Fan assembly

Information

  • Patent Grant
  • 9283573
  • Patent Number
    9,283,573
  • Date Filed
    Wednesday, February 6, 2013
    11 years ago
  • Date Issued
    Tuesday, March 15, 2016
    8 years ago
Abstract
A nozzle for a fan assembly includes an air inlet, a plurality of air outlets, and an annular casing having an annular inner wall defining a bore through which air from outside the nozzle is drawn by air emitted from the air outlets and an outer wall extending about the inner wall. The annular casing includes an air passage for conveying air to the air outlets. The air passage has an inlet section located between the inner wall and the outer wall and extending about the bore of the nozzle, and a plurality of outlet sections each extending across the bore for conveying air to a respective air outlet. To achieve an even air pressure at each end of each of the outlet sections, the inlet section of the air passage is arranged to convey air to each end of each of the outlet sections.
Description
REFERENCE TO RELATED APPLICATIONS

This application claims the priority of United Kingdom Application No. 1202000.4, filed Feb. 6, 2012, the entire contents of which are incorporated herein by reference.


FIELD OF THE INVENTION

The present invention relates to a nozzle for a fan assembly, and a fan assembly comprising such a nozzle.


BACKGROUND OF THE INVENTION

A conventional domestic fan typically includes a set of blades or vanes mounted for rotation about an axis, and drive apparatus for rotating the set of blades to generate an air flow. The movement and circulation of the air flow creates a ‘wind chill’ or breeze and, as a result, the user experiences a cooling effect as heat is dissipated through convection and evaporation. The blades are generally located within a cage which allows an air flow to pass through the housing while preventing users from coming into contact with the rotating blades during use of the fan.


U.S. Pat. No. 2,488,467 describes a fan which does not use caged blades to project air from the fan assembly. Instead, the fan assembly comprises a base which houses a motor-driven impeller for drawing an air flow into the base, and a series of concentric, annular nozzles connected to the base and each comprising an annular outlet located at the front of the nozzle for emitting the air flow from the fan. Each nozzle extends about a bore axis to define a bore about which the nozzle extends.


Each nozzle is in the shape of an airfoil. An airfoil may be considered to have a leading edge located at the rear of the nozzle, a trailing edge located at the front of the nozzle, and a chord line extending between the leading and trailing edges. In U.S. Pat. No. 2,488,467 the chord line of each nozzle is parallel to the bore axis of the nozzles. The air outlet is located on the chord line, and is arranged to emit the air flow in a direction extending away from the nozzle and along the chord line.


Another fan assembly which does not use caged blades to project air from the fan assembly is described in WO 2010/100451. This fan assembly comprises a cylindrical base which also houses a motor-driven impeller for drawing a primary air flow into the base, and a single annular nozzle connected to the base and comprising an annular mouth through which the primary air flow is emitted from the fan. The nozzle defines an opening through which air in the local environment of the fan assembly is drawn by the primary air flow emitted from the mouth, amplifying the primary air flow. The nozzle includes a Coanda surface over which the mouth is arranged to direct the primary air flow. The Coanda surface extends symmetrically about the central axis of the opening so that the air flow generated by the fan assembly is in the form of an annular jet having a cylindrical or frusto-conical profile.


SUMMARY OF THE INVENTION

In a first aspect, the present invention provides a fan comprising a base comprising an impeller and a motor for driving the impeller, and a nozzle connected to the base, the nozzle comprising at least one air inlet, at least one air outlet, a casing defining a passage through which air from outside the fan is drawn by air emitted from said at least one air outlet, and an electrostatic precipitator for treating the air drawn through the passage.


The passage is preferably an enclosed passage of the nozzle. The casing is preferably in the form of an annular casing, and so the passage is preferably a bore defined by the casing and through which air from outside the fan is drawn by air emitted from the air outlet(s).


In a second aspect, the present invention provides a fan comprising a base comprising an impeller and a motor for driving the impeller, and a nozzle connected to the base, the nozzle comprising at least one air inlet, at least one air outlet, an annular casing defining a bore through which air from outside the fan is drawn by air emitted from said at least one air outlet, and an electrostatic precipitator for treating the air drawn through the bore.


The air emitted from the air outlet(s) of the nozzle, hereafter referred to as a primary air flow, entrains air surrounding the nozzle, which thus acts as an air amplifier to supply both the primary air flow and the entrained air to the user. The entrained air will be referred to here as a secondary air flow. The secondary air flow is drawn from the room space, region or external environment surrounding the nozzle. Some of the secondary air flow will be drawn through the bore of the nozzle, and some of the secondary air flow will become entrained within the primary air flow downstream from the nozzle. The primary air flow combines with the entrained secondary air flow to form a combined, or total, air flow projected forward from the front of the nozzle.


The flow rate of the air drawn through the bore of the nozzle may be at least three times, preferably at least five times and in a preferred embodiment is around eight times the flow rate of the primary air flow emitted from the air outlet(s) of the nozzle. Providing an electrostatic precipitator for treating the portion of the secondary air flow which is drawn through the bore, as opposed to treating the primary air flow, can significantly increase the proportion of the overall air flow generated by the fan which is treated by the electrostatic precipitator.


The electrostatic precipitator is preferably located within the casing of the nozzle. At least part of the electrostatic precipitator is preferably located within the bore of the nozzle. In one embodiment, the electrostatic precipitator is housed fully within the bore of the nozzle, so that the casing extends about the electrostatic precipitator. In another embodiment one section of the electrostatic precipitator is housed within the bore of the nozzle and another section of the electrostatic precipitator is housed between annular casing sections of the nozzle.


The electrostatic precipitator may be a two-stage electrostatic precipitator through which air is drawn by the air emitted from the air outlet(s). The electrostatic precipitator may thus comprise a charging section for charging particulates, such as dust, pollen and smoke, within the air flow drawn through the charging section, and a collecting section downstream from the charging section for removing the charged particulates from the air flow. Each of the charging section and the collecting section may be located in the bore of the nozzle. Alternatively, the collecting section may be located in the bore of the nozzle and the charging section may be housed between annular casing sections of the nozzle.


The charging section may comprise means for generating an electric field for ionizing the air flow. In one example, the charging section utilizes an electrospray charging technique, in which an electrically conductive fluid, such as water, is supplied to a plurality of nozzles or capillaries, and a strong electric voltage is applied to the nozzles or the fluid to cause the fluid to be ionized and sprayed spontaneously from the nozzle apertures. The emitted ions disperse and interact with particulates within the air drawn through the bore to cause charge to be transferred to those particulates. The nozzles may be fully located within the bore, or they may be housed within a chamber or air flow passage extending about the bore. The outlets of the nozzles are preferably located adjacent to apertures provided in a wall defining the bore so as to spray ions through the apertures and into the bore of the nozzle. Alternatively, the nozzles may be arranged in one or more rows, columns or elongate arrangements disposed within and extending across the bore.


The collecting section preferably comprises a plurality of plates. A negative or positive voltage may be applied to alternate plates to generate an electric field between the plates. As the air flow enters the collecting section from the charging section, the charged particulates are attracted to and collect on the plates. The plates are preferably located within the bore of the nozzle, and preferably extend across the bore of the nozzle. The plates are preferably parallel.


The electrostatic precipitator may be housed within a cartridge which is removable from the bore of the nozzle. This can allow the electrostatic precipitator to be withdrawn from the bore of the nozzle as required, for example for periodic cleaning or replacement, without requiring disassembly of the fan. The charging section may be housed within a charging section chamber of the cartridge. The charging section chamber may be annular in shape to define a central passageway for conveying the air flow drawn through the bore towards the collecting section of the electrostatic precipitator. This chamber may comprise a plurality of apertures through which the nozzles spray the ionized fluid into the air flow. The base preferably comprise a first voltage source for supplying a first DC voltage to the charging section of the electrostatic precipitator, and a second voltage source for supplying a second DC voltage to the collecting section of the electrostatic precipitator. The outer surface of the cartridge may be provided with electrical contacts for engaging contacts provided on the casing of the nozzle to connect the voltage sources to the electrostatic precipitator.


