0
42
157
0
42
160
26
42
171
9
42
198
18
42
215
5


42
221
9
42
224
4
42
243
0
42
260
22
42
271
3
42
284
30


42
293
11
42
316
8
42
320
4
42
334
15
42
348
8
42
365
27


42
379
22
42
392
4
42
413
1
42
421
21
42
449
0
42
457
0


43
4
19
43
23
4
43
27
19
43
40
2
43
55
27
43
67
2


43
75
25
43
91
1
43
96
30
43
118
2
43
127
0
43
131
6


43
145
1
43
155
1
43
166
26
43
169
10
43
196
19
43
213
6


43
219
10
43
230
4
43
241
1
43
258
23
43
269
4
43
282
31


43
291
12
43
314
9
43
326
4
43
332
16
43
346
9
43
363
28


43
377
23
43
398
4
43
411
2
43
419
22
43
455
0
43
463
0


44
5
0
44
18
15
44
25
1
44
41
12
44
48
1
44
71
4


44
78
0
44
88
2
44
96
1
44
110
19
44
121
10
44
132
3


44
138
11
44
155
2
44
179
3
44
197
26
44
206
10
44
211
16


44
220
9
44
228
21
44
236
22
44
251
26
44
279
29
44
285
17


44
295
2
44
300
5
44
315
11
44
340
18
44
355
31
44
371
13


44
386
28
44
392
28
44
408
2
44
438
0
44
461
0
44
469
0


45
6
3
45
14
15
45
31
6
45
34
31
45
51
0
45
63
9


45
79
1
45
86
13
45
98
1
45
109
0
45
116
0
45
121
27


45
137
2
45
156
28
45
160
2
45
173
0
45
180
22
45
187
26


45
204
7
45
219
10
45
238
6
45
250
29
45
257
9
45
272
23


45
291
11
45
301
0
45
310
7
45
321
3
45
339
13
45
355
21


45
371
27
45
384
31
45
407
5
45
428
23
45
467
0
45
475
0


46
2
7
46
8
0
46
31
2
46
34
23
46
49
1
46
62
4


46
77
7
46
83
16
46
98
0
46
109
30
46
117
0
46
124
22


46
137
10
46
150
17
46
159
8
46
183
4
46
189
4
46
203
0


46
222
29
46
239
11
46
244
26
46
254
8
46
267
21
46
273
0


46
294
0
46
302
2
46
304
14
46
326
3
46
339
2
46
355
0


46
370
7
46
384
6
46
403
7
46
423
26
46
435
0
46
473
0


47
0
8
47
14
0
47
29
3
47
32
24
47
55
1
47
60
5


47
75
8
47
81
17
47
96
1
47
107
31
47
115
1
47
122
23


47
143
10
47
148
18
47
157
9
47
181
5
47
187
5
47
201
1


47
220
30
47
237
12
47
242
27
47
252
9
47
265
22
47
279
0


47
292
1
47
300
3
47
310
14
47
324
4
47
337
3
47
353
1


47
368
8
47
390
6
47
401
8
47
421
27
47
433
1
47
479
0








Claims
  • 1. A digital communications transmitter employing one or more LDPC codes selected from rates including 1/4, 2/5, 1/2, 3/5, 2/3, 3/4, 4/5, 5/6, 13/15, 9/10, wherein the LDPC code with the rate 1/4 has a bit node degree distribution, (b2,b3,b6)=(11264,256,3840),the LDPC code with the rate 2/5 has a bit node degree distribution (b2,b3,b4,b12)=(8960,256,4608,1536),the LDPC code with the rate 1/2 has a bit node degree distribution (b2,b3,b4,b12)=(7424,2304,3840,1792),the LDPC code with the rate 3/5 has a bit node degree distribution (b2,b3,b4,b12)=(5888,3328,4352,1792),the LDPC code with the rate 2/3 has a bit node degree distribution (b2,b3,b4,b12)=(4864,4096,4864,1536),the LDPC code with the rate 3/4 has a bit node degree distribution (b2,b3,b4,b12)=(3584,4608,5888,1280),the LDPC code with the rate 4/5 has a bit node degree distribution (b2,b3,b4,b12)=(2816,5888,5376,1280),the LDPC code with the rate 5/6 has a bit node degree distribution (b2,b3,b4, b10)=(2304,4608,6912,1536),the LDPC code with the rate 13/15 has a bit node degree distribution (b2,b3,b4,b7)=(1792,5632,6912,1024), andthe LDPC code with the rate 9/10 has a bit node degree distribution (b2,b3,b4)=(1280,3584,10496).
