In general terms, embodiments of the present invention relate to fan assemblies and methods for assembling same.
The process of installing a conventional ceiling fan assembly can often be complicated, time-consuming, costly, and/or frustrating. As an example, due to balancing reasons, most ceiling fan assembly manufacturers recommend that a ceiling fan motor be suspended from a ceiling surface before the blade arms and fan blades of the ceiling fan assembly are attached to the motor. In addition, most conventional blade arms are connected to a ceiling fan motor by threading a plurality of fasteners through corresponding apertures in the blade arm. Thus, in order to install such conventional ceiling fan assemblies, an installer must stand on a stool or ladder and perform an overhead installation, all while simultaneously supporting a blade arm, a plurality of fasteners, and a screwdriver or other installation tool. Accordingly, there is a need to provide fan assemblies, and methods for installing the same, that mitigate or eliminate some of the complications, delays, costs, and frustrations typically associated with installing conventional fan assemblies.
In general terms, embodiments of the present invention relate to fan assemblies and methods for assembling the same. For example, some embodiments provide a fan assembly that includes: (a) a rotational member, (b) a connection member structured for connection to the rotational member, where the connection member includes a body portion and a head portion, and (c) a blade arm having at least one opening defined therein. In some embodiments of the fan assembly, the opening includes an open end portion and a closed end portion. Additionally or alternatively, in some embodiments, the connection member and the blade arm are configured such that when the blade arm is connected to the rotational member, the head portion of the connection member at least partially bears against the blade arm adjacent to the opening defined in the blade arm.
In some embodiments of the fan assembly, the connection member is configured to have at least a first position and a second position. In some embodiments, when in the first position, the head portion of the connection member is spaced apart from the rotational member at a distance greater than a dimension of the blade arm, such that, when the blade arm is positioned relative to the rotational member, the head portion of the connection member rests against the blade arm to support the blade arm relative to the rotational member. In some embodiments, when in the second position, the head portion of the connection member is spaced apart from the rotational member at a distance approximating a dimension of the blade arm, such that, when the blade arm is connected to the rotational member, the head portion of the connection member applies a force against the blade arm sufficient to secure the blade arm relative to the rotational member.
In some embodiments of the fan assembly, the opening includes at least one recessed portion that extends transversely into the opening, and, when the blade arm is in a secure state and/or when the connection member is in the second position, the head portion of the connection member at least partially bears against the recessed portion of the opening. In some embodiments, the opening has a length extending approximately from the open end portion of the opening to approximately the closed end portion of the opening. Additionally or alternatively, in some embodiments, the recessed portion of the opening extends into the opening in a direction that is substantially perpendicular to the length of the opening. In some embodiments of the fan assembly, the body portion of the connection member has a first width, the head portion of the connection member has a second width, the open end portion of the opening has a third width, such that the second width is greater than the third width and the third width is greater than the first width.
In some embodiments of the fan assembly, the recessed portion of the opening is positioned at or near the closed end portion of the opening. Additionally or alternatively, in some embodiments, the opening includes an elongate portion positioned between the open end portion and the closed end portion, the recessed portion of the opening is positioned at or near the closed end portion, and the opening is structured to receive the body portion of the connection member through the open end portion of the opening, through the elongate portion, and at or near the closed end portion. In some embodiments, the recessed portion of the opening is structured to at least partially receive the head portion of the connection member therein, such that, when the blade arm is in a secure state, the head portion of the connection member is substantially prevented from moving laterally within the recessed portion.
In some embodiments of the fan assembly, the blade arm includes a first connecting end for connecting the blade arm to the rotational member and a second connecting end for connecting the blade arm to a fan blade, the open end portion of the opening is positioned at or near an end portion of the first connecting end of the blade arm, and the closed end portion of the opening is positioned on the first connection portion of the blade arm at a location between the open end portion of the opening and the second connection portion of the blade arm.
As another example, some embodiments of the present invention provide a method for installing a blade arm to a rotational member of a fan motor. In accordance with some embodiments, (a) the rotational member is structured for connection to a connection member, (b) the connection member includes a body portion and a head portion, (c) the blade arm has at least one opening defined therein, and (d) the opening includes an open end portion and a closed end portion. Additionally or alternatively, the method includes: (a) positioning the blade arm relative to the connection member, and (b) urging the connection member relative to the rotational member, such that the head portion of the connection member at least partially bears against the blade arm.
In some embodiments of the method, the rotational member is rotatable about a rotational axis, and positioning the blade arm relative to the connection member includes sliding the blade arm relative to the connection member in a direction that is substantially perpendicular to the rotational axis. Additionally or alternatively, in some embodiments of the method, urging the connection member relative to the rotational member includes urging the connection member relative to the rotational member in a direction that is substantially parallel to the rotational axis. In some embodiments of the method, positioning the blade arm relative to the connection member includes sliding the blade arm relative to the connection member, such that the body portion of the connection member enters the open end portion of the opening and terminates (and/or remains) at or near the recessed portion of the opening.
In some embodiments of the method, the opening includes at least one recessed portion that extends transversely into the opening. In some embodiments, the opening includes an elongate portion that is positioned between the open end portion and the closed end portion. In some embodiments, the recessed portion of the opening is positioned at or near the closed end portion. In some embodiments, positioning the blade arm relative to the connection member includes sliding the blade arm relative to the connection member, such that the body portion of the connection member enters the open end portion of the opening, moves through the elongate portion, and then terminates (and/or remains) at or near the closed end portion. In some embodiments of the method, urging the connection member relative to the rotational member includes urging the head portion of the connection member at least partially into the recessed portion of the opening, such that the head portion is substantially prevented from moving laterally within the recessed portion.
In some embodiments of the method, when in a first position, the head portion of the connection member is spaced apart from the rotational member at a distance greater than a dimension of the blade arm, such that, when the blade arm is positioned relative to the connection member, the head portion of the connection member rests against the blade arm to support the blade arm relative to the rotational member. Additionally or alternatively, in some embodiments of the method, urging the connection member relative to the rotational member includes urging the connection member to a second position, where the head portion of the connection member is spaced apart from the rotational member at a distance approximating a dimension of the blade arm, such that, when the blade arm is connected to the rotational member, the head portion of the connection member applies a force against the blade arm sufficient to secure the blade arm relative to the rotational member.
As yet another example, some embodiments of the present invention provide a blade arm that includes: (a) a first connection portion structured for connection to a rotational member of a fan motor, where the first connection portion defines an opening therein, and where the opening has an open end portion and a closed end portion; (b) a second connection portion structured for connection to a fan blade; and (c) an elongate portion positioned between the first connection portion and the second connection portion.
In some embodiments of the blade arm, the opening has a length extending from approximately the open end portion of the opening to approximately the closed end portion, and the first connection portion further defines a recessed portion that extends into the first connection portion in a direction that is substantially perpendicular to the length of the opening. Additionally or alternatively, in some embodiments of the blade arm, the opening is positioned at least partially within the recessed portion, the recessed portion is structured for receiving a head portion of a connection member at least partially therein, and the opening is structured for receiving a body portion of the connection member at least partially therein. Further, in some embodiments of the blade arm, the first connection portion further defines a tab that is structured for connection to the rotational member.
As another example, some embodiments of the present invention provide a fan assembly that includes: (a) a rotational member; (b) a connection member structured for connection to the rotational member, where the connection member has a head portion and a body portion; and (c) a spacer defining an opening therein, where the opening has an open end portion and a closed end portion, and where the opening is structured for receiving the body portion of the connection member therein. In some of these embodiments, the body portion of the connection member can be connected to the rotational member and positioned within the opening of the spacer, such that the spacer is positioned at least partially between the head portion of the connection member and the rotational member, and such that the head portion is maintained a predetermined distance away from the rotational member.
In some embodiments, the fan assembly further includes a blade arm defining a second opening therein, where the second opening has an open end portion and a closed end portion, and where the second opening is structured for receiving the body portion of the connection member therein. In some of these embodiments, the blade arm has a height dimension less than the predetermined distance, so that the blade arm can be positioned, in place of the spacer, between the head portion of the connection member and the rotational member.
Additionally or alternatively, in some embodiments of the fan assembly, the opening defined in the spacer includes a first set of teeth structured for at least partially bearing against the body portion of the connection member. In other embodiments, the spacer includes a first grip portion, a second grip portion, and a connection portion, where the first grip portion defines the opening therein, where the second grip portion defines a second opening therein, and where the connection portion is positioned at least partially between the first grip portion and the second grip portion, such that the spacer is C-shaped.
As another example, some embodiments of the present invention provide an easy install fan assembly that includes: (a) an easy install blade arm to motor connection having: (i) a rotational member, (ii) a connection member structured for connection to the rotational member, where the connection member includes a body portion and a head portion, and (iii) a blade arm defining an opening therein, where the opening includes an open end portion and a closed end portion.