A mesh grille may be provided at the rear end of the bore for inhibiting the ingress of larger particles or other objects into the electrostatic precipitator.


The air outlet(s) may be arranged to emit air away from the electrostatic precipitator. For example, the air outlet(s) may be located downstream from the electrostatic precipitator, and may be arranged to emit air in a direction which is substantially parallel to the plates of the electrostatic precipitator. The nozzle may have a front end towards which air is emitted from the air outlet(s), and a rear end opposite to the front end, with the air outlet(s) being located between the front end and the rear end. The air flow drawn through the bore passes from the rear end to the front end of the nozzle. The electrostatic precipitator may be located between the air outlet(s) and the rear end of the nozzle.


Alternatively, the air outlet(s) may be arranged to emit air along at least one side of at least part of the electrostatic precipitator. For example, the nozzle may comprise an annular air outlet which is arranged to emit air around at least part of the electrostatic precipitator. As another example, the nozzle may comprise two air outlets each arranged to emit air along at least part of a respective side of the electrostatic precipitator.


The air outlet(s) may be arranged to emit air in a direction which is substantially parallel to the plates of the electrostatic precipitator to maximise the flow rate of the air drawn through the bore of the nozzle. Alternatively, the air outlet(s) may be arranged to emit air in a direction which is substantially orthogonal to the plates of the electrostatic precipitator.


The air outlet(s) preferably extend across the bore. Each air outlet is preferably in the form of a slot, and where the fan comprises a plurality of air outlets, the air outlets are preferably substantially parallel.


The nozzle preferably comprises at least one air passage for conveying air from the air inlet(s) towards the air outlet(s). The annular casing may comprise an annular inner wall and an outer wall extending about the inner wall, and an air passage may be conveniently located between the inner wall and the outer wall of the casing. Each wall of the casing may comprise a single annular component. Alternatively, one or both of the walls of the nozzle may be formed from a plurality of connected annular sections. A section of the inner wall may be integral with at least part of the outer wall. The air passage preferably extends at least partially about the electrostatic precipitator. For example, the air passage may be an annular passage which surrounds the bore of the nozzle, and thus may surround the electrostatic precipitator. Alternatively, the air passage may comprise a plurality of sections which each extend along a respective side of the bore of the nozzle, and thus along a respective side of the electrostatic precipitator, to convey air away from a respective air inlet.


The air passage may comprise means for treating air drawn into the fan through the air inlet(s). This can enable particulates to be removed from the primary air flow before it is emitted from the air outlet(s). The air treating means may comprise at least one air filter. The air filter may be in the form of a HEPA filter, or other filter medium such as a foam, carbon, paper, or fabric filter. Alternatively, the air filter may comprise a pair of plates between which an electric field is generated to cause particulates within the primary air flow to be attracted to one of the plates.


The air inlet(s) of the nozzle may provide one or more air inlets of the fan. For example, the air inlet(s) may comprise a plurality of apertures formed on the outer wall of the nozzle through which air enters the fan. In this case, the motor-driven impeller located in the base generates a primary air flow which passes from the air inlet(s) in the nozzle to the base, and then passes from the base to the air outlet(s) in the nozzle. The nozzle may thus comprise an air outlet port for conveying air to the base, and an air inlet port for receiving air from the base. In this case, the at least one air passage preferably comprises a first air passage for conveying air from the air inlet(s) to the air outlet port, and a second air passage for conveying air from the air inlet port to the air outlet(s). As mentioned above, the first air passage may be an annular passage which surrounds the bore of the nozzle. Alternatively, the first air passage may comprise a plurality of sections which each extend along a respective side of the bore of the nozzle to convey air from a respective air inlet towards the air outlet port of the nozzle. The first air passage is preferably located between the inner wall and the outer wall of the casing. The first air passage may comprise means for treating air drawn into the fan through the air inlet(s).


The nozzle may comprise a plurality of air outlets each for emitting a respective portion of the air flow received from the air inlet port. Alternatively, the nozzle may comprise a single air outlet. The air outlet(s) may be formed in the inner wall or the outer wall of the nozzle. As another alternative, the air outlet(s) may be located between the inner wall and the outer wall of the casing. In any of these cases, the second air passage may be located between the inner wall and the outer wall, and may be isolated from the first air passage by one or more partitioning walls located between the inner wall and the outer wall of the casing. Similar to the first air passage, the second air passage may comprise an annular passage which surrounds the bore of the nozzle. Alternatively, the second air passage may comprise a plurality of sections which each extend along a respective side of the bore of the nozzle to convey air from the air inlet port to a respective air outlet.


As a further alternative, the air outlet(s) may be located in the bore of the nozzle. In other words, the air outlet(s) may be surrounded by the inner wall of the nozzle. The air outlet(s) may thus be located within a front section of the bore, with the electrostatic precipitator being located within a rear section of the bore so that the air outlet(s) emit air away from the electrostatic precipitator. Alternatively, each of the air outlet(s) and the electrostatic precipitator may be located in a common section, for example the rear section of the bore. In either case, the electrostatic precipitator may be located upstream from the air outlet(s) with respect to the air passing through the bore. As another example, the plates of the electrostatic precipitator may be located around, or to one side of, the air outlet(s).


At least an outlet section of the second air passage may thus extend at least partially across the bore of the nozzle to convey air to the air outlet(s). For example, an outlet section of the second air passage may extend between a lower end of the bore and an upper end of the bore. The outlet section of the second air passage may extend in a direction orthogonal to a central axis of the bore. In a preferred embodiment, the second air passage comprises a plurality of columnar or elongate outlet sections which each extend across the bore of the nozzle to convey air to a respective air outlet. The outlet sections of the second air passage are preferably parallel. Each outlet section of the second air passage may be defined by a respective tubular wall extending across the bore.


To achieve a relatively even air flow along the length of each elongate section of the second air passage, each end of the outlet sections preferably comprises a respective air inlet. The second air passage preferably comprises an annular inlet section which extends about the bore and is arranged to convey air into each end of each outlet section of the second air passage. This can achieve an even air pressure at each end of the outlet sections of the second air passage.


Each air outlet is preferably in the form of a slot extending along a respective outlet section of the second air passage. Each air outlet is preferably located at the front of its respective outlet section of the second air passage to emit air towards the front end of the nozzle.


The air flows emitted from the air outlets preferably do not merge within the bore of the nozzle. For example, these air flows may be isolated from each other within the bore of the nozzle. The bore of the nozzle may comprise a dividing wall for dividing the bore into two sections, with each section comprising a respective air outlet. This dividing wall may extend in a direction which is substantially parallel to the axis of the bore, and may be substantially parallel to the plates of the collecting section of the electrostatic precipitator. In a plane containing the axis of the bore and located midway between upper and lower ends of the bore, each air outlet may be located midway between the dividing wall and the inner wall of the nozzle. Each air outlet may extend substantially parallel to the dividing wall.


We have found that the air drawn through the bore of the nozzle may be caused to flow through the electrostatic precipitator at a relatively even flow rate through locating the air outlets between the front end and the rear end of the nozzle. The preferred distance between the air outlets and the front end of the nozzle is a function of the number of air outlets; while increasing the number of air outlets can allow the depth of the nozzle to be reduced, this also increases the complexity of the nozzle and so in a preferred embodiment the fan comprises two air outlets each located within the bore and between the front end and the rear end of the nozzle. In this case, the dividing wall may be arranged to divide the bore into two equal half sections. Within each section of the bore and in a plane containing the axis of the bore and located midway between upper and lower ends of the bore, an angle subtended between a first line, extending from the air outlet towards the front end of the bore and parallel to the bore axis, and a second line, extending from the air outlet to the front end of the dividing wall, may be in the range from 5 to 25°, preferably in the range from 10 to 20°, and more preferably in the range from 10 to 15°. The angle is selected to maximise the rate at which air is drawn through the bore.