  • 2. A digital communications transmitter employing one or more LDPC codes selected from rates including 1/4, 2/5, 1/2, 3/5, 2/3, 3/4, 4/5, 5/6, 13/15, 9/10, wherein the LDPC code of the rate 1/4 is a rate-1/4 LDPC code defined by a parity check matrix expanded from a base matrix B1/4,the LDPC code of the rate 2/5 is a rate-2/5 LDPC code defined by a parity check matrix expanded from a base matrix B2/5,the LDPC code of the rate 1/2 is a rate-1/2 LDPC code defined by a parity check matrix expanded from a base matrix B1/2,the LDPC code of the rate 3/5 is a rate-3/5 LDPC code defined by a parity check matrix expanded from a base matrix B3/5,the LDPC code of the rate 2/3 is a rate-2/3 LDPC code defined by a parity check matrix expanded from a base matrix B2/5,the LDPC code of the rate 3/4 is a rate-3/4 LDPC code defined by a parity check matrix expanded from a base matrix B3/4,the LDPC code of the rate 4/5 is a rate-4/5 LDPC code defined by a parity check matrix expanded from a base matrix B4/5,the LDPC code of the rate 5/6 is a rate-5/6 LDPC code defined by a parity check matrix expanded from a base matrix B5/6,the LDPC code of the rate 13/15 is a rate-13/15 LDPC code defined by a parity check matrix expanded from a base matrix B13/15, andthe LDPC code of the rate 9/10 is a rate-9/10 LDPC code defined by a parity check matrix expanded from a base matrix B9/10.
  • 3. A digital communications transmitter employing one or more LDPC codes selected from rates including 1/4, 2/5, 1/2, 3/5, 2/3, 3/4, 4/5, 5/6, 13/15, 9/10, wherein the LDPC code of the rate 1/4 is a code equivalent to a rate-1/4 LDPC code defined by a parity check matrix expanded from a base matrix B1/4,the LDPC code of the rate 2/5 is a code equivalent to a rate-2/5 LDPC code defined by a parity check matrix expanded from a base matrix B2/5,the LDPC code of the rate 1/2 is a code equivalent to a rate-1/2 LDPC code defined by a parity check matrix expanded from a base matrix B1/2,the LDPC code of the rate 3/5 is a code equivalent to a rate-3/5 LDPC code defined by a parity check matrix expanded from a base matrix B3/5,the LDPC code of the rate 2/3 is a code equivalent to a rate-2/3 LDPC code defined by a parity check matrix expanded from a base matrix B2/5,the LDPC code of the rate 3/4 is a code equivalent to a rate-3/4 LDPC code defined by a parity check matrix expanded from a base matrix B3/4,the LDPC code of the rate 4/5 is a code equivalent to a rate-4/5 LDPC code defined by a parity check matrix expanded from a base matrix B4/5,the LDPC code of the rate 5/6 is a code equivalent to a rate-5/6 LDPC code defined by a parity check matrix expanded from a base matrix B5/6,the LDPC code of the rate 13/15 is a code equivalent to a rate-13/15 LDPC code defined by a parity check matrix expanded from a base matrix B13/15, andthe LDPC code of the rate 9/10 is a code equivalent to a rate-9/10 LDPC code defined by a parity check matrix expanded from a base matrix B9/10.
  • 4. A digital communications receiver employing an LDPC decoder for decoding one or more LDPC codes selected from rates including 1/4, 2/5, 1/2, 3/5, 2/3, 3/4, 4/5, 5/6, 13/15, 9/10, wherein the LDPC code with the rate 1/4 has a bit node degree distribution (b2,b3,b6)=(11264,256,3840),the LDPC code with the rate 2/5 has a bit node degree distribution (b2,b3,b4,b12)=(8960,256,4608,1536),the LDPC code with the rate 1/2 has a bit node degree distribution (b2,b3,b4,b12)=(7424,2304,3840,1792),the LDPC code with the rate 3/5 has a bit node degree distribution (b2,b3,b4,b12)=(5888,3328,4352,1792),the LDPC code with the rate 2/3 has a bit node degree distribution (b2,b3,b4,b12)=(4864,4096,4864,1536),the LDPC code with the rate 3/4 has a bit node degree distribution (b2,b3,b4,b12)=(3584,4608,5888,1280),the LDPC code with the rate 4/5 has a bit node degree distribution (b2,b3,b4,b12)=(2816,5888,5376,1280),the LDPC code with the rate 5/6 has a bit node degree distribution (b2,b3,b4,b10)=(2304,4608,6912,1536),the LDPC code with the rate 13/15 has a bit node degree distribution (b2,b3,b4,b7)=(1792,5632,6912,1024), andthe LDPC code with the rate 9/10 has a bit node degree distribution (b2,b3,b4)=(1280,3584,10496).