In some embodiments of the easy install fan assembly, the connection member can be pre-installed so that the position of the head portion relative to the rotational member allows mounting of the blade arm to the rotational member in such a way that the blade arm remains preliminarily supported by the head portion, so that an installer can urge the connection member (and/or the head portion thereof) into a tightening state and/or the second position without the installer needing to hold the blade arm manually. When the blade arm is in a secure state, the head portion of the connection member at least partially bears against the blade arm and keeps the blade arm from becoming dislodged from the rotational member during full-speed rotation of the motor. Additionally or alternatively, in some embodiments, the easy install fan assembly further includes an easy install blade arm to fan blade connection.
Having thus described embodiments of the invention in general terms, reference will now be made to the accompanying figures, which are not necessarily drawn to scale, and wherein:
Embodiments of the present invention now will be described more fully herein with reference to the accompanying drawings, in which some, but not all, embodiments of the invention are shown. The present invention may be embodied in many different forms and should not be construed as limited to the embodiments set forth herein; rather, these embodiments are provided so that this disclosure will satisfy applicable legal requirements. It will be understood that, where possible, any of the advantages, features, and/or operational aspects of any of the embodiments described and/or contemplated herein may be included in any other embodiment of the present invention described and/or contemplated herein, and/or vice versa. It will also be understood that, where possible, any terms expressed in the singular form herein are meant to also include the plural form, and vice versa. Additionally, the terms “a” and/or “an” shall mean “one or more” herein, even though the phrase “one or more” may also be used herein. Like numbers and letters refer to like elements throughout.
It will be understood that, in accordance with some embodiments, the process of installing an easy install blade arm to motor connection includes one or more “operations” that result in one or more “states.” Some of the embodiments described and illustrated herein disclose an installation process that results in the blade arm being positioned in an initial “support” state and/or a subsequent “secure” state. In a support state, the blade arm is supported, but not secured, relative to the motor. In a secure state, the blade arm is both supported and secured relative to the motor. It will be understood that the support state facilitates the installation of the blade arm to the motor because, for example, an installer does not need to simultaneously support a blade arm, one or more connection members (e.g., screws, etc.), and an installation tool (e.g., screwdriver, etc.) in order to secure the blade arm to the motor. It will also be understood that some of the embodiments of the present invention, as described in more detail herein, may achieve a support state and/or a secure state in the same or different ways, and/or by using the same or different components.
In addition, it will be understood that the embodiments described and illustrated herein are embodied as ceiling fan assemblies for simplicity. It will be understood, however, that the various embodiments of the present invention can be used in connection with any one or more other types of fan assemblies that involve connecting fan blades to blade arms and/or connecting blade arms to fan motors, and can be used with fan assemblies that involve the same or a different number of fan blades and blade arms from what is shown in the herein described and illustrated embodiments.
Also, it will be understood that various terms and phrases are used herein to describe various advantages, features, and/or operational aspects of the embodiments of the present invention. Sometimes different terms and phrases are used herein but different meanings are not implied. For example, the terms “opening,” “aperture,” and “slot” are used herein to describe various surfaces and/or structures, some of which may be similar or identical. As such, it will be understood that different meanings should not necessarily be ascribed to different terms.
Referring now to
It will be understood that, in some embodiments of the fan assembly 100, the rotational member 112 is positioned on a bottom surface of the motor housing 110, such that the blade arms 130 are positioned between the rotational member 112 and a floor surface (not shown). In such embodiments, the blade arms 130 extend downwardly and laterally away from the rotational member 112. It will also be understood that, in accordance with some embodiments, the motor housing 110 carries a support member 111 for supporting, for example, one or more light fixtures (not shown).
However, it will also be understood that, in alternative embodiments of the fan assembly 100, the rotational member 112 is positioned on a top surface of the motor housing 110, and that the motor housing 110 is suspended from a ceiling surface (not shown) by the support member 111. In such embodiments, for example, the blade arms 130 are positioned between the rotational member 112 and the ceiling surface. Additionally, in such embodiments, the blade arms 130, when in a secure state, extend upwardly and laterally away from the rotational member 112.
It will be understood that, regardless of whether the rotational member 112 is positioned on the top surface or the bottom surface (or any other surface) of the motor housing 110, the fan assembly 100 can be assembled such that a straight line passing through the motor housing 110, the rotational member 112, and one or more blade arms 130 extends in a substantially vertical direction, a substantially horizontal direction, and/or in any other direction in between. Additionally or alternatively, the fan assembly 100 can be configured such that the rotational axis 113 extends through the support member 111, and/or such that the longitudinal axis of the support member 111 is substantially collinear with the rotational axis 113. Further, the fan assembly 100 can be additionally or alternatively assembled such that the longitudinal axis of the support member 111 is substantially perpendicular to the rotational member 112.
It will also be understood that each of the plurality of connection members 120 shown is sized, dimensioned, shaped, configured, constructed, manufactured, built, designed, made, and/or structured (collectively referred to herein as “structured” for simplicity) for connection to the rotational member 112. Specifically, the rotational member 112 defines a plurality of apertures 114 (e.g., holes, bores, slots, recesses, depressions, hollows, etc.) that are spaced about the rotational axis 113, and each aperture 114 is structured to receive a corresponding connection member 120 at least partially therein. It will be understood that, when a connection member 120 is received within a corresponding aperture 114, the connection member 120 can be fastened, tightened, moved, positioned, and/or urged (collectively referred to herein as “urged” for simplicity) into, away from, within, and/or otherwise relative to the aperture 114. It will also be understood that each of the connection members 120 can be urged within the aperture 114 between a relatively “loosened” state and a relatively “tightened” state. It will be understood that less of the connection member 120 is positioned outside of the aperture 114 in a relatively tightened state than when the connection member 120 is positioned in a relatively loosened state. It will also be understood that the connection members 120 illustrated in
In some embodiments of the fan assembly 100, the connection member 120 is additionally or alternatively configured to have at least a first position and a second position. In some embodiments, when in the first position, the head portion 124 of the connection member 120 is spaced apart from the rotational member 112 at a distance greater than a dimension of the blade arm 130, such that, when the blade arm 130 is positioned (e.g., preliminarily installed, etc.) relative to the rotational member 112, the head portion 124 of the connection member 120 rests against the blade arm 130 to support the blade arm 130 relative to the rotational member 112. In some embodiments, when in the second position, the head portion 124 of the connection member 120 is spaced apart from the rotational member 112 at a distance approximating a dimension of the blade arm 130, such that, when the blade arm 130 is connected to the rotational member 112, the head portion 124 of the connection member 120 applies a force against the blade arm 130 sufficient to secure the blade arm 130 relative to the rotational member 112.
It will be understood that, in accordance with some embodiments, the connection member 120 is positioned in a relatively loosened state when the connection member 120 is positioned in the first position. Additionally or alternatively, in accordance with some embodiments, the connection member 120 is positioned in a relatively tightened state when the connection member 120 is positioned in the second position. Also, in accordance with some embodiments, the blade arm 130 is positioned in a support state when the connection member 120 is positioned in the first position. Additionally or alternatively, in accordance with some embodiments, the blade arm 130 is positioned in a secure state when the connection member 120 is positioned in the second position.
In some embodiments, one or more of the connection members 120 are captively received in corresponding apertures 114, such that each captive connection member 120 may be urged within and relative to a corresponding aperture 114, but can not be removed from that aperture 114. This feature may eliminate the possibility that the connection members 120 will fall out or become lost during the installation or operation of the fan assembly 100. It will also be understood that, in some embodiments, the captive connection members 120 are also pre-installed on the rotational member 112, thereby eliminating the need to connect the connection members 120 to the rotational member 112 at the point of installation. The use of captive and/or pre-installed connection members 120 facilitates the installation process because an installer does not need to simultaneously support the blade arm 130, the connection member 120, and an installation tool (not shown) in order to secure the blade arm 130 to the rotational member 112. In other words, the pre-installed and/or captive connection member 120 enables an installer to position the blade arm 130 relative to the connection member 120 in such a way that the blade arm 130 remains preliminarily supported by the head portion 124, so that an installer can urge the connection member 120 (and/or the head portion 124) into a tightening state and/or the second position without the installer needing to manually hold the blade arm 130.
Additionally, in accordance with some embodiments, as shown in
Further, each of the plurality of blade arms 130 illustrated in
Also shown in
Each opening 136 has a length that generally extends from the open end portion 137 of the opening 136 to the closed end portion 138 of the opening 136. As shown in
In some embodiments, such as the one shown in
It will be understood that the process of installing the blade arm 130 to the rotational member 112 typically includes at least two operations: (1) positioning the blade arm 130 relative to a connection member 120 to achieve a support state; and (2) urging the connection member 120 relative to the rotational member 112 to achieve a secure state. In a support state of the illustrated embodiment, the connection member 120 is positioned in a relatively loosened state, the connection member 120 is positioned in a first position, and/or the head portion 124 of the connection member 120 cooperates with the recessed portion 133 of the opening 136, such that the blade arm 130 is supported relative to the rotational member 112 of the motor. In a secure state of the illustrated embodiment, the connection member 120 is positioned in a relatively tightened state, the connection member 120 is positioned in the second position, and/or the head portion 124 of the connection member 120 at least partially bears against (e.g., abuts, touches, applies a force to, etc.) the recessed portion 133 of the opening 136, such that the blade arm 130 is supported and secured relative to the rotational member 112 of the motor. It will be understood that, when the blade arm 130 is in a secure state, the head portion 124 of the connection member 120 at least partially bears against the blade arm 130 to prevent the blade arm 130 from becoming dislodged from the rotational member 112 during full-speed rotation of the motor.