The collecting section of the electrostatic precipitator may be omitted so that the fan comprises an air ionizer for treating the air drawn through the bore. Therefore, in a third aspect the present invention provides a fan comprising a base comprising an impeller and a motor for driving the impeller, and a nozzle connected to the base, the nozzle comprising at least one air inlet, at least one air outlet, a casing defining a passage through which air from outside the fan is drawn by air emitted from said at least one air outlet, and an ionizer for treating the air drawn through the passage. As discussed above, the passage is preferably an enclosed passage of the nozzle. The casing is preferably in the form of an annular casing, and so the passage is preferably a bore defined by the casing and through which air from outside the fan is drawn by air emitted from the air outlet(s).


In a fourth aspect the present invention provides a nozzle for a fan assembly, the nozzle comprising an air inlet, a plurality of air outlets, and an annular casing comprising an annular inner wall defining a bore through which air from outside the nozzle is drawn by air emitted from the air outlets and an outer wall extending about the inner wall, the annular casing comprising an air passage for conveying air to the air outlets, the air passage comprising an inlet section located between the inner wall and the outer wall and extending about the bore of the nozzle, and a plurality of outlet sections each extending across the bore for conveying air to a respective air outlet, the inlet section of the air passage being connected to each end of each of the outlet sections.


In a fifth aspect the present invention provides a nozzle for a fan assembly, the nozzle comprising at least one air inlet, a plurality of air outlets, and an annular casing comprising an air passage for conveying air to the air outlets, the casing defining a bore through which air from outside the nozzle is drawn by air emitted from the air outlets, the bore having a front end and a rear end opposite to the front end, wherein the casing comprises a dividing wall for dividing the bore into two sections, each section of the bore comprising a respective outlet section of the air passage and a respective air outlet, the air outlets being located between the front end and the rear end of the bore.


As an alternative to forming one or more air inlets of the fan in the nozzle, the base of the fan may comprise one or more air inlets through which the primary air flow enters the fan. In this case, an air passage may extend within the nozzle from an air inlet of the nozzle to an air outlet of the nozzle. The air passage may extend about the bore. For example, the air passage may surround the bore of the nozzle. The nozzle may comprise a single air outlet extending at least partially about, and preferably surrounding, the bore of the nozzle. Alternatively, the nozzle may comprise a plurality of air outlets each located on a respective side of the nozzle so as to each extend partially about the bore of the nozzle. The air outlet may comprise at least one slot located between the inner wall and the outer wall of the nozzle. Each slot may be located between the front end and the rear end of the nozzle, or located at the front end of the nozzle.


Features described above in connection with the first or second aspects of the invention are equally applicable to each of the other aspects of the invention, and vice versa.





BRIEF DESCRIPTION OF THE DRAWINGS

An embodiment of the present invention will now be described, by way of example only, with reference to the accompanying drawings, in which:



FIG. 1 is a front perspective view, from above, of a first embodiment of a fan;



FIG. 2 is a rear perspective view, from above, of the fan;



FIG. 3 is a left side view of the fan;



FIG. 4 is a top view of the fan;



FIG. 5 is an exploded view of the main body, electrostatic precipitator and rear grille of the fan;



FIG. 6 is an exploded view of the electrostatic precipitator;



FIG. 7 is a front view of the fan with the front grille removed;



FIG. 8 is a rear view of the fan with the rear grille removed;



FIG. 9 is a side sectional view taken along line A-A in FIG. 4;



FIG. 10 is a top sectional view taken along line B-B in FIG. 3;



FIG. 11 is a front perspective view, from above, of a second embodiment of a fan;



FIG. 12 is a rear perspective view, from above, of the fan of FIG. 11;



FIG. 13 is a front view of the fan of FIG. 11;



FIG. 14 is a rear view of the fan of FIG. 11;



FIG. 15 is a top view of the fan of FIG. 11; and



FIG. 16 is a side sectional view taken along line C-C in FIG. 15.





DETAILED DESCRIPTION OF THE INVENTION


FIGS. 1 to 4 are external views of a first embodiment of a fan 10. The fan 10 comprises a main body including a base 12 and a nozzle 14 mounted on the base 12. The nozzle 14 is in the form of a loop comprising an annular casing 16 having a plurality of air inlets 18 through which a primary air flow is drawn into the fan 10. As illustrated, each air inlet 18 may comprise a plurality of apertures formed in the casing 16. Alternatively, each air inlet 18 may comprise a mesh or grille attached to the casing 16. As discussed in more detail below, the nozzle 14 comprises at least one air outlet for emitting the primary air flow from the fan 10.


With reference also to FIG. 5, the casing 16 extends about and defines a bore 20 of the nozzle 14. In this example, the bore 20 has a generally elongate shape, having a height (as measured in a direction extending from the upper end of the nozzle to the lower end of the nozzle 14) which is greater than its width (as measured in a direction extending between the side walls of the nozzle 14). The emission of the primary air flow from the fan 10 draws air from outside the fan 10 through the bore 20 of the nozzle 14.


The nozzle 14 houses an electrostatic precipitator 22 for treating the air drawn through the bore 20 of the nozzle 14. The electrostatic precipitator 22 is housed within an annular cartridge 24 which is insertable into, and preferably removable from, a rear section of the bore 20 of the nozzle 14. A pair of grilles 26, 28 may be provided at the front end and the rear end respectively of the nozzle 14 to inhibit the ingress of relatively large particles or other objects into the electrostatic precipitator 22.


With reference also to FIGS. 6 to 8, in this example the electrostatic precipitator 22 is in the form of a two-stage electrostatic precipitator, comprising a charging section 30 for charging particulates, such as dust, pollen and smoke, within the air flow drawn through the bore 20 of the nozzle 14, and a collecting section 32 downstream from the charging section 30 for removing the charged particulates from the air flow. The charging section 30 is housed within an annular charging section chamber 34 located at the rear end of the cartridge 24. The charging section 30 comprises a plurality of nozzles 36 which are each located adjacent to a respective aperture 38 formed in the charging section chamber 34. Each nozzle 36 has an aperture having a diameter in the range from 0.05 to 0.5 mm. Each of the nozzles 36 is connected to a conduit 40 which conveys a fluid, such as water or air, to the nozzles 36 from a fluid reservoir 42 housed within a lower chamber section 44 of the cartridge 24. A pump (not shown) is provided to convey the fluid from the reservoir 42 to the nozzles 36. A needle-like electrode (not shown) is inserted into each of the nozzles 36 for imparting a strong electric charge to cause the fluid within the nozzles 36 to be ionized and sprayed spontaneously from the nozzle apertures and through the apertures 38. Alternatively, the fluid could be charged directly, for example by providing a charging electrode within the reservoir 42. One or more wires (not shown) provide one or more ground electrodes for the charging section 30. The base 12 houses a first voltage source (not shown) for supplying a first DC voltage to the needle-like electrodes. The first DC voltage may be in the range from 5 to 15 kV. In one example where the fluid supplied to the nozzles 36 is water, the first DC voltage is around 8 kV. Alternatively, the first voltage source may be configured to supply an AC voltage to the electrodes.


The collecting section 32 comprises a plurality of parallel plates 46. The plates 46 may be formed from stainless steel. With reference also to FIG. 10, the plates 46 are arranged to define a series of air channels 48 between the plates 46 for conveying air through the collecting section 32. The plates 46 are aligned so that each air channel 48 extends towards the front end of the bore 20 in a direction which is substantially parallel to the central axis X of the bore 20. In this example, the spacing between the plates 46, and thus the width of the air channels 48, is 5 mm. The base 12 houses a second voltage source (not shown) for supplying a second, preferably negative DC voltage to alternate plates 46 to generate an electric field between adjacent plates 46. In this example, the second voltage source is arranged to supply a DC voltage of around −5 kV.


The cartridge 24 is inserted into the bore 20 of the nozzle 14 until the front end of the cartridge 24 abuts a stop member 50 located on an inner surface of the casing 16. The casing 16 comprises an outer wall 52 which extends about an annular inner wall 54. The inner wall 54 defines the bore 20 of the nozzle 14. In this example, the inner wall 54 comprises a front inner wall section 56 which is connected at one end to a front end of the outer wall 52 and at the other end to a rear inner wall section 58 which is integral with the outer wall 52. The stop member 50 is formed on the front end of the rear inner wall section 58. The rear inner wall section 58 comprises a first set of electrical contacts (not shown) which engage a second set of electrical contacts located on the outer surface of the cartridge 24 when the cartridge 24 is fully inserted into the bore 20 of the nozzle 14. With reference to FIG. 9, the contact between the electrical contacts couples the voltage sources provided in a main control circuit 60 of the base 12 to the electrostatic precipitator 22. A mains power cable 62 for supplying electricity to the main control circuit 60 extends through an aperture formed in the base 12. The cable 62 is connected to a plug (not shown) for connection to a mains power supply.


