1. Field of Invention
The present invention relates to a fan and its impeller and housing, and in particular, to a fan and its impeller and housing with enhanced structural strength.
2. Related Art
As shown in
Generally, the fan housing 1 is made by injection molding. As shown in
In order to keep the thicknesses D1, D2 and D3 to be uniform and prevent from the shape deformation after injection molding, a conventional solving method is forming, an arc (as shown in
Except for the fan housing 1, the impeller of the fan can be also made by injection molding. Same disadvantages, such as the defects and shape deformation, exist caused by injection molding during manufacturing processes.
It is thus imperative to provide a fan and its impeller and housing to solve the above-mentioned problems.
In view of the foregoing, the present invention is to provide a fan and its impeller and housing for preventing the impeller and the housing from the defects and shape deformation caused by injection molding during manufacturing processes and enhancing structural strength of the impeller and the fan housing.
To achieve the above, a fan housing according to the present invention includes a base portion and a sidewall portion. The sidewall portion is disposed around and is connected with the base portion. A plurality of first recesses are disposed at a connection between the base portion and the sidewall portion. Further, the fan housing has a motor base and a plurality of supporting elements. The motor base is formed by combining the base portion and the sidewall portion, and the supporting elements are connected between the motor base and the fan housing. In addition, the fan housing has a plurality of second recesses and a tube with an axial hole. The tube is disposed on and connected to the base portion, and the second recesses are disposed at a connection between the tube and the base portion. A rib is disposed between every two adjacent first recesses, and a rib is disposed between every two adjacent second recesses. Each of the first and second recess is an indentation or a through hole.
To achieve the above, an impeller according to the present invention includes a hub having a base portion and a wall portion disposed around and connected with the base portion, and a plurality of blades. The blades are disposed on the wall portion and around the hub, and there are a plurality of recesses disposed at a connection between the base portion and the wall portion. A rib is disposed between every two adjacent third recesses. Each of the recesses is an indentation or a through hole. The impeller further includes a shaft, one end of which is connected to the base portion.
To achieve the above, a fan according to the present invention includes a housing and an impeller. The housing includes a base portion and a sidewall portion disposed around and connected with the base portion. A plurality of first recesses are disposed at a connection between the base portion and the sidewall portion. The impeller is disposed within the housing. The impeller includes a hub and a plurality of blades. The hub has a base portion and a wall portion disposed around and connected with the base portion. A plurality of third recesses are disposed at a connection between the base portion and the wall portion. The blades are disposed on the wall portion and around the hub. The housing accommodates the impeller.
As mentioned above, a plurality of recesses are disposed at a connection between the base portion and other portions and a rib is disposed between every two adjacent recesses. Comparing with the conventional structures, a fan and its impeller and housing according to the present invention can prevent the non-uniform thickness at the connection of the impeller and the housing, thereby preventing the defects and shape deformation caused by injection molding during manufacturing processes, and enhancing the structural strength. In addition, the present invention can save the molding material or increase the thickness of the fan housing and the impeller by the saved material. It is thus cost effective.
The present invention will become more fully understood from the detailed description given herein below illustration only, and thus is not limitative of the present invention, and wherein:
The present invention will be apparent from the following detailed description, which proceeds with reference to the accompanying drawings, wherein the same references relate to the same elements.
As shown in
The sidewall portion 42 is disposed around and connected with the base portion 41 in a predetermined angle. In this embodiment, the angle is about 90 degrees. A plurality of recesses 411 are disposed at a connection between the base portion 41 and the sidewall portion 42, and there is a rib 412 disposed between every two adjacent recesses 411.
In addition, the fan housing 4 also has a tube 414 with an axial hole 413 for accommodating the shaft of an impeller therein. The tube 414 is disposed on and connected to the base portion 41 in a predetermined angle, and the second recesses are disposed at a connection between the tube 414 and the base portion. 41. A plurality of recesses 415 are disposed at a connection between the tube 414 and the base portion 41, and there is a rib 416 is disposed between every two adjacent recesses 415.
Each of the recesses 411 and 415 is an indentation with a substantial rectangular shape. However, the embodiment is not limited thereto. The recesses 411 and 415 may also be any other shapes with different length or width. In addition, the recesses 411 and 415 may also be designed in different depth or even a through hole in accordance with practical requirements. Thus, the recesses 411 and 415 and the ribs 412 and 416 may have variations with different shape, length, width and depth.
As for the fan housing 4 with special designs of recesses 411 and 415 and the ribs 412 and 416, the thickness D1′ of the base portion 41, the thickness D2′ of the sidewall portion 42, and the thickness D3′ of the connection between the base portion 41 and the sidewall portion 42 are substantially the same because the recesses 411 are disposed between the base portion 41 and the sidewall portion 42. Also, the thickness D1′ of the base portion 41, the thickness D4 of the connection between the base portion 41 and the tube 414, and the thickness D5 of the tube 414 are substantially the same because the recesses 415 are disposed between the tube 414 and the base portion 41. Therefore, the present invention can prevent the fan housing from the defects and shape deformation caused by injection molding during manufacturing processes. The ribs 412 and 416 can further enhance the structural strength at the connection between the base portion 41 and the sidewall portion 42, and at the connection between the base portion 41 and the tube 414. Comparing with the conventional structures, it solved the problems of defects and shape deformation caused by injection molding during manufacturing processes.
Further, considering the material consumption of injection molding, the material can be saved by the recesses at the connections between the base portion 41 and the sidewall portion 42, and between the tube 414 and the base portion 41. The present invention is thus cost effective comparing with the conventional structures. Alternately, the thickness of the base portion 41, the sidewall portion 42 and the tube 414 can be increased by the saved material. Therefore, the structural strength of the fan housing is thus enhanced.
The present invention is not limited to the above-mentioned fan housing of the centrifugal fan. As shown in
As shown in
Except for the connection between the base portion and the sidewall portion, the connection between the tube and the base portion of the fan housing, and the connection between the base portion and the wall portion of the impeller having the recesses, a plurality of recesses may also be disposed at a connection between a protruding portion and the base portion when the base portion has the protruding portion, and also a rib is formed between every two adjacent recesses. That is, when any two walls of the fan housing or the impeller connecting with an angle, the structural disclosed in the present invention can be applied to any structures having connections, whereby preventing the non-uniform thickness at the connection and the walls. Also, it prevents the impeller and the fan housing from the defects and shape deformation caused by injection molding during manufacturing processes and enhances the structural strength.
The present invention also provides a fan having a housing and an impeller which is disposed within the housing. The shaft of the impeller is disposed in the tube with an axial hole and is driven by a motor to rotate. The housing and the impeller have the same constructions and functions as those described herein above. The detail descriptions are omitted herein.
In summary, a plurality of recesses are disposed at a connection between the base portion and other portions and a rib is disposed between every two adjacent recesses. Comparing with the conventional structures, a fan and its impeller and housing according to the present invention can prevent the non-uniform thickness at the connection of the impeller and the housing, whereby preventing the defects and shape deformation caused by injection molding during manufacturing processes, and enhancing the structural strength. In addition, the present invention can save the molding material or increase the thickness of the fan housing and the impeller by the saved material. It is thus cost effective.
Although the present invention has been described with reference to specific embodiments, this description is not meant to be construed in a pivoting sense. Various modifications of the disclosed embodiments, as well as alternative embodiments, will be apparent to persons skilled in the art. It is, therefore, contemplated that the appended claims will cover all modifications that fall within the true scope of the present invention.
Number | Date | Country | Kind |
---|---|---|---|
094113692 | Apr 2005 | TW | national |