Examples of performing the positioning and urging operations are described in detail below, but it will be understood that each of these operations may be accomplished in other ways not explicitly described herein. It will also be understood that, in some embodiments, the operations can be combined into one single operation, and that, in other embodiments, the installation of the blade arm 130 to the rotational member 112 may include one or more operations in addition to, or instead of, the operations described herein.
In some embodiments, positioning the blade arm 130 relative to the connection member 120 includes positioning the blade arm 130 relative to the connection member 120, such that the head portion 124 of the connection member 120 rests against the blade arm 130 to support the blade arm 130 relative to the rotational member 112. In some embodiments, positioning the blade arm 130 relative to the connection member 120 includes positioning the head portion 124 of the connection member 120 in relative alignment with the recessed portion 133 of the opening 136. For example, in some embodiments, this includes positioning the body portion 122 of the connection member 120 between the head portion 124 of the connection member 120 and the recessed portion 133 of the opening 136. In some embodiments where the recessed portion 133 is positioned at or near the closed end portion 138 of the opening 136, such as the embodiment shown in
In some embodiments, positioning the blade arm 130 relative to the connection member 120 includes sliding the opening 136 of the blade arm 130 around the body portion 122 of the connection member 120. In some embodiments, positioning the blade arm 130 relative to the connection member 120 includes sliding the blade arm 130 relative to (e.g., towards, etc.) the connection member 120, such that the body portion 122 of the connection member 120 enters the open end portion 137 of the opening 136, moves through the elongate portion 139, and then terminates (and/or remains) at or near the recessed portion 133 and/or the closed end portion 138. It will be understood that, in some of these embodiments, the opening 136 of the blade arm 130 can be slid relative to the connection member 120 in a direction that is substantially perpendicular to the direction in which the connection member 120 extends from the rotational member 112. Additionally or alternatively, in some embodiments, the opening 136 of the blade arm 130 can be slid relative to the connection member 120 in a direction that is substantially perpendicular to the rotational axis 113 of the rotational member 112.
It will also be understood that, because the recessed portion 133 extends transversely into the opening 136, the blade arm 130 can be positioned relative to a connection member 120 that is positioned in a relatively loosened state, such that the head portion 124 of that connection member 120 cooperates with the recessed portion 133 of the opening 136 to loosely support the blade arm 130 from the rotational member 112. As such, in some embodiments, the blade arm 130 can hang from the rotational member 112 even when the corresponding connection members 120 are positioned in a relatively loosened state. This feature facilitates the installation process because an installer does not need to simultaneously support the blade arm 130, the connection member 120, and an installation tool (not shown) in order to secure the blade arm 130 to the rotational member 112.
It will be understood that the specific embodiment shown in
Once a blade arm 130 is positioned relative to corresponding connection members 120, the blade arm 130 can be secured to the rotational member 112 by urging the connection member 120 relative to the rotational member 112, such that the head portion 124 of the connection member 120 at least partially bears against the blade arm 130 adjacent to (e.g., proximate, near, within, inside, etc.) the opening 136 defined in the blade arm 130. In some embodiments, urging the connection member 120 relative to the rotational member 112 includes urging the connection member 120 relative to the rotational member 112, such that the blade arm 130 is connected to the rotational member 112, and the head portion 124 of the connection member 120 applies a force against the blade arm 130 sufficient to secure the blade arm 130 relative to the rotational member 112.
In some embodiments, urging the connection member 120 relative to the rotational member 112 includes urging the connection member 120 relative to the rotational member 112, such that the head portion 124 of the connection member 120 at least partially bears against the recessed portion 133 of the opening 136. Specifically, in some embodiments, urging the connection member 120 relative to the rotational member 112 includes tightening the connection member 120 within the corresponding aperture 114 of the rotational member 112. In some embodiments, urging the connection member 120 relative to the rotational member 112 includes moving the connection member 120 relative to the rotational member 112 in a direction that is substantially parallel to the rotational axis 113 and/or in a direction that is substantially perpendicular to the length of the opening 136.
In some embodiments, urging the connection member 120 relative to the rotational member 112 includes urging the connection member 120 from the first position to the second position and/or from a relatively loosened state towards a relatively tightened state. Still further, in some embodiments, urging the connection member 120 relative to the rotational member 112 includes urging the head portion 124 of the connection member 120 at least partially into the recessed portion 133 of the opening 136, such that: (a) a bottom portion of the head portion 124 at least partially bears against a lower portion of the recessed portion 133, (b) the head portion 124 is substantially prevented from moving laterally within the recessed portion 133, and/or (c) the blade arm 130 is substantially prevented from being moved laterally away from the rotational member 112. In some embodiments, urging the connection member 120 relative to the rotational member 112 includes urging the connection member 120, such that the blade arm 130 is substantially clamped between rotational member 112 and the head portion 124 of the connection member 120.
Of course, it will be understood that the structure and/or installation of the fan assembly 100 described above can be different in other embodiments within the scope of the present invention. For example, in some embodiments, the opening 136 includes an open end portion 137 and a closed end portion 138, but does not include a recessed portion 133 and/or an elongate portion 139. As another example, in some embodiments, the opening 136 includes a portion extending between the open end portion 137 and the closed end portion 138, but that portion is structured differently than the elongate portion 139 depicted in
As still another example of how the embodiment of the fan assembly 100 shown in
Also, in some alternative embodiments, instead of the connection members 120 embodied as round head screws, as shown in the embodiment illustrated in
Referring now to
More specifically, in accordance with some embodiments, the clip 105 is structured to engage the connection member 120 and/or the motor housing 110 in order to impede and/or prevent the rotational member 112 from moving relative to the motor housing 110. It will be understood that, in some embodiments, as shown in
As shown in
Referring now to
As shown in
As shown in
As shown in
It will be understood that, in accordance with some embodiments, the first recessed portion 137A and the second recessed portion 138A both extend transversely into the opening 136. In other words, each of the first recessed portion 137A and the second recessed portion 138A generally extends into the opening 136 at an angle relative to the length of the opening 136. It will be understood that, in some embodiments, the first recessed portion 137A and the second recessed portion 138A extend into the opening 136 at different angles relative to each other, whereas in other embodiments, the recessed portions extend into the opening 136 in parallel with each other. In some embodiments, as shown in
Also, as shown in
Additionally or alternatively, in some embodiments, the first recessed portion 137A is structured such that the first connection portion 132 has a fifth height at a fifth point positioned on the first connection portion 132, outside of the opening 136, and at and/or near the first end portion 132A. In such embodiments, the fifth height H5 is greater than the third height H3, and the third height H3 is greater than the fourth height H4. Additionally or alternatively, in some embodiments, the portion of the connection member 132 defining the fifth height H5 is on a different “level” than the portion of the connection member 132 defining the first recessed portion 137A and/or the portion defining the second recessed portion 138A.
Referring now to
As shown in
As also shown in
As shown in
As shown in
It will be understood that, in accordance with some embodiments, the recessed portion 137B is structured to facilitate installation of the blade arm 130B onto the fan assembly 100B. Specifically, the reduced height of the first connection portion 132 at and/or near the recessed portion 137B enables an installer to more easily fit the leading edge (i.e., the first end portion 132A) of the blade arm 130B between the plate 103 and the head portions 124 of the connection members 120. (In addition, in some embodiments, the blade arm 130B includes a chamfer portion 132F to further facilitate this installation.) It will be understood that, when compared to the opening 136 shown in
In some embodiments, the installation of the blade arm 130B onto the rotational member 112 of the fan assembly 100B includes: (a) securing the plate 103 to the rotational member 112, such that the rib portion 103A of the plate 103 abuts or nearly abuts the inside surface 118A of the overhang portion 118 and/or such that the apertures 103B of the plate 103 substantially align with the apertures 114 of the rotational member 112; (b) positioning the blade arm 130B relative to the plate 103, such that the rib portion 103A of the plate 103 abuts or nearly abuts the groove portion 132G of the blade arm 130B and/or such that the apertures 103B of the plate 103 substantially align with the openings 136 of the blade arm 130B; and/or (c) screwing the connection members 120 into the apertures 103B of the plate 103 and into the apertures 114 of the rotational member 112, such that the head portions 124 fits closely against the recessed portions 137B and/or such that the blade arm 130B is secured relative to the rotational member 112. Any one or all of the foregoing steps (a)-(c) can be performed as pre-installation steps (e.g., before the fan assembly 100B is delivered to the installation site) to facilitate the aspects of installation that occur on-site and/or might be performed by a consumer or end-user. It will be understood that this installation process may be different in other embodiments of the present invention. For example, in some embodiments, the installation may include screwing the connection members 120 at least partially into the apertures 103B of the plate 103 before positioning the blade arm 130C relative to the plate 103. Also, in some embodiments, it will be understood that, when the blade arm 130B is secured relative to the rotational member 112, the connection member 120, the recessed portion 137B, the rib portion 103A, the groove portion 132G, and the inside surface 118A of the overhang portion 118 all cooperate to impede or prevent the blade arm 130B from sliding laterally away from the rotational member 112.