The main control circuit 60 is connected to a motor 64 for driving an impeller 66 for drawing air through the air inlets 18 and into the fan 10. Preferably, the impeller 66 is in the form of a mixed flow impeller. The motor 64 is preferably a DC brushless motor having a speed which is variable by the main control circuit 60 in response to user manipulation of a dial 68. The motor 64 is housed within a motor bucket which comprises a diffuser 70 downstream from the impeller 66. The diffuser 70 is in the form of an annular disc having curved blades. The motor 64 is connected to the main control circuit 60 by a cable which passes from the main control circuit 60 to the motor 64 through the diffuser 70. The motor bucket is located within, and mounted on, a generally frusto-conical impeller housing, which is in turn mounted on a plurality of angularly spaced supports connected to the base 12. Preferably, the base 12 includes silencing foam for reducing noise emissions from the base 12. In this embodiment, the base 12 comprises a foam member 72 located beneath the impeller housing.


In this example, the base 12 comprises a first air passageway 74 located in a rear section of the base 12 for receiving a primary air flow from the nozzle 14, and a second air passageway 76 located in a front section of the base 12 for returning the primary air flow to the nozzle 14 for emission through the air outlets of the nozzle 14. The primary air flow passes through the air passageways 74, 76 in generally opposite directions. The primary air flow passes from the first air passageway 74 to the second air passageway 76 through an aperture 78 located at the lower ends of the air passageways 74, 76. The motor 64 and the impeller 66 are preferably located in the second air passageway 76.


The main control circuit 60 is located in a lower chamber 80 of the base 12 which is isolated from the primary air flow passing through the base 12. Cables extend through an aperture in the lower chamber 80 to connect the main control circuit 60 to the motor 64 and to the electrical contacts located on the inner wall 54 of the nozzle 14.


The primary air flow enters the first air passageway 74 of the base 12 through an air outlet port 82 located at the lower end of the outer wall 52 of the nozzle 14. The nozzle 14 comprises a first air passage 84 for conveying air from the air inlets 18 to the air outlet port 82. The first air passage 84 is located between the outer wall 52 and the rear inner wall section 58 of the inner wall 54. In this embodiment the first air passage 84 is in the form of a loop surrounding both the bore 20 of the nozzle 14 and the electrostatic precipitator 22 inserted within the bore 20. However, the first air passage 84 may not extend fully about the bore 20, and so may comprise a plurality of sections which merge at the air outlet port 82 and which each convey air from a respective air inlet 18 to the air outlet port 82.


As illustrated in FIG. 10, optionally the first air passage 84 may comprise means for treating the primary air flow drawn into the fan 10 through the air inlets 18. The air treating means may comprise one or more air filters, which may be formed from one or more of HEPA, foam, carbon, paper, or fabric filter media. In this embodiment, the air passage 84 comprises two sets of parallel plates 86 each arranged in the first air passage 84 so as to be located between the air outlet port 82 and a respective air inlet 18. A voltage may be supplied to one of the plates of each set of parallel plates 86 by the second voltage source located within the cartridge 24, and again electrical contact may be established between the plates and the second voltage source when the cartridge 24 is fully inserted into the bore 20 of the nozzle 14. Alternatively, this voltage may be supplied directly by the main control circuit 60 located within the base 12. The charging section 30 of the electrostatic precipitator 22 may be arranged to charge particulates within the primary air flow upstream from the plates 86. For example, nozzles 36 of the charging section 30 may be arranged to emit ions into the primary air flow, for example through apertures provided on the rear inner wall section 58.


The nozzle 14 comprises an air inlet port 88 for receiving the primary air flow from the second air passageway 76 of the base 12. The air inlet port 88 is also located in the lower end of the outer wall 52 of the casing 16. The air inlet port 88 is arranged to convey the primary air flow into a second air passage of the nozzle 14. In this embodiment, the second air passage comprises an annular inlet section 90 located between the outer wall 52 and front inner wall section 56 of the casing 16 for receiving the primary air flow from the base 12. The inlet section 90 of the second air passage is isolated from the first air passage 84 by an annular partitioning wall 92 extending between the outer wall 52 and the inner wall 54.


The second air passage further comprises two elongate outlet sections 94 for receiving air from the inlet section 90. Each outlet section 94 is defined by a respective tubular wall 96 located within a front section of the bore 20, in front of the electrostatic precipitator 22. Each tubular wall 96 extends across the bore 20 of the nozzle 14, between a lower end of the front inner wall section 56 and an upper end of the front inner wall section 56. Each wall 96 has an open upper end and an open lower end each for receiving air from the inlet section 90 of the second air passage. The tubular walls 96 are located side by side within the bore 20 of the nozzle 14, and each extend in a direction which is orthogonal to the central axis X of the bore 20.


An air outlet 98 is formed in the front end of each tubular wall 96. Each air outlet 98 is arranged to emit air away from the electrostatic precipitator 22, preferably in a direction which is substantially parallel to the direction in which air passes through the air channels 48 located between the plates 46 of the electrostatic precipitator 22. Alternatively, the orientation of the plates 46 or the walls 96 may be adjusted so that the air outlets 98 are angled to the air channels 48 located between the plates 46 of the electrostatic precipitator 22. For example, the plates 46 may be oriented so that the air outlets 98 are orthogonal to the air channels 48 located between the plates 46 of the electrostatic precipitator 22. Each air outlet 98 is preferably in the form of a slot extending in a direction which is orthogonal to the central axis X of the bore 20. Each slot extends substantially the entire length of each tubular wall 96, and has a uniform width of 1 to 5 mm along its length.


The front section of the bore 20 is divided into two equal half sections 100 by a dividing wall 102 which extends through the centre of the bore 20, and between the upper end and the lower end of the front section of the bore 20. FIG. 10 illustrates a top sectional view of the fan 10, as viewed in a plane containing the axis X of the bore 20 and located midway between upper and lower ends of the bore 20. With each section 100 of the bore 20, the air outlet 98 is located midway between the front inner wall section 56 and the dividing wall 102. Each air outlet 98 is also located behind the front end of the bore 20, preferably so that an angle θ subtended between a first line L1, extending from the air outlet 98 towards the front end of the bore 20 and parallel to the axis X of the bore 20, and a second line L2, extending from the air outlet 98 to the front end 104 of the dividing wall 102, is in the range from 5 to 25°. In this embodiment the angle θ is around 15°.


To operate the fan 10 the user presses button 106 located on the base 12. A user interface control circuit 108 communicates this action to the main control circuit 60, in response to which the main control circuit 60 activates the motor 64 to rotate the impeller 66. The rotation of the impeller 66 causes a primary, or first, air flow to be drawn into the fan 10 through the air inlets 18. The user may control the speed of the motor 64 and therefore the rate at which air is drawn into the fan 10 through the air inlets 18, by manipulating the dial 68. Depending on the speed of the motor 64, the flow rate of an air flow generated by the impeller 60 may be between 10 and 40 liters per second.


The primary air flow is drawn through the first air passage 84 of the nozzle 14 and enters the base 12 through the air outlet port 82 of the nozzle 14. The primary air flow passes in turn through the first air passageway 74 and the second air passageway 76 in the base 12 before emitted from the base 12 through the air inlet port 88. Upon its return to the nozzle 14 the primary air flow enters the second air passage of the nozzle 14. Within the annular inlet section 90 of the second air passage, the primary air flow is divided into two air streams which are conveyed in opposite directions around a lower portion of the bore 20 of the nozzle 14. A first portion of each air stream enters a respective outlet section 94 through the open lower end of the tubular wall 96, whereas a second portion of each air stream remains within the annular inlet section 90. The second portion of the air stream passes about the bore 20 of the nozzle 14 to enter the outlet section 94 through the open upper end of the tubular wall 96. In other words, the outlet section 94 has two air inlets each for receiving a respective portion of an air stream. The portions of the air stream thus enter the outlet section 94 in opposite directions. The air stream is emitted from the outlet section 94 through the air outlet 98.