  • 5. A digital communications receiver employing an LDPC decoder for decoding one or more LDPC codes selected from rates including 1/4, 2/5, 1/2, 3/5, 2/3, 3/4, 4/5, 5/6, 13/15, 9/10, wherein the LDPC code of the rate 1/4 is a rate-1/4 LDPC code defined by a parity check matrix expanded from a base matrix B1/4,the LDPC code of the rate 2/5 is a rate-2/5 LDPC code defined by a parity check matrix expanded from a base matrix B2/5,the LDPC code of the rate 1/2 is a rate-1/2 LDPC code defined by a parity check matrix expanded from a base matrix B1/2,the LDPC code of the rate 3/5 is a rate-3/5 LDPC code defined by a parity check matrix expanded from a base matrix B3/5,the LDPC code of the rate 2/3 is a rate-2/3 LDPC code defined by a parity check matrix expanded from a base matrix B2/3,the LDPC code of the rate 3/4 is a rate-3/4 LDPC code defined by a parity check matrix expanded from a base matrix B3/4,the LDPC code of the rate 4/5 is a rate-4/5 LDPC code defined by a parity check matrix expanded from a base matrix B4/5,the LDPC code of the rate 5/6 is a rate-5/6 LDPC code defined by a parity check matrix expanded from a base matrix B5/6,the LDPC code of the rate 13/15 is a rate-13/15 LDPC code defined by a parity check matrix expanded from a base matrix B13/15, andthe LDPC code of the rate 9/10 is a rate-9/10 LDPC code defined by a parity check matrix expanded from a base matrix B9/10.
  • 6. A digital communications receiver employing an LDPC decoder for decoding one or more LDPC codes selected from rates including 1/4, 2/5, 1/2, 3/5, 2/3, 3/4, 4/5, 5/6, 13/15, 9/10, wherein the LDPC code of the rate 1/4 is a code equivalent to a rate-1/4 LDPC code defined by a parity check matrix expanded from a base matrix B1/4,the LDPC code of the rate 2/5 is a code equivalent to a rate-2/5 LDPC code defined by a parity check matrix expanded from a base matrix B2/5,the LDPC code of the rate 1/2 is a code equivalent to a rate-1/2 LDPC code defined by a parity check matrix expanded from a base matrix B1/2,the LDPC code of the rate 3/5 is a code equivalent to a rate-3/5 LDPC code defined by a parity check matrix expanded from a base matrix B3/5,the LDPC code of the rate 2/3 is a code equivalent to a rate-2/3 LDPC code defined by a parity check matrix expanded from a base matrix B2/3,the LDPC code of the rate 3/4 is a code equivalent to a rate-3/4 LDPC code defined by a parity check matrix expanded from a base matrix B3/4,the LDPC code of the rate 4/5 is a code equivalent to a rate-4/5 LDPC code defined by a parity check matrix expanded from a base matrix B4/5,the LDPC code of the rate 5/6 is a code equivalent to a rate-5/6 LDPC code defined by a parity check matrix expanded from a base matrix B5/6,the LDPC code of the rate 13/15 is a code equivalent to a rate-13/15 LDPC code defined by a parity check matrix expanded from a base matrix B13/15, andthe LDPC code of the rate 9/10 is a code equivalent to a rate-9/10 LDPC code defined by a parity check matrix expanded from a base matrix B9/10.
  • 7. A computer readable medium storing a computer program for performing a method comprising generating one or more LDPC codes selected from rates including 1/4, 2/5, 1/2, 3/5, 2/3, 3/4, 4/5, 5/6, 13/15, 9/10, wherein the LDPC code with the rate 1/4 has a bit node degree distribution (b2,b3,b6)=(11264,256,3840),the LDPC code with the rate 2/5 has a bit node degree distribution (b2,b3,b4,b12)=(8960,256,4608,1536),the LDPC code with the rate 1/2 has a bit node degree distribution (b2,b3,b4,b12)=(7424,2304,3840,1792),the LDPC code with the rate 3/5 has a bit node degree distribution (b2,b3,b4,b12)=(5888,3328,4352,1792),the LDPC code with the rate 2/3 has a bit node degree distribution (b2,b3,b4,b12)=(4864,4096,4864,1536),the LDPC code with the rate 3/4 has a bit node degree distribution (b2,b3,b4,b12)=(3584,4608,5888,1280),the LDPC code with the rate 4/5 has a bit node degree distribution (b2,b3,b4,b12)=(2816,5888,5376,1280),the LDPC code with the rate 5/6 has a bit node degree distribution (b2,b3,b4,b10)=(2304,4608,6912,1536),the LDPC code with the rate 13/15 has a bit node degree distribution (b2,b3,b4,b7)=(1792,5632,6912,1024), andLDPC code with the rate 9/10 has a bit node degree distribution (b2,b3,b4)=(1280,3584,10496).