It will be understood that
Referring to
Referring now to
It will be understood that the standoff 107 includes a lip portion 107A, a body portion 107B, and a base portion 107D. The standoff 107 also defines a bore 107F therein, which can extend partially or entirely along the length of the standoff 107. It will also be understood that, in some embodiments, the standoff 107 is double-threaded, such that the bore 107F defines an interior threaded surface 107C, and such that the base portion 107D defines an exterior threaded surface 107E. As shown in
It will also be understood that the bore 107F of the standoff 107 is structured to receive at least a portion of a connection member 120 therein. In embodiments where the connection member 120 includes an exterior threaded surface (e.g., when the connection member 120 is embodied as a screw, etc.), the exterior threaded surface of a connection member 120 is structured to cooperate with the interior threaded surface 107C of the bore 107F in order to secure the connection member 120 relative to and/or within the standoff 107. Also, in some embodiments where the bore 107F passes through the entire length of the standoff 107, at least part of the body portion 122 of the connection member 120 can pass entirely through the bore 107F and extend at least partially into the aperture 114. In such embodiments, the exterior threaded surface of the connection member 120 is structured to cooperate with the interior threaded surface of the aperture 114 in order to secure the connection member 120 relative to and/or within the aperture 114.
It will be understood that the lip portion 107A of the standoff 107 is structured to help secure the connection member 120 and/or the standoff 107 relative to the rotational member 112. For example, in some embodiments, the lip portion 107A of the standoff 107 is structured to provide lateral support to the connection member 120 when the connection member 120 is screwed into the standoff 107 and when the standoff 107 is screwed into the aperture 114. Specifically, as shown in
Also shown in
It will be understood that the connection member 120, the standoff 107, and the recessed portion 138B all cooperate to secure the blade arm 130C to the rotational member 112. Specifically, the opening 136 of the blade arm 130C is structured to receive the standoff 107 therein, and the recessed portion 138B of the opening 136 is structured to interface with the head portion 124 of the connection member 120. In some embodiments, the structure of the recessed portion 138B substantially conforms to the structure of the head portion 124 of the connection member 120. For example, as shown in
In some embodiments, the installation of the blade arm 130C onto the rotational member 112 of the fan assembly 100C includes: (a) screwing the base portion 107D of the standoff 107 into the aperture 114; (b) positioning the blade arm 130C relative to the standoff 107, such that the standoff 107 is positioned at least partially within the closed end portion 138 of the opening 136; and/or (c) screwing the connection member 120 into the bore 107F of the standoff 107, such that the head portion 124 fits closely against the recessed portion 138B and/or such that the blade arm 130C is secured relative to the rotational member 112. It will be understood that this installation process may be different in other embodiments of the present invention. For example, in some embodiments, the installation may include screwing the connection member 120 at least partially into the bore 107F of the standoff 107 before positioning the blade arm 130C relative to the standoff 107. Also, in some embodiments, it will be understood that, when the blade arm 130C is secured relative to the rotational member 112, the recessed portion 138B of the opening 136 and the head portion 124 of the connection member 120 cooperate to impede or prevent the blade arm 130C from sliding laterally away from the rotational member 112. Any one or all of the foregoing steps (a)-(c) can be performed as pre-installation steps (e.g., before the fan assembly 100C is delivered to the installation site) to facilitate the aspects of installation that occur on-site and/or might be performed by a consumer or end-user.
It will also be understood that the use of the standoff 107 can serve several purposes. For example, as shown in
It will also be understood that, if additional separation is preferred, one or more washers (e.g., washers, spacers, springs, wear pads, gaskets, etc.) 108 can be used, as shown in
Referring now to
As shown in
It will also be understood that the aperture 114 is structured to receive the standoff 109 therein. Specifically, in some embodiments, as shown in
It will also be understood that the standoff 109 can be structured to provide one or more of the benefits mentioned in connection with the standoff 107 of the fan assembly 100C. For example, in some embodiments, the lip portion 109A of the standoff 109 is structured to abut or nearly abut and/or otherwise conform to the surface of the rotational member 112 when the standoff 109 is fit into the aperture 114. As another example, in some embodiments, the lip portion 109A of the standoff 109 is structured to provide lateral support to the connection member 120 when the standoff 109 is secured within the aperture 114 and when the connection member 120 is secured within the standoff 109.
In some embodiments, the installation of the blade arm 130C onto the rotational member 112 of the fan assembly 100D includes: (a) fitting the body portion 109B of the standoff 109 through the aperture 114 until the lip portion 109A abuts or nearly abuts the surface of the rotational member 112; (b) positioning the blade arm 130C relative to the standoff 109, such that the standoff 109 is positioned at least partially within the closed end portion 138 of the opening 136; and/or (c) screwing the connection member 120 into the bore 109F of the standoff 109, such that the head portion 124 fits closely against the recessed portion 138B and/or such that the blade arm 130C is secured relative to the rotational member 112. It will be understood that this installation process may be different in other embodiments of the present invention. For example, in some embodiments, the installation may include screwing the connection member 120 at least partially into the bore 109F of the standoff 109 before positioning the blade arm 130C relative to the standoff 109. Also, in some embodiments, it will be understood that, when the blade arm 130C is secured relative to the rotational member 112, the recessed portion 138B and the head portion 124 of the connection member 120 cooperate to impede or prevent the blade arm 130C from sliding laterally away from the rotational member 112. Any one or all of the foregoing steps (a)-(c) can be performed as pre-installation steps (e.g., before the fan assembly 100D is delivered to the installation site) to facilitate the aspects of installation that occur on-site and/or might be performed by a consumer or end-user.
It will also be understood that the use of the standoff 109 can serve one or more of the same purposes as the standoff 107. For example, as shown in
Referring now to
As shown in
Also, it will be understood that the rotational member 115 having the raised portion 115A can serve one or more of the same purposes as the standoffs 107 and 109 illustrated in
Referring now to
As shown in
It will also be understood that, in accordance with some embodiments, the process of installing the fan assembly 200 includes one or more of the operations described above in connection with installing the fan assembly 100. For example, in some embodiments of the fan assembly 200, installing the blade arm 130 to the rotational member 112 includes at least two operations: (1) positioning the blade arm 130 relative to the connection members 120 to achieve a support state, and (2) urging the connection members 120 relative to the rotational member 112 to achieve a secure state. In a support state of the embodiment illustrated in
It will be understood that the cooperation of the flange portion 216 and the slot portion 231 facilitates the installation of the blade arm 130 to the rotational member 112 because this structure helps to guide the blade arm 130 into position relative to the rotational member 112. This structure also provides a more secure connection between the blade arm 130 and the rotational member 112 because the interface between the flange portion 216 and the slot portion 231 supplements the interface between the openings 136 and the corresponding connection members 120.
Referring now to
It will be understood that, in accordance with some embodiments, the supplemental opening 336 includes one or more of the features of the openings 136 already described herein. For example, like the openings 136, the supplemental opening 336 includes an open end portion 337, a closed end portion 338, an optional elongate portion 339, and an optional recessed portion 333. As another example, each supplemental opening 336 has a length that generally extends from approximately the open end portion 337 of the supplemental opening 336 to approximately the closed end portion 338 of the supplemental opening 336. In addition, the recessed portion 333 of the supplemental opening 336 extends transversely into the supplemental opening 336, which means that the recessed portion 333 generally extends into the supplemental opening 336 at an angle relative to the length of the supplemental opening 336. However, unlike the recessed portion 133 of the opening 136 shown in
Also like the openings 136, the supplemental opening 336 is structured to receive a connection member 120 therein. Specifically, in some embodiments, the supplemental opening 336 is structured so that the body portion 122 of a connection member 120 can enter the open end portion 337 of the supplemental opening 336, move through the elongate portion 339, and terminate at or near the closed end portion 338. Accordingly, in such embodiments, the diameter (or width) of the body portion 122 of the connection member 120 is less than the width of the open end portion 337 of the supplemental opening 336, less than the width of the elongate portion 339, and less than the diameter (or width) of the recessed portion 333. As also shown in
It will also be understood that, in accordance with some embodiments, the process of installing the fan assembly 300 includes one or more of the operations described above in connection with installing the fan assembly 100. For example, in some embodiments of the fan assembly 300, installing the blade arm 130 to the rotational member 112 includes at least two operations: (1) positioning the blade arm 130 relative to the connection members 120 to achieve a support state, and (2) urging the connection members 120 relative to the rotational member 112 to achieve a secure state. In a support state of the embodiment illustrated in
It will be understood that the alternative structure illustrated in
Referring now to
Each tab 417 can be structured so as to stabilize the blade arm 430 when the blade arm 430 is held in the first position (or initial support state). The tab 417 can be either an integral portion of the blade arm 430 or implemented as a separate piece connected to the blade arm 430 in a rigid manner. Such stabilization can be provided, for example, by structuring the tab 417 so that, when the first connection portion 432 is in an initial support state, the tab 417 makes contact with the rotational member 412 at a distance that is closer to the rotational axis 413 than the point where the first connection portion 432 would make contact if the tab 417 were absent. This can effectively reduce an angle between the first connection member 432 and the rotational member 412 when the first connection member 432 is placed in the initial support state and can improve the stability of blade arm 430 in that state.