The emission of the air flow from the air outlets 98 causes a secondary air flow to be generated by the entrainment of air from the external environment. Air is drawn into the air flow through the bore 20 of the nozzle 14, and from the environment both around and in front of the nozzle 14. The air flow drawn through the bore 20 of the nozzle 14 passes through the charging section 30 and through the air channels 48 between the plates 46 of the collecting section 32 of the electrostatic precipitator 22. The secondary air flow combines with the air flow emitted from the nozzle 14 to produce a combined, or total, air flow, or air current, projected forward from the fan 10.


To remove particulates from the air drawn through the bore 20 of the nozzle 14, the user activates the electrostatic precipitator 22 by pressing button 110 located on the base 12. The user interface control circuit 108 communicates this action to the main control circuit 60, in response to which the main control circuit 60 activates the voltage sources located within the base 12. The first voltage source supplies the first DC voltage to the needle-like electrodes connected to the nozzles 36 of the charging section 30, and the second voltage source supplies the second DC voltage to alternate plates of the collecting section 32. The pump is also activated, for example by one of the voltage sources or directly by the main control circuit 60, to supply fluid to the nozzles 36 of the charging section 30. If one or more pairs of plates are also located within the first air passage 84 within the nozzle 14, then the second DC voltage may also be supplied to one of the plates of each pair of plates.


The generation of a high electric charge within the fluid located within the nozzles 36 causes the fluid to be ionized and sprayed spontaneously from the nozzle apertures and through the apertures 38. The emitted ions disperse and interact with particulates within the air drawn through the bore 20 as it passes through the charging section 30, and, where at least one of the nozzles 36 is arranged to emit ions into the first air passage 84, within the primary air flow. Within the cartridge 24, as the air passes through the air channels 48 located between the plates 46 of the collecting section 32 the charged particulates are attracted to and collect on the charged plates 46, whereas within the first air passage 84 the charged particulates are attracted to and collect on the charged plates located in the first air passage 84.


A second embodiment of a fan 200 including an electrostatic precipitator is illustrated in



FIGS. 11 to 16. Similar to the fan 10, the fan 210 comprises a base 212 and a nozzle 214 mounted on the base 212. While the nozzle 214 also comprises an annular casing 216, an air inlet 218 through which a primary air flow is drawn into the fan 210 are now located in the base 212 of the fan 210. The air inlet 218 comprises a plurality of apertures formed in the base 212.


The base 212 comprises a substantially cylindrical main body section 220 mounted on a substantially cylindrical lower body section 222. The main body section 220 and the lower body section 222 preferably have substantially the same external diameter so that the external surface of the upper body section 220 is substantially flush with the external surface of the lower body section 222. The main body section 220 comprises the air inlet 218 through which air enters the fan assembly 210. The main body section defines a flow passageway 224 through which a primary air flow drawn through the air inlet 218 during operation of the fan 210 flows towards the nozzle 214.


The lower body section 222 is isolated from the air flow passing through the upper body section 220. The lower body section 222 includes the same user-operable buttons 106, 110, dial 68 and user interface control circuit 108 as the fan 10. The mains power cable 62 for supplying electricity to the main control circuit 60 extends through an aperture formed in the lower body section 222. The lower body section 222 also houses a mechanism, indicated generally at 226, for oscillating the main body section 220 relative to the lower body section 222, and includes a window 228 through which signals from a remote control (not shown) enter the fan 210.


The main body section 220 houses the mechanism for drawing the primary air flow into the fan 210 through the air inlet 218. The mechanism for drawing the primary air flow into the fan 210 is the same as that used in the fan 10, and so will not be described again in detail here. A filter may be provided within the base 212, or around the air inlet 218, to remove particulates from the primary air flow.


The nozzle 214 comprises an annular outer casing section 230 connected to and extending about an annular inner casing section 232. Each of these sections may be formed from a plurality of connected parts, but in this embodiment each of the outer casing section 230 and the inner casing section 232 is formed from a respective, single moulded part. The inner casing section 232 defines the bore 236 of the nozzle 214. The mesh grilles 26, 28 are connected to the front and rear ends of the nozzle 214.


The outer casing section 230 and the inner casing section 232 together define an annular air passage 238 of the nozzle 214. Thus, the air passage 238 extends about the bore 236. The air passage 238 is bounded by the internal peripheral surface of the outer casing section 230 and the internal peripheral surface of the inner casing section 232. The outer casing section 230 comprises a base 240 which is connected to the base 212 of the fan 210. The base 240 of the outer casing section 230 comprises an air inlet port 242 through which the primary air flow enters the air passage 238 of the nozzle 214.


The air outlet 244 of the nozzle 214 is located towards the rear of the fan 210. The air outlet 244 is defined by overlapping, or facing, portions of the internal peripheral surface of the outer casing section 230 and the external peripheral surface of the inner casing section 232. In this example, the air outlet 244 is substantially annular and, as illustrated in FIG. 16, has a substantially U-shaped cross-section when sectioned along a line passing diametrically through the nozzle 214. In this example, the outer casing section 230 and the inner casing section 232 are shaped so that the air passage 238 tapers towards the air outlet 244. The air outlet 244 is in the form of an annular slot, preferably having a relatively constant width in the range from 0.5 to 5 mm.


The charging section 30 of the electrostatic precipitator 22 is housed within the air passage 238 of the nozzle 214. In this embodiment, the electrostatic precipitator is not located within a removable cartridge 24, but is instead permanently housed within the nozzle 214. The nozzles of the charging section 30 are located adjacent to apertures 246 located in a rear, inner section of the outer casing section 230 that defines a rear section of the bore 236 of the nozzle 214 so as to spray ions through the apertures 246 and into the air drawn into the bore 236. The fluid reservoir 42 for supplying fluid to the nozzles of the charging section 30 is located in a lower part of the bore 236. The first voltage source may also be located within the lower part of the bore 236 or in the lower body section 222 of the base 212. The collecting section 32 of the electrostatic precipitator 22 is housed within the bore 236 of the nozzle 214. Again, the second voltage source may be located within the lower part of the bore 236 or in the lower body section 222 of the base 212.


To operate the fan 210, the user presses button 106 located on the base 212. A user interface control circuit 108 communicates this action to the main control circuit 60, in response to which the main control circuit 60 activates the motor 64 to rotate the impeller 66. The rotation of the impeller 66 causes a primary air flow to be drawn into the fan 210 through the air inlets 218 in the base 212. The air flow passes through the air passage 224 and enters the air passage 238 of the nozzle 214 through the air inlet port 242.


Within the air passage 238, the primary air flow is divided into two air streams which pass in opposite directions around the bore 236 of the nozzle 214. As the air streams pass through the air passage 238, air enters the tapering section of the air passage 238 to be emitted from the air outlet 244. The air flow into the tapering section of the air passage 238 is substantially even about the bore 236 of the nozzle 214. The primary air flow is directed by the overlapping portions of the outer casing section 230 and the inner casing section 232 over the external surface of the inner casing section 232 towards the front end of the nozzle 214. In this embodiment, the air outlet 244 is arranged relative to the electrostatic precipitator 22 so as to emit air around the collecting section 32 of the electrostatic precipitator 22.


As with the first embodiment, the emission of the air flow from the air outlet 244 causes a secondary air flow to be generated by the entrainment of air from the external environment. Air is drawn into the air flow through the bore 236 of the nozzle 214, and from the environment both around and in front of the nozzle 214. The air flow drawn through the bore 236 of the nozzle 214 passes through the charging section 30 and through the air channels between the plates 46 of the collecting section 32 of the electrostatic precipitator 22. The secondary air flow combines with the air flow emitted from the nozzle 214 to produce a combined, or total, air flow, or air current, projected forward from the fan 210.