  • 8. A computer readable medium storing a computer program for performing a method comprising generating one or more LDPC codes selected from rates including 1/4, 2/5, 1/2, 3/5, 2/3, 3/4, 4/5, 5/6, 13/15, 9/10, wherein the LDPC code of the rate 1/4 is a rate-1/4 LDPC code defined by a parity check matrix expanded from a base matrix B1/4,the LDPC code of the rate 2/5 is a rate-2/5 LDPC code defined by a parity check matrix expanded from a base matrix B2/5,the LDPC code of the rate 1/2 is a rate-1/2 LDPC code defined by a parity check matrix expanded from a base matrix B1/2,the LDPC code of the rate 3/5 is a rate-3/5 LDPC code defined by a parity check matrix expanded from a base matrix B3/5,the LDPC code of the rate 2/3 is a rate-2/3 LDPC code defined by a parity check matrix expanded from a base matrix B2/3,the LDPC code of the rate 3/4 is a rate-3/4 LDPC code defined by a parity check matrix expanded from a base matrix B3/4,the LDPC code of the rate 4/5 is a rate-4/5 LDPC code defined by a parity check matrix expanded from a base matrix B4/5,the LDPC code of the rate 5/6 is a rate-5/6 LDPC code defined by a parity check matrix expanded from a base matrix B5/6,the LDPC code of the rate 13/15 is a rate-13/15 LDPC code defined by a parity check matrix expanded from a base matrix B13/15, andthe LDPC code of the rate 9/10 is a rate-9/10 LDPC code defined by a parity check matrix expanded from a base matrix B9/10.
  • 9. A computer readable medium storing a computer program for performing a method comprising generating one or more LDPC codes selected from rates including 1/4, 2/5, 1/2, 3/5, 2/3, 3/4, 4/5, 5/6, 13/15, 9/10, wherein the LDPC code of the rate 1/4 is a code equivalent to a rate-1/4 LDPC code defined by a parity check matrix expanded from a base matrix B1/4,the LDPC code of the rate 2/5 is a code equivalent to a rate-2/5 LDPC code defined by a parity check matrix expanded from a base matrix B2/5,the LDPC code of the rate 1/2 is a code equivalent to a rate-1/2 LDPC code defined by a parity check matrix expanded from a base matrix B1/2,the LDPC code of the rate 3/5 is a code equivalent to a rate-3/5 LDPC code defined by a parity check matrix expanded from a base matrix B3/5,the LDPC code of the rate 2/3 is a code equivalent to a rate-2/3 LDPC code defined by a parity check matrix expanded from a base matrix B2/3,the LDPC code of the rate 3/4 is a code equivalent to a rate-3/4 LDPC code defined by a parity check matrix expanded from a base matrix B3/4,the LDPC code of the rate 4/5 is a code equivalent to a rate-4/5 LDPC code defined by a parity check matrix expanded from a base matrix B4/5,the LDPC code of the rate 5/6 is a code equivalent to a rate-5/6 LDPC code defined by a parity check matrix expanded from a base matrix B5/6,the LDPC code of the rate 13/15 is a code equivalent to a rate-13/15 LDPC code defined by a parity check matrix expanded from a base matrix B13/15, andthe LDPC code of the rate 9/10 is a code equivalent to a rate-9/10 LDPC code defined by a parity check matrix expanded from a base matrix B9/10.
PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/CN2006/002420 9/18/2006 WO 00 5/17/2010