In some other embodiments, the functionality provided by the tab 417 can be provided using alternative structures that achieve improved stabilization, with or without the tabs 417, and/or that effectively reduce (in the first position or the initial support state) the angle between the first connection portion 432 and the rotational member 412.
Referring now to
As shown in
In addition, as shown in
It will also be understood that, in accordance with some embodiments, the process of installing the fan assembly 500 includes one or more of the operations described above in connection with installing the fan assembly 100 and/or fan assembly 200. For example, in some embodiments of the fan assembly 500, installing the blade arm 130 to the rotational member 112 includes at least two operations: (1) positioning the blade arm 130 relative to the flange portion 216 to achieve a support state, and (2) urging the connection members 120 relative to the rotational member 112 to achieve a secure state. In a support state of the embodiment illustrated in
As with the fan assembly 200, it will be understood that the cooperation of the flange portion 216 and the slot portion 231 in the fan assembly 500 facilitates the installation of the blade arm 130 to the rotational member 112 because this structure helps to guide the blade arm 130 into position relative to the rotational member 112. This structure also provides a more secure connection between the blade arm 130 and the rotational member 112 because the interface between the flange portion 216 and the slot portion 231 supplements the interface between the corresponding connection members 120 and the corresponding apertures 533 and apertures 114.
Referring now to
As shown in
However, in accordance with other embodiments of the present invention not shown, the rotational member 612 can be positioned on a top surface of the motor housing 610, such that the plurality of blade arms 630, when in a secure state, extend upwardly and laterally away from the rotational member 612. In some of these embodiments, the blade arms 630, when in a secure state, are positioned between a ceiling surface and at least part of the rotational member 612. It will further be understood that, in accordance with some embodiments, the fan assembly 600 can be assembled such that a line passing through the motor housing 610, the rotational member 612, and one or more blade arms 630 extends in a substantially vertical direction, a substantially horizontal direction, and/or in any other direction in between.
Each of the plurality of blade arms 630 illustrated in
Also shown in
In some embodiments, one or more of the connection members 620 are captively received in corresponding apertures 633, such that each captive connection member 620 may be urged within and relative to a corresponding aperture 633, but can not be removed from that aperture 633. This feature substantially eliminates the possibility that the connection members 620 will fall out or become lost during the installation of the fan assembly 600. In addition, the use of captive connection members 620 facilitates the installation process because an installer does not need to simultaneously support the blade arm 630, the connection member 620, and an installation tool (not shown) in order to secure the blade arm 630 to the rotational member 612. It will also be understood that, in some embodiments, the captive connection members 620 are pre-installed on the first connecting end 632 of the blade arm 630, thereby eliminating the need to connect the connection members 620 to the blade arm 630 at the point of installation.
Additionally, as shown in
Each opening 614 has a length that generally extends from the open end portion 614A of the opening 614 to the closed end portion 614C of the opening 614. As shown in
It will be understood that, in some embodiments, the first connection portion 632 of the blade arm 630 defines an aperture 655 that is structured to carry a resisting member 650 therein. In accordance with some embodiments, the resisting member 650 includes a spring-loaded ball detent that is structured to move within the aperture 655. As such, in some embodiments, the resisting member 650 is structured to substantially mate with the aperture 615 on the flange portion 616 of the rotational member 612 in order to better support and/or secure the blade arm 630 relative to the rotational member 612 during installation. Thus, in accordance with some embodiments, positioning and/or securing the blade arm 630 relative to the flange portion 616 of the rotational member 612 also includes positioning the resisting member 650 in relative alignment with the aperture 615, such that at least part of the resisting member 650 engages the inside walls of the aperture 615.
It will also be understood that, in some embodiments, the motor housing 610 includes an overhang portion 618. As shown in
It will further be understood that the process of installing the blade arm 630 to the rotational member 612 typically includes at least two operations: (1) positioning the blade arm 630 relative to a flange portion 616 of the rotational member 612 to achieve a support state; and (2) urging the connection members 620 relative to the first connecting end 632 of the blade arm 630 to achieve a secure state. In a support state, the connection members 620 are positioned in a relatively loosened state and/or within the apertures 633, the head portions 624 of the connection members 620 cooperate with one or more portions of the corresponding openings 614, and/or the resisting member 650 engages the aperture 615 of the flange portion 616, such that the blade arm 630 is supported relative to the rotational member 612 of the motor. In a secure state, the connection members 620 are positioned in a relatively tightened state within the apertures 633, the head portions 624 of the connection members 620 at least partially bear against at least one or more of the portions of the openings 614, and/or the resisting member 650 engages the aperture 615 of the flange portion 616, such that the blade arm 630 is supported and secured relative to the rotational member 612 of the motor.
It will be understood that the cooperation of the resisting member 650 and the aperture 615 facilitates the installation of the blade arm 630 to the rotational member 612 because this structure helps to guide the blade arm 630 into position relative to the rotational member 612. This structure also provides a more secure connection between the blade arm 630 and the rotational member 612 because the interface between the resisting member 650 and the aperture 615 supplements the interface between the openings 614 and the corresponding connection members 620.
Further, it will be understood that, in some embodiments, positioning the blade arm 630 relative to the flange portion 616 of the rotational member 612 includes positioning the body portion 622 of the connection member 620 at or near the closed end 614C of the opening 614. More specifically, in some embodiments, positioning the blade arm 630 relative to the flange portion 616 includes sliding the blade arm 630 relative to (e.g., towards, etc.) the flange portion 616, such that the body portion 622 of the connection member 620 enters the open end portion 614A of the opening 614, moves through the elongate portion 614B, and then terminates (and/or remains) at or near the closed end portion 614C. It will be understood that, in some of these embodiments, the blade arm 630 can be slid relative to the flange portion 616 in a direction that is substantially perpendicular to the rotational axis 613 of the rotational member 612. In some embodiments, positioning the blade arm 630 relative to the flange portion 616 of the rotational member 612 additionally or alternatively includes positioning the first connection portion 632 of the blade arm 630 at least partially between the outer rim portion 612A and the second surface portion 616C of the flange portion 616.
Once the blade arm 630 is positioned relative to the corresponding flange portion 616 of the rotational member 612, the blade arm 630 can be secured to the rotational member 612 by urging the connection members 620 relative to the first connection portion 632 of the blade arm 630 (and/or flange portion 616), such that the locking member 660 and/or the head portion 624 of the connection member 620 at least partially bears against at least some portion of the opening 614 of the flange portion 616. Specifically, in some embodiments, urging the connection member 620 relative to the blade arm 630 includes tightening the connection member 620 within the corresponding aperture 633 of the first connecting end 632 of the blade arm 630, so that the flange portion 616 (and/or a section thereof near the distal end portion 616A) is tightly held by a compressive force between each head portion 624 and the first connecting end 632. In some embodiments, urging the connection member 620 relative to the blade arm 630 includes moving the connection member 620 relative to the flange portion 616 in a direction that is substantially parallel to the rotational axis 613 and/or in a direction that is substantially perpendicular to the length of the opening 614.
In some embodiments, urging the connection member 620 relative to the blade arm 630 and/or flange portion 616 includes urging the connection member 620 from a relatively loosened state towards a relatively tightened state. Still further, in some embodiments, urging the connection member 620 relative to the blade arm 630 includes urging the head portion 624 of the connection member 620 at least partially towards the opening 614, such that: (a) the head portion 624 is substantially prevented from moving laterally within the opening 614, and/or (b) the blade arm 630 is substantially prevented from being moved away from the second surface portion 616C of the flange portion 616.
As illustrated in
Referring now to
As shown in
However, in accordance with other embodiments of the present invention not shown, the rotational member 712 can be positioned on a top surface of the motor housing 710, such that the plurality of blade arms 730, when in a secure state, extend upwardly and laterally away from the rotational member 712. In some of these embodiments, the blade arms 730, when in a secure state, are positioned between a ceiling surface and the rotational member 712. It will further be understood that, in accordance with some embodiments, the fan assembly 700 can be assembled such that a line passing through the motor housing 710, the rotational member 712, and one or more blade arms 730 extends in a substantially vertical direction, a substantially horizontal direction, and/or in any other direction in between.