To remove particulates from the air drawn through the bore 236 of the nozzle 214, the user activates the electrostatic precipitator 22 by pressing button 110 located on the base 212 of the fan 210. The removal of the particulates from the air drawn through the bore 236 of the nozzle 214 is performed in a similar manner to the removal of the particulates from the air drawn through the bore 20 of the nozzle 14; as the air passes through the bore 236 particulates within the air are charged by the emission of ions from the nozzles 36 of the charging section 30 of the electrostatic precipitator 22, and are collected on the plates 46 of the collecting section 32 of the electrostatic precipitator 22.


In either of the fans 10, 210 the collecting section 32 of the electrostatic precipitator 22 may be omitted so that the fan 10, 210 includes only the charging section 30 for charging particulates within the air drawn through the bore of the nozzle. This can convert the electrostatic precipitator 22 into an air ionizer which treats the air drawn through the bore of the nozzle.

Claims
  • 1. A nozzle for a fan assembly, the nozzle comprising: at least one air inlet;a plurality of air outlets, the nozzle having a front end and a rear end opposite the front end the air outlets being arranged to emit air towards the front end of the nozzle;an annular casing comprising an annular inner wall defining a bore through which air from outside the nozzle is drawn by air emitted from the air outlets and an outer wall extending about the inner wall, the annular casing comprising an air passage for conveying air to the air outlets, the air passage comprising an inlet section located between the inner wall and the outer wall and extending about the bore of the nozzle, and a plurality of outlet sections each extending across the bore for conveying air to a respective air outlet, the inlet section of the air passage being connected to each end of each of the outlet sections; andan electrostatic precipitator located between the air outlets and the rear end of the nozzle.
  • 2. The nozzle of claim 1, wherein each outlet section of the air passage extends in a direction substantially orthogonal to the axis of the bore.
  • 3. The nozzle of claim 1, wherein the nozzle has a front end towards which air is emitted from the air outlets, and a rear end opposite to the front end, and wherein the air outlets are located between the front end and the rear end.
  • 4. The nozzle of claim 1, wherein each air outlet is located at the front of its respective outlet section of the air passage.
  • 5. The nozzle of claim 1, wherein each outlet section of the air passage is defined by a tubular wall extending across the bore.
  • 6. The nozzle of claim 1, wherein each air outlet is in the form of a slot.
  • 7. The nozzle of claim 6, wherein each slot extends substantially orthogonal to the axis of the bore.
  • 8. The nozzle of claim 1, wherein the air outlets are substantially parallel.
  • 9. The nozzle of claim 1, wherein the inlet section extends about the bore.
  • 10. The nozzle of claim 9, wherein the inlet section is annular in shape.
  • 11. The nozzle of claim 1, wherein said at least one air inlet comprises an air inlet port for conveying air into the inlet section of the air passage.
  • 12. The nozzle of claim 1, comprising an ionizer.
  • 13. The nozzle of claim 1, wherein the electrostatic precipitator is located at least partially within the bore of the nozzle.
  • 14. The nozzle of claim 13, wherein the electrostatic precipitator comprises a plurality of parallel plates extending across the bore of the nozzle.
  • 15. A fan comprising a base and the nozzle of claim 1 for receiving an air flow from the base.
Priority Claims (1)
Number Date Country Kind
1202000.4 Feb 2012 GB national
US Referenced Citations (287)
Number Name Date Kind
284962 Huston Sep 1883 A
1357261 Svoboda Nov 1920 A
1767060 Ferguson Jun 1930 A
1896869 Larsh Feb 1933 A
2014185 Martin Sep 1935 A
2035733 Wall Mar 1936 A
2071266 Schmidt Feb 1937 A
D103476 Weber Mar 1937 S
2115883 Sher May 1938 A
D115344 Chapman Jun 1939 S
2210458 Keilholtz Aug 1940 A
2258961 Saathoff Oct 1941 A
2295502 Lamb Sep 1942 A
2336295 Reimuller Dec 1943 A
2363839 Demuth Nov 1944 A
2433795 Stokes Dec 1947 A
2473325 Aufiero Jun 1949 A
2476002 Stalker Jul 1949 A
2488467 De Lisio Nov 1949 A
2510132 Morrison Jun 1950 A
2544379 Davenport Mar 1951 A
2547448 Demuth Apr 1951 A
2583374 Hoffman Jan 1952 A
2620127 Radcliffe Dec 1952 A
2711682 Drechsel Jun 1955 A
2765977 Morrison Oct 1956 A
2808198 Morrison Oct 1957 A
2813673 Smith Nov 1957 A
2830779 Wentling Apr 1958 A
2838229 Belanger Jun 1958 A
2922277 Bertin Jan 1960 A
2922570 Allen Jan 1960 A
3004403 Laporte Oct 1961 A
3047208 Coanda Jul 1962 A
3270655 Guirl et al. Sep 1966 A
D206973 De Lisio Feb 1967 S
3503138 Fuchs et al. Mar 1970 A
3518776 Wolff et al. Jul 1970 A
3724092 McCleerey Apr 1973 A
3729934 Denning et al. May 1973 A
3743186 Mocarski Jul 1973 A
3795367 Mocarski Mar 1974 A
3872916 Beck Mar 1975 A
3875745 Franklin Apr 1975 A
3885891 Throndson May 1975 A
3943329 Hlavac Mar 1976 A
4037991 Taylor Jul 1977 A
4046492 Inglis Sep 1977 A
4061188 Beck Dec 1977 A
4073613 Desty Feb 1978 A
4090814 Teodorescu et al. May 1978 A
4113416 Kataoka et al. Sep 1978 A
4136735 Beck et al. Jan 1979 A
4173995 Beck Nov 1979 A
4180130 Beck et al. Dec 1979 A
4184417 Chancellor Jan 1980 A
4184541 Beck et al. Jan 1980 A
4192461 Arborg Mar 1980 A
4231766 Spurgin Nov 1980 A
4332529 Alperin Jun 1982 A
4336017 Desty Jun 1982 A
4342204 Melikian et al. Aug 1982 A
4448354 Reznick et al. May 1984 A
4568243 Schubert et al. Feb 1986 A
4630475 Mizoguchi Dec 1986 A
4643351 Fukamachi et al. Feb 1987 A
4703152 Shih-Chin Oct 1987 A