It will also be understood that, in some embodiments, as shown in
Each of the plurality of blade arms 730 illustrated in
As shown in
As shown in
Each of the plurality of connection members 720 includes a body portion 722 and a head portion 724. The body portion 722 of the connection member 720 is embodied as an elongate body, and the head portion 724 is embodied as a protuberance disposed on an end of that elongate body. In some embodiments, as shown in
It will be understood that, when a connection member 720 is received within a corresponding aperture 714, the connection member 720 can be urged into, away from, and/or otherwise relative to the aperture 714. It will also be understood that the each of the connection members 720 can be urged within the aperture 714 between a relatively loosened state and a relatively tightened state. It will be understood that less of the connection member 720 is positioned outside of the aperture 714 in a relatively tightened state than when the connection member 720 is positioned in a relatively loosened state. It will also be understood that, for example, the connection members 720 illustrated in
Also, it will be understood that the diameter (and/or width) of the body portion 722 of the connection member 720 is less than the diameter (and/or width) of the round portion 752A of the keyhole-shaped aperture 752, less than the width of the elongate portion 752B, less than the diameter (and/or width) of the aperture 756 in the retention ring 750, and less than the diameter (and/or width) of aperture 714 in the rotational member 712. In addition, the diameter (and/or width) of the head portion 724 of the connection member 720 is less than the diameter (and/or width) of the round portion 752A of the keyhole-shaped aperture 752, greater than the width of the elongate portion 752B, greater than the diameter (and/or width) of the aperture 756 in the retention ring 750, and greater than the diameter (and/or width) of aperture 714 in the rotational member 712. Thus, it will be understood that, in accordance with some embodiments, the head portion 724 of the connection member 720 can pass entirely and transversely through the round portion 752A of the keyhole-shaped aperture 752 but cannot pass entirely and transversely through any one of the elongate portion 752B of the keyhole-shaped aperture 752, the aperture 756 in the retention ring 750, or the aperture 714 in the rotational member 712.
It will be understood that several operations of the process for installing the blade arm 730 to the rotational member 712, and/or states resulting from one or more operations of the installation process, are represented by
Once the retention ring 750 has been rotated in this way, the body portion 722 of a connection member 720 is inserted through the aperture 756 of the retention ring 750 and at least partially urged from a relatively loosened state to a relatively tightened state within the aperture 714 of the rotational member 712, as shown in
Referring now to
As shown in
Each opening 536 has a length that generally extends from the open end portion 537 of the opening 536, through the elongate portion 539, and to the closed end portion 538. As shown in
In addition to the openings 536, the first connection portion 532 of the blade arm 530 may also define a pair of recessed portions 533. In some embodiments, the recessed portions 533 extend “transversely” into the first connection portion 532. As shown, the recessed portions 533 may be positioned on the first connection portion 532 such that each recessed portion 533 includes an opening 536 at least partially therein. In other words, each opening 536 is positioned within a corresponding recessed portion 533, such that the area defined by the recessed portion 533 is greater than the area defined by the opening 536. As such, in some embodiments, the recessed portion 533 generally extends towards the opening 536 at an angle relative to the length of the opening 536. In some embodiments, as shown in
In some embodiments, each recessed portion 533 is structured to interface with the head portion 124 of a connection member 120. In some of these embodiments, the structure of the recessed portion 533 substantially conforms to the structure of the head portion 124 of the connection member 120. For example, as shown in
In some embodiments, such as the one shown in
In some embodiments, each opening 536 is structured to receive the body portion 122 of a connection member 120 therein. In particular, in some embodiments, each opening 536 is structured so that the body portion 122 of a connection member 120 can enter the open end portion 537 of the opening 536, move through the elongate portion 539, and terminate (and/or remain) at or near the closed end portion 538. Accordingly, in such embodiments, the diameter (or width) of the body portion 122 of the connection member 120 is less than the width of the open end portion 537, less than the width of the elongate portion 539, and/or less than the width of the closed end portion 533. Further, in some embodiments, the diameter (or width) of the head portion 124 of the connection member 120 is greater than the width of the open end portion 537, greater than the width of the elongate portion 539, and/or greater than the width of the closed end portion 538. Thus, it will be understood that, in some embodiments, the head portion 124 of the connection member 120 cannot pass entirely and transversely through any portion of the opening 536.
As shown in the illustrated embodiment, the first connection portion 532 of the blade arm 530 may also define a tab 532F, which can project away from the first connection portion 532 and/or first end portion 532A. As such, the openings 536 may be positioned at least partially between the tab 532F and the elongate portion 535. Further, as shown in
In some embodiments, the tab 532F is structured to bear against the rotational member 112, and/or fit within and/or bear against a slot, groove, aperture, and/or other opening (not shown) defined in the rotational member 112, such that the combination of the tab 532F and connection members 120 can be used to secure the blade arm 530 to the rotational member 112. It will be understood that, in such embodiments, the cooperation of the tab 532F and the rotational member 112 (and/or the opening in the rotational member 112) results in a more secure connection between the blade arm 530 and the rotational member 112 than if the tab 532 were absent (and only the connection members 120 were used to secure the blade arm 530 to the rotational member 112).
Additionally or alternatively, in some embodiments, the tab 532F is structured so as to stabilize the blade arm 530 when the blade arm 530 is held in the first position (or initial support state) relative to the fan assembly 1400. Such stabilization can be provided, for example, by structuring the tab 532F so that, when the first connection portion 532 is in an initial support state, the tab 532F makes contact with the rotational member 112 at a distance that is closer to the rotational axis 113 than the point where the first connection portion 532 would make contact if the tab 532F were absent. This can effectively reduce an angle between the first connection member 532 and the rotational member 112 when the first connection member 532 is placed in the initial support state and can improve the stability of blade arm 530 in that state.
In addition to the tab 532F, the first connection portion 532 of the blade arm 530 also defines a rib portion 532E, which can be positioned at and/or near the second end portion 532B of the first connection portion 532. In some embodiments, the rib portion 532E extends away from the first connection portion 532 in a direction that is substantially perpendicular to the length of the opening 536. In other words, in some embodiments, the rib portion 532E serves to extend the surface area of the second end portion 532B of the first connection portion 532. As such, in embodiments where the blade arm 530 is used with a motor housing that includes an overhang portion having an inside surface (e.g., the motor housing 110 of
In addition, as shown in
Referring now to
As shown in
As shown in
Further, as shown in
In some embodiments, each opening 230 is structured to receive the body portion 122 of a connection member 120 therein. For example, in some embodiments, the body portion 122 can be slid through the open end portion 232 and into the elongate portion 239 of the opening 236. Further, in some embodiments, each opening 230 has a width that is less than a width dimension (and/or diameter) of the head portion 124 of a connection member 120. Accordingly, in such embodiments, the head portion 124 of a connection member 120 cannot pass transversely through the opening 230.
As shown in
Additionally, in some embodiments, the first set of teeth 236A and the second set of teeth 236B each includes a stop 237. In some embodiments, the stop 237 is positioned at a location between the first set of teeth 236A (and/or the second set of teeth 236B) and the closed end portion 238 of the opening 230. Also, in some embodiments, the stop 237 is shaped like an individual tooth 236, but the stop 237 is generally larger and extends into the opening 230 farther than a tooth 236. In some embodiments, the distance between opposing stops 237 is less than a width dimension of a connection member 120. Further, in some embodiments, the stop 237 is structured and/or positioned along the opening 230, such that it is difficult or impossible to separate the grip fingers 203A, 203B by an amount sufficient to permit the passage of the body portion 122 of a connection member 120 into the closed end portion of the opening 230. Accordingly, in such embodiments, the pair of stops 237 acts to prevent a connection member 120 from being inserted too far into an opening 230 of the spacer 205.
It will be understood that the spacer 205 can be used for a variety of purposes. As one example, the spacer 205 can be used to facilitate the installation of the fan assembly 1500 by serving as a placeholder for a blade arm 530 before that blade arm 530 is installed onto the fan assembly 1500. As shown in
As another example, the spacer 205 can be used to secure the rotational member 112 from rotating relative to the motor housing 110. Specifically, the spacer 205 can be positioned at a location at least partially between the rotational member 112 and the motor housing 110, such that the spacer 205 at least partially engages and/or bears against the motor housing 110 and a pair of connection members 120 extending away from the rotational member 112. In some cases, this relative positioning may enable the spacer 205 to impede and/or prevent the rotational member 112 from moving relative to the motor housing 110. As such, the spacer 205 can be used to secure the fan assembly 1500 during, for example, pre-installation, packaging, transportation, and/or installation. Indeed, in some embodiments, the spacer 205 may be structured and/or positioned to cooperate with the packaging (e.g., box, packing foam, etc.) of the fan assembly 1500 in order to prevent rotation of the rotational member 112 during transit.
To help secure and/or facilitate installation of the fan assembly 1500, the spacer 205 can be positioned on the fan assembly 1500 so that the openings 230 and/or grip fingers 203A, 203B of the spacer 205 receive and/or grip the pair of connection members 120, as shown in
The following describes an exemplary use of the spacer 205 with respect to the fan assembly 1500 shown in
In some embodiments, each connection member 120 is moved between the grip fingers 203A, 203B and/or through the opening 230 until the pair of opposing stops 237 contacts the body portion 122 of the connection member 120. In some of these embodiments, the body portion 122 cannot be moved in the opening 230 past the stop 237 because, for example, the distance between the opposing stops 237 is smaller than a width dimension of the body portion 122 of the connection member 120. Also, it will be understood that the openings 230 of the spacer 205 may taper outwardly from a location at and/or near the elongate portion 239 to a location at and/or near the open end portion 232, which enables the spacer 205 to more easily receive the connection members 120 when the spacer 205 is being positioned onto the fan assembly 1500.
Once the spacer 205 receives the connection members 120 in the openings 230 and/or is positioned between the rotational member 112 and the head portions 124 of the connection members 120, each of the connection members 120 is urged relative to (e.g., towards) the rotational member 112 until its head portion 124 at least partially bears against the top surface of the spacer 205. In some of these embodiments, the height dimension of the spacer 205 is structured so that the distance between the rotational member 112 and the head portions 124 of the connection members 120 (when the head portions 124 are contacting the top surface of the spacer 205) is greater than a height dimension of the first connection portion 532 of the blade arm 530. Also, it will be understood that urging the head portions 124 against the top surface of the spacer 205 may help impede and/or prevent the rotational member 112 from moving relative to the motor housing 110. Further, in some embodiments, as shown in
After one or more spacers 205 are secured to the fan assembly 1500, the fan assembly 1500 is packaged and/or shipped to the customer. Thereafter, when the fan assembly 1500 is ready to be installed, each spacer 205 can be removed from the fan assembly 1500 and a blade arm 530 can be installed in its place. In some embodiments, the spacer 205 is disengaged from the connection members 120 and/or motor housing 110 by: (a) at least partially withdrawing the connection members 120 away from the surface of the spacer 205; and then (b) sliding the spacer 205 laterally away from the rotational axis 113 of the fan assembly 1500 in the direction A shown in
Once the spacer 205 has been removed, the blade arm 530 can be installed by, for example, sliding the blade arm 530 laterally towards the connection members 120 and/or the rotational axis 113 in the direction B shown in
The embodiments of the present invention described above relate to fan assemblies and methods for assembling same. It will be understood that some of these embodiments may be characterized as “easy install” fan assemblies because they include an “easy install” blade arm to motor connection and/or an “easy install” blade arm to fan blade connection. As such, although many of the embodiments illustrated and described herein relate to easy install blade arm to motor connections, it will be understood that any one or more of these embodiments can also include one or more easy install blade arm to fan blade connections. Examples of such easy install blade arm to fan blade connections are disclosed in U.S. Pat. Nos. 6,336,792, 7,281,899, 6,802,694, 6,171,059, 6,010,306, 7,396,210, 6,352,411, 6,872,053, 6,688,850, 6,309,183, 6,210,117, and/or 6,039,540; U.S. Patent Publication No. 2008-0273979; and/or U.S. patent application Ser. No. 11/895,552. Each of these references is incorporated herein by reference in its entirety. In this regard, an easy install fan assembly according to the present invention includes both an easy install blade arm to motor connection, such as described in the embodiments above, and an easy install blade arm to fan blade connection, such as described in one of the above U.S. patent references.
While certain exemplary embodiments have been described and shown in the accompanying drawings, it is to be understood that such embodiments are merely illustrative of, and not restrictive on, the broad invention, and that this invention not be limited to the specific constructions and arrangements shown and described, since various other changes, combinations, omissions, modifications and substitutions, in addition to those set forth in the above paragraphs, are possible. In view of this disclosure, those skilled in the art will appreciate that various adaptations, combinations, and modifications of the just described embodiments may be configured without departing from the scope and spirit of the invention. Therefore, it is to be understood that, within the scope of the appended claims, the invention may be practiced other than as specifically described herein.
The present application claims priority to U.S. Provisional Patent Application No. 61/372,024, which was filed on Aug. 9, 2010, is entitled “Fan Assemblies and Methods for Assembling Same,” and is incorporated by reference herein in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
225413 | Opdyke | Mar 1880 | A |
415947 | Poulson | Nov 1889 | A |
474141 | Morton | May 1892 | A |
516524 | Denison | Mar 1894 | A |
544405 | Fleece | Aug 1895 | A |
671527 | Phillips | Apr 1901 | A |
686211 | Dowson | Nov 1901 | A |
727365 | Holzmark | May 1903 | A |
741107 | Burnes | Oct 1903 | A |
750904 | Smith | Feb 1904 | A |
752275 | Webber | Feb 1904 | A |
873460 | Sakovitch | Dec 1907 | A |
888575 | Barth et al. | May 1908 | A |
925031 | Russel | Jun 1909 | A |
1104204 | MacCormack | Jul 1914 | A |
1150241 | Banzhof | Aug 1915 | A |
1190852 | Bishop | Jul 1916 | A |
1198661 | Recker | Sep 1916 | A |
1324231 | Condon | Dec 1919 | A |
1361785 | Tucker | Dec 1920 | A |
1382836 | Juelson | Jun 1921 | A |
1479895 | Colby | Jan 1924 | A |
1485552 | Colby | Mar 1924 | A |
1501201 | Cates | Jul 1924 | A |
1567401 | Stuart | Dec 1925 | A |
1583864 | Tucker | May 1926 | A |
1614190 | Dyer | Jan 1927 | A |
1685323 | Hansen | Sep 1928 | A |
D82179 | Ringwald | Sep 1930 | S |
1806539 | Cram | May 1931 | A |
1841959 | Kingsbury | Jan 1932 | A |
1856017 | Baker | Apr 1932 | A |
1861025 | Pavlecka | May 1932 | A |
1868528 | Gardner | Jul 1932 | A |
1869802 | Dore | Aug 1932 | A |
1898628 | Hollerith | Feb 1933 | A |
1935314 | Finch et al. | Nov 1933 | A |
2031466 | Criqui | Feb 1936 | A |
2040504 | Siegel | May 1936 | A |
2041507 | Zeder | May 1936 | A |
2041555 | Lee | May 1936 | A |
2079942 | Le Velle | May 1937 | A |
2119398 | Morse | May 1938 | A |
2237039 | Newnham | Apr 1941 | A |
2258932 | Jacobs | Oct 1941 | A |
2270583 | Forton | Jan 1942 | A |
2290607 | De Lavaud | Jul 1942 | A |
2318548 | Whitehead et al. | May 1943 | A |
2336303 | Schubert | Dec 1943 | A |
2581872 | Morrison | Jan 1952 | A |
2610377 | Bedford, Jr. | Sep 1952 | A |
2620039 | Allen | Dec 1952 | A |
2670050 | Enos | Feb 1954 | A |
2678104 | Davis | May 1954 | A |
2681708 | Mix | Jun 1954 | A |
2765859 | Hartzell et al. | Oct 1956 | A |
2794509 | Mix | Jun 1957 | A |
2908335 | Petty | Oct 1959 | A |
2983320 | Uhrich et al. | May 1961 | A |
3014563 | Bratton | Dec 1961 | A |
3026943 | Huber | Mar 1962 | A |
3104093 | Craig et al. | Sep 1963 | A |
3147811 | Klonoski | Sep 1964 | A |
3161239 | Andersen | Dec 1964 | A |
3174553 | Spears | Mar 1965 | A |
3315749 | Parsons et al. | Apr 1967 | A |
3421588 | Saula | Jan 1969 | A |
3452820 | Philipsen et al. | Jul 1969 | A |
3514820 | Rogg | Jun 1970 | A |
3628888 | Wooden | Dec 1971 | A |
3656865 | Spears, Jr. | Apr 1972 | A |
3693220 | Pabich et al. | Sep 1972 | A |
3707303 | Petri | Dec 1972 | A |
3711219 | Strick | Jan 1973 | A |
3731515 | Master et al. | May 1973 | A |
3733147 | Felker | May 1973 | A |
3799699 | Master et al. | Mar 1974 | A |
3825369 | Albertzart | Jul 1974 | A |