4718870 Watts Jan 1988 A
4732539 Shin-Chin Mar 1988 A
4734017 Levin Mar 1988 A
4790133 Stuart Dec 1988 A
4850804 Huang Jul 1989 A
4878620 Tarleton Nov 1989 A
4893990 Tomohiro et al. Jan 1990 A
4978281 Conger Dec 1990 A
5024685 Torok et al. Jun 1991 A
5061405 Stanek et al. Oct 1991 A
D325435 Coup et al. Apr 1992 S
5110266 Toyoshima et al. May 1992 A
5168722 Brock Dec 1992 A
5176856 Takahashi et al. Jan 1993 A
5188508 Scott et al. Feb 1993 A
5296769 Havens et al. Mar 1994 A
5310313 Chen May 1994 A
5317815 Hwang Jun 1994 A
5402938 Sweeney Apr 1995 A
5407324 Starnes, Jr. et al. Apr 1995 A
5425902 Miller et al. Jun 1995 A
5435489 Jenkins et al. Jul 1995 A
5518370 Wang et al. May 1996 A
5609473 Litvin Mar 1997 A
5645769 Tamaru et al. Jul 1997 A
5649370 Russo Jul 1997 A
5671321 Bagnuolo Sep 1997 A
5735683 Muschelknautz Apr 1998 A
5762034 Foss Jun 1998 A
5762661 Kleinberger et al. Jun 1998 A
5783117 Byassee et al. Jul 1998 A
5794306 Firdaus Aug 1998 A
D398983 Keller et al. Sep 1998 S
5841080 Iida et al. Nov 1998 A
5843344 Junket et al. Dec 1998 A
5862037 Behl Jan 1999 A
5868197 Potier Feb 1999 A
5881685 Foss et al. Mar 1999 A
D415271 Feer Oct 1999 S
6015274 Bias et al. Jan 2000 A
6073881 Chen Jun 2000 A
D429808 Krauss et al. Aug 2000 S
6109054 Han Aug 2000 A
6123618 Day Sep 2000 A
6155782 Hsu Dec 2000 A
D435899 Melwani Jan 2001 S
6254337 Arnold Jul 2001 B1
6269549 Carlucci et al. Aug 2001 B1
6278248 Hong et al. Aug 2001 B1
6282746 Schleeter Sep 2001 B1
6293121 Labrador Sep 2001 B1
6321034 Jones-Lawlor et al. Nov 2001 B2
6386845 Bedard May 2002 B1
6480672 Rosenzweig et al. Nov 2002 B1
6599088 Stagg Jul 2003 B2
6604694 Kordas et al. Aug 2003 B1
D485895 Melwani Jan 2004 S
6789787 Stutts Sep 2004 B2
6791056 VanOtteren et al. Sep 2004 B2
6830433 Birdsell et al. Dec 2004 B2
7059826 Lasko Jun 2006 B2
7088913 Verhoorn et al. Aug 2006 B1
7147336 Chou Dec 2006 B1
D539414 Russak et al. Mar 2007 S
7192258 Kuo et al. Mar 2007 B2
7198473 Stickland et al. Apr 2007 B2
7244290 Vandenbelt et al. Jul 2007 B2
7412781 Mattinger et al. Aug 2008 B2
7478993 Hong et al. Jan 2009 B2
7540474 Huang et al. Jun 2009 B1
D598532 Dyson et al. Aug 2009 S
D602143 Gammack et al. Oct 2009 S
D602144 Dyson et al. Oct 2009 S
7621984 Cowie et al. Nov 2009 B2
D605748 Gammack et al. Dec 2009 S
7660110 Vinson et al. Feb 2010 B2
7664377 Liao Feb 2010 B2
D614280 Dyson et al. Apr 2010 S
7731050 Parks et al. Jun 2010 B2
7775848 Auerbach Aug 2010 B1
7806388 Junkel et al. Oct 2010 B2
7841045 Shaanan et al. Nov 2010 B2
7875104 Cowie et al. Jan 2011 B2
7931449 Fitton et al. Apr 2011 B2
7972111 Crawford et al. Jul 2011 B2
8002520 Dawson et al. Aug 2011 B2
8052379 Gammack Nov 2011 B2
8092166 Nicolas et al. Jan 2012 B2
8113490 Chen Feb 2012 B2
8152495 Boggess, Jr. et al. Apr 2012 B2
8197226 Fitton et al. Jun 2012 B2
8246317 Gammack Aug 2012 B2
8308432 Crawford et al. Nov 2012 B2
8308445 Gammack et al. Nov 2012 B2
8348629 Fitton et al. Jan 2013 B2
8356804 Fitton et al. Jan 2013 B2
8366403 Wallace et al. Feb 2013 B2
8403640 Gammack et al. Mar 2013 B2
8403650 Gammack et al. Mar 2013 B2
8430624 Cookson et al. Apr 2013 B2
8454322 Gammack et al. Jun 2013 B2
8469658 Gammack et al. Jun 2013 B2
8469660 Dyson et al. Jun 2013 B2
8529226 Li Sep 2013 B2
8544826 Ediger et al. Oct 2013 B2
8613601 Helps Dec 2013 B2
8721286 Gammack et al. May 2014 B2
8721307 Li May 2014 B2
8734121 Tsen May 2014 B2
8873940 Wallace et al. Oct 2014 B2
8882451 Fitton et al. Nov 2014 B2
20020106547 Sugawara et al. Aug 2002 A1
20030005824 Katou et al. Jan 2003 A1
20030059307 Moreno et al. Mar 2003 A1
20030164367 Bucher et al. Sep 2003 A1
20030171093 Gumucio Del Pozo Sep 2003 A1
20030190183 Hsing Oct 2003 A1
20040022631 Birdsell et al. Feb 2004 A1
20040049842 Prehodka Mar 2004 A1
20040106370 Honda et al. Jun 2004 A1
20040149881 Allen Aug 2004 A1
20050031448 Lasko et al. Feb 2005 A1
20050053465 Roach et al. Mar 2005 A1
20050069407 Winkler et al. Mar 2005 A1
20050128698 Huang Jun 2005 A1
20050163670 Alleyne et al. Jul 2005 A1
20050173997 Schmid et al. Aug 2005 A1
20050281672 Parker et al. Dec 2005 A1
20060107834 Vandenbelt et al. May 2006 A1
20060172682 Orr et al. Aug 2006 A1
20060199515 Lasko et al. Sep 2006 A1
20060263073 Clarke et al. Nov 2006 A1
20060279927 Strohm Dec 2006 A1
20070035189 Matsumoto Feb 2007 A1
20070041857 Fleig Feb 2007 A1
20070065280 Fok Mar 2007 A1
20070166160 Russak et al. Jul 2007 A1
20070176502 Kasai et al. Aug 2007 A1
20070224044 Hong et al. Sep 2007 A1
20070269323 Zhou et al. Nov 2007 A1
20080020698 Spaggiari Jan 2008 A1
20080124060 Gao May 2008 A1
20080152482 Patel Jun 2008 A1
20080166224 Giffin Jul 2008 A1
20080286130 Purvines Nov 2008 A1
20080314250 Cowie et al. Dec 2008 A1
20090026850 Fu Jan 2009 A1
20090032130 Dumas et al. Feb 2009 A1
20090039805 Tang Feb 2009 A1
20090060710 Gammack et al. Mar 2009 A1
20090060711 Gammack et al. Mar 2009 A1
20090078120 Kummer et al. Mar 2009 A1
20090120925 Lasko May 2009 A1
20090191054 Winkler Jul 2009 A1
20090207547 Terasaki Aug 2009 A1
20090214341 Craig Aug 2009 A1
20100031823 Cowie et al. Feb 2010 A1
20100133707 Huang Jun 2010 A1
20100150699 Nicolas et al. Jun 2010 A1
20100162011 Min Jun 2010 A1
20100171465 Seal et al. Jul 2010 A1
20100225012 Fitton et al. Sep 2010 A1
20100226749 Gammack et al. Sep 2010 A1
20100226750 Gammack Sep 2010 A1
20100226751 Gammack et al. Sep 2010 A1
20100226752 Gammack et al. Sep 2010 A1
20100226753 Dyson et al. Sep 2010 A1
20100226754 Hutton et al. Sep 2010 A1
20100226758 Cookson et al. Sep 2010 A1
20100226763 Gammack et al. Sep 2010 A1
20100226764 Gammack et al. Sep 2010 A1
20100226769 Helps Sep 2010 A1
20100226771 Crawford et al. Sep 2010 A1
20100226787 Gammack et al. Sep 2010 A1
20100226797 Fitton et al. Sep 2010 A1
20100226801 Gammack Sep 2010 A1