3909927 | Steward | Oct 1975 | A |
3986780 | Nivet | Oct 1976 | A |
4019298 | Johnson, IV | Apr 1977 | A |
4035093 | Redshaw | Jul 1977 | A |
4050847 | New et al. | Sep 1977 | A |
4139330 | Neal | Feb 1979 | A |
4140435 | Huber | Feb 1979 | A |
4187056 | Schwinn et al. | Feb 1980 | A |
4197054 | Morrill | Apr 1980 | A |
D256614 | Hoyt | Aug 1980 | S |
4245960 | Matthews | Jan 1981 | A |
4249861 | Charles | Feb 1981 | A |
4319866 | Kolthoff | Mar 1982 | A |
4396352 | Pearce | Aug 1983 | A |
4419794 | Horton, Jr. et al. | Dec 1983 | A |
4437784 | Peterson | Mar 1984 | A |
4439078 | Dessouroux | Mar 1984 | A |
4496332 | Keller et al. | Jan 1985 | A |
4511310 | Pearce | Apr 1985 | A |
4560321 | Kawai | Dec 1985 | A |
4565494 | Dinger | Jan 1986 | A |
4606103 | Koehl et al. | Aug 1986 | A |
4606702 | Dinger | Aug 1986 | A |
4621977 | Markwardt | Nov 1986 | A |
4636142 | Baranski | Jan 1987 | A |
4640668 | Yang | Feb 1987 | A |
D290039 | Greenberg | May 1987 | S |
4662823 | Cooke | May 1987 | A |
4693673 | Nee | Sep 1987 | A |
D292313 | Kawai | Oct 1987 | S |
4715784 | Mosiewicz | Dec 1987 | A |
4720241 | Markwardt | Jan 1988 | A |
4746271 | Wright | May 1988 | A |
4776761 | Diaz | Oct 1988 | A |
4808071 | Chau | Feb 1989 | A |
4810145 | Villas | Mar 1989 | A |
4826405 | Robb | May 1989 | A |
4834616 | Kasarsky et al. | May 1989 | A |
4850799 | Bucher, Sr. et al. | Jul 1989 | A |
4865485 | Finnefrock, Sr. | Sep 1989 | A |
4884947 | Rezek | Dec 1989 | A |
D306643 | Taylor, III | Mar 1990 | S |
4917573 | Sikula, Jr. | Apr 1990 | A |
4936751 | Marshall | Jun 1990 | A |
D309183 | Taylor, III | Jul 1990 | S |
D313467 | Frampton | Jan 1991 | S |
5024409 | Bohnen | Jun 1991 | A |
D321935 | Ignon | Nov 1991 | S |
5072341 | Huang | Dec 1991 | A |
5102302 | Schilling et al. | Apr 1992 | A |
5108260 | Monrose, III et al. | Apr 1992 | A |
5110261 | Junkin | May 1992 | A |
5118256 | Violette et al. | Jun 1992 | A |
5135341 | Leyder | Aug 1992 | A |
5165856 | Schilling et al. | Nov 1992 | A |
5180284 | Monrose, III et al. | Jan 1993 | A |
D336513 | Junkin et al. | Jun 1993 | S |
D341419 | Taylor, III | Nov 1993 | S |
5304037 | Scofield | Apr 1994 | A |
D347056 | Bucher et al. | May 1994 | S |
D360942 | Bucher et al. | Aug 1995 | S |
D361124 | Pearce | Aug 1995 | S |
5458463 | Chiang | Oct 1995 | A |
5458464 | Lee | Oct 1995 | A |
5464323 | Scofield | Nov 1995 | A |
5486094 | Davis, Jr. et al. | Jan 1996 | A |
5664936 | Cunha et al. | Sep 1997 | A |
D397783 | Gee, II | Sep 1998 | S |
5873701 | Shiu | Feb 1999 | A |
D408521 | Zuege | Apr 1999 | S |
5899663 | Feder et al. | May 1999 | A |
5927945 | Chen | Jul 1999 | A |
5944486 | Hodgkins, Jr. | Aug 1999 | A |
5951197 | Wu | Sep 1999 | A |
5954449 | Wu | Sep 1999 | A |
5980353 | Wu | Nov 1999 | A |
6010306 | Bucher et al. | Jan 2000 | A |
6027310 | Kerr, Jr. et al. | Feb 2000 | A |
6039540 | Wu | Mar 2000 | A |
6042339 | Blateri et al. | Mar 2000 | A |
6048173 | Chen | Apr 2000 | A |
6059531 | Tai | May 2000 | A |
6062820 | Wang | May 2000 | A |
6095753 | Hsu | Aug 2000 | A |
6139276 | Blateri et al. | Oct 2000 | A |
6146191 | Kerr, Jr. et al. | Nov 2000 | A |
6149388 | Liao | Nov 2000 | A |
6155786 | Blateri et al. | Dec 2000 | A |
6155787 | Hodgkins, Jr. | Dec 2000 | A |
6171059 | Bucher et al. | Jan 2001 | B1 |
6210117 | Bucher et al. | Apr 2001 | B1 |
6241475 | Blateri et al. | Jun 2001 | B1 |
6241476 | Lee | Jun 2001 | B1 |
6261064 | Tang | Jul 2001 | B1 |
6309183 | Bucher et al. | Oct 2001 | B1 |
6336792 | Bucher et al. | Jan 2002 | B1 |
6352409 | Blateri et al. | Mar 2002 | B1 |
6352411 | Bucher et al. | Mar 2002 | B1 |
6382917 | Zuege | May 2002 | B1 |
6382918 | Tang | May 2002 | B1 |
6390777 | Kerr, Jr. | May 2002 | B1 |
6390778 | Lee | May 2002 | B1 |
6419451 | Moody et al. | Jul 2002 | B1 |
6431834 | Lackey et al. | Aug 2002 | B1 |
6464524 | Kerr, Jr. et al. | Oct 2002 | B1 |
6494682 | Blateri et al. | Dec 2002 | B1 |
6508629 | Kerr, Jr. | Jan 2003 | B2 |
6524071 | Wong | Feb 2003 | B2 |
6558124 | Bucher et al. | May 2003 | B2 |
6585488 | Bucher et al. | Jul 2003 | B1 |
6595754 | Kuang | Jul 2003 | B2 |
6644925 | Collmar | Nov 2003 | B1 |
6648488 | Pearce | Nov 2003 | B1 |
6652234 | MacCuaig | Nov 2003 | B2 |
6652236 | Hai | Nov 2003 | B2 |
6666652 | Bucher et al. | Dec 2003 | B2 |
6669446 | Hodgkins, Jr. | Dec 2003 | B2 |
6676376 | Kerr, Jr. | Jan 2004 | B2 |
6688850 | Bucher et al. | Feb 2004 | B2 |
6692233 | Liang | Feb 2004 | B2 |
6695585 | Moody et al. | Feb 2004 | B2 |
6699014 | Lam et al. | Mar 2004 | B1 |
6719531 | Wu | Apr 2004 | B2 |
6726453 | Hsieh | Apr 2004 | B1 |
D489811 | Hsieh | May 2004 | S |
6758626 | Tseng | Jul 2004 | B1 |
6802694 | Bucher et al. | Oct 2004 | B2 |
6821091 | Lee | Nov 2004 | B2 |
6840739 | Cortez et al. | Jan 2005 | B2 |
6857854 | Pearce | Feb 2005 | B2 |
6863498 | Liang | Mar 2005 | B2 |
6863499 | Pearce | Mar 2005 | B2 |
6872053 | Bucher et al. | Mar 2005 | B2 |
6884035 | Young | Apr 2005 | B2 |
6902374 | Pearce | Jun 2005 | B2 |
6902375 | Bird et al. | Jun 2005 | B2 |
6916156 | Tseng | Jul 2005 | B2 |
6932576 | Bird | Aug 2005 | B2 |
6935842 | Tai | Aug 2005 | B2 |
7008192 | Hidalgo | Mar 2006 | B2 |
7037080 | Bucher et al. | May 2006 | B2 |
7134844 | Robin | Nov 2006 | B2 |
RE39448 | Wu | Dec 2006 | E |
7163377 | Blateri et al. | Jan 2007 | B2 |
7223078 | Mares et al. | May 2007 | B1 |
7249744 | Bacon et al. | Jul 2007 | B2 |
7281899 | Bucher et al. | Oct 2007 | B1 |
7351037 | Mares et al. | Apr 2008 | B1 |
7396210 | Bucher et al. | Jul 2008 | B2 |
7402025 | Wang | Jul 2008 | B2 |
7527478 | Pearce | May 2009 | B2 |
7665970 | Pearce | Feb 2010 | B2 |
7762782 | Wang | Jul 2010 | B2 |
7766622 | Bucher et al. | Aug 2010 | B1 |
7771172 | Wang | Aug 2010 | B2 |
7775771 | Wang | Aug 2010 | B2 |
7780418 | Wang | Aug 2010 | B2 |
20010046442 | Bucher et al. | Nov 2001 | A1 |
20020054816 | Bucher et al. | May 2002 | A1 |
20020127107 | Hodgkins, Jr. | Sep 2002 | A1 |
20020172598 | Bucher et al. | Nov 2002 | A1 |
20020182076 | Bucher et al. | Dec 2002 | A1 |
20030228224 | Lee | Dec 2003 | A1 |
20040013527 | Pearce | Jan 2004 | A1 |
20040197193 | Bird | Oct 2004 | A1 |
20040208747 | Pearce | Oct 2004 | A1 |
20040219023 | Bird et al. | Nov 2004 | A1 |
20050095135 | Bucher et al. | May 2005 | A1 |
20060024165 | Gajewski | Feb 2006 | A1 |
20060140770 | Liu | Jun 2006 | A1 |
20070269314 | Pearce | Nov 2007 | A1 |
20080175710 | Pearce | Jul 2008 | A1 |
20080175713 | Pearce | Jul 2008 | A1 |
20080175715 | Pearce | Jul 2008 | A1 |
20090004014 | Wang | Jan 2009 | A1 |
20090035143 | Wang | Feb 2009 | A1 |
20090246028 | Richardson | Oct 2009 | A1 |
20100104442 | Haynes | Apr 2010 | A1 |
Number | Date | Country |
---|---|---|
101358610 | Feb 2009 | CN |
101555882 | Oct 2009 | CN |
Entry |
---|
First Office Action and Search Report dated Feb. 13, 2015, issued by the Chinese Patent Office related to CN Patent Application No. 201110224706.2 in the name of Lowe's Companies, Inc. |
Number | Date | Country | |
---|---|---|---|
20120034085 A1 | Feb 2012 | US |
Number | Date | Country | |
---|---|---|---|
61372024 | Aug 2010 | US |