20100254800 Fitton et al. Oct 2010 A1
20110033346 Bohlen et al. Feb 2011 A1
20110058935 Gammack et al. Mar 2011 A1
20110110805 Gammack et al. May 2011 A1
20110164959 Fitton et al. Jul 2011 A1
20110223014 Crawford et al. Sep 2011 A1
20110223015 Gammack et al. Sep 2011 A1
20110236228 Fitton et al. Sep 2011 A1
20110236229 Fitton et al. Sep 2011 A1
20120031509 Wallace et al. Feb 2012 A1
20120033952 Wallace et al. Feb 2012 A1
20120034108 Wallace et al. Feb 2012 A1
20120039705 Gammack Feb 2012 A1
20120045315 Gammack Feb 2012 A1
20120045316 Gammack Feb 2012 A1
20120051884 Junkel et al. Mar 2012 A1
20120057959 Hodgson et al. Mar 2012 A1
20120082561 Gammack et al. Apr 2012 A1
20120093629 Fitton et al. Apr 2012 A1
20120093630 Fitton et al. Apr 2012 A1
20120114513 Simmonds et al. May 2012 A1
20120230658 Fitton et al. Sep 2012 A1
20120308375 Gammack Dec 2012 A1
20120318392 Li Dec 2012 A1
20130026664 Staniforth et al. Jan 2013 A1
20130028763 Staniforth et al. Jan 2013 A1
20130028766 Staniforth et al. Jan 2013 A1
20130047857 Bohlen Feb 2013 A1
20130047858 Bohlen et al. Feb 2013 A1
20130129490 Dos Reis et al. May 2013 A1
20130161842 Fitton et al. Jun 2013 A1
20130202412 Nock et al. Aug 2013 A1
20130202413 Nock et al. Aug 2013 A1
20130272858 Stickney et al. Oct 2013 A1
20130280051 Nicolas et al. Oct 2013 A1
20130280061 Stickney Oct 2013 A1
20130280096 Gammack et al. Oct 2013 A1
20130323100 Poulton et al. Dec 2013 A1
20140079566 Gammack et al. Mar 2014 A1
20140084492 Staniforth et al. Mar 2014 A1
20140210114 Staniforth et al. Jul 2014 A1
20140255173 Poulton et al. Sep 2014 A1
20140255217 Li Sep 2014 A1
20150093098 Fitton et al. Apr 2015 A1
Foreign Referenced Citations (268)
Number Date Country
560119 Aug 1957 BE
1055344 May 1979 CA
2155482 Sep 1996 CA
346643 May 1960 CH
2085866 Oct 1991 CN
2111392 Jul 1992 CN
1364100 Aug 2002 CN
1437300 Aug 2003 CN
2650005 Oct 2004 CN
2713643 Jul 2005 CN
1680727 Oct 2005 CN
2833197 Nov 2006 CN
101057380 Oct 2007 CN
201011346 Jan 2008 CN
201180678 Jan 2009 CN
201221477 Apr 2009 CN
101424279 May 2009 CN
101451754 Jun 2009 CN
201281416 Jul 2009 CN
201349269 Nov 2009 CN
101684828 Mar 2010 CN
201486901 May 2010 CN
101749288 Jun 2010 CN
201502549 Jun 2010 CN
201507461 Jun 2010 CN
101825096 Sep 2010 CN
101825101 Sep 2010 CN
101825102 Sep 2010 CN
101825103 Sep 2010 CN
101825104 Sep 2010 CN
201568337 Sep 2010 CN
101858355 Oct 2010 CN
101936310 Jan 2011 CN
201696365 Jan 2011 CN
201696366 Jan 2011 CN
201739199 Feb 2011 CN
101984299 Mar 2011 CN
101985948 Mar 2011 CN
201763705 Mar 2011 CN
201763706 Mar 2011 CN
201770513 Mar 2011 CN
201771875 Mar 2011 CN
201779080 Mar 2011 CN
201786777 Apr 2011 CN
201786778 Apr 2011 CN
201802648 Apr 2011 CN
102095236 Jun 2011 CN
201858204 Jun 2011 CN
201874898 Jun 2011 CN
201874901 Jun 2011 CN
201917047 Aug 2011 CN
102251973 Nov 2011 CN
102287357 Dec 2011 CN
102367813 Mar 2012 CN
202267207 Jun 2012 CN
202431623 Sep 2012 CN
1 291 090 Mar 1969 DE
24 51 557 May 1976 DE
27 48 724 May 1978 DE
3644567 Jul 1988 DE
195 10 397 Sep 1996 DE
197 12 228 Oct 1998 DE
100 00 400 Mar 2001 DE
10041805 Jun 2002 DE
10 2009 007 037 Aug 2010 DE
0 044 494 Jan 1982 EP
0186581 Jul 1986 EP
0 784 947 Jul 1997 EP
1 094 224 Apr 2001 EP
1 138 954 Oct 2001 EP
1357296 Oct 2003 EP
1 779 745 May 2007 EP
1 939 456 Jul 2008 EP
1 980 432 Oct 2008 EP
2 000 675 Dec 2008 EP
2191142 Jun 2010 EP
2 578 889 Apr 2013 EP
1033034 Jul 1953 FR
1119439 Jun 1956 FR
1.387.334 Jan 1965 FR
2 281 543 Mar 1976 FR
2 375 471 Jul 1978 FR
2 534 983 Apr 1984 FR
2 640 857 Jun 1990 FR
2 658 593 Aug 1991 FR
2794195 Dec 2000 FR
2 874 409 Feb 2006 FR
2 906 980 Apr 2008 FR
2928706 Sep 2009 FR
22235 Jun 1914 GB
383498 Nov 1932 GB
593828 Oct 1947 GB
601222 Apr 1948 GB
633273 Dec 1949 GB
641622 Aug 1950 GB
661747 Nov 1951 GB
863 124 Mar 1961 GB
1067956 May 1967 GB
1 262 131 Feb 1972 GB
1 265 341 Mar 1972 GB
1 278 606 Jun 1972 GB
1 304 560 Jan 1973 GB
1 403 188 Aug 1975 GB
1 434 226 May 1976 GB
1 435 520 May 1976 GB
1 501 473 Feb 1978 GB
2 094 400 Sep 1982 GB
2 107 787 May 1983 GB
2 111 125 Jun 1983 GB
2 178 256 Feb 1987 GB
2 185 531 Jul 1987 GB
2 185 533 Jul 1987 GB
2 218 196 Nov 1989 GB
2 236 804 Apr 1991 GB
2 240 268 Jul 1991 GB
2 242 935 Oct 1991 GB
2 285 504 Jul 1995 GB
2 289 087 Nov 1995 GB
2383277 Jun 2003 GB
2 428 569 Feb 2007 GB
2 452 593 Mar 2009 GB
2452490 Mar 2009 GB
2463698 Mar 2010 GB
2464736 Apr 2010 GB
2464736 Apr 2010 GB
2466058 Jun 2010 GB
2466058 Jun 2010 GB
2468312 Sep 2010 GB
2468313 Sep 2010 GB
2468315 Sep 2010 GB
2468317 Sep 2010 GB
2468319 Sep 2010 GB
2468320 Sep 2010 GB
2468323 Sep 2010 GB
2468328 Sep 2010 GB
2468331 Sep 2010 GB
2468369 Sep 2010 GB
2468498 Sep 2010 GB
2473037 Mar 2011 GB
2479760 Oct 2011 GB
2482547 Feb 2012 GB
2484671 Apr 2012 GB
2484695 Apr 2012 GB
2484761 Apr 2012 GB
2493231 Jan 2013 GB
2493505 Feb 2013 GB
2493507 Feb 2013 GB
2499044 Aug 2013 GB
2500011 Sep 2013 GB
31-13055 Aug 1956 JP
35-4369 Mar 1960 JP
39-7297 Mar 1964 JP
46-7230 Dec 1971 JP
49-150403 Dec 1974 JP
51-7258 Jan 1976 JP
53-60100 May 1978 JP
56-167897 Dec 1981 JP
57-71000 May 1982 JP
57-157097 Sep 1982 JP
61-1699 Jan 1986 JP
61-31830 Feb 1986 JP
61-116093 Jun 1986 JP
61-280787 Dec 1986 JP
62-223494 Oct 1987 JP
63-36794 Mar 1988 JP
63-179198 Jul 1988 JP
63-306340 Dec 1988 JP
64-21300 Feb 1989 JP
64-58955 Mar 1989 JP
64-83884 Mar 1989 JP
1-138399 May 1989 JP
1-224598 Sep 1989 JP
2-146294 Jun 1990 JP
2-218890 Aug 1990 JP
2-248690 Oct 1990 JP
3-52515 May 1991 JP
3-267598 Nov 1991 JP
3-286775 Dec 1991 JP
4-43895 Feb 1992 JP
4-366330 Dec 1992 JP
5-157093 Jun 1993 JP
5-164089 Jun 1993 JP
5-263786 Oct 1993 JP
6-74190 Mar 1994 JP
6-86898 Mar 1994 JP
6-147188 May 1994 JP
6-257591 Sep 1994 JP
6-280800 Oct 1994 JP
6-336113 Dec 1994 JP
7-190443 Jul 1995 JP
8-21400 Jan 1996 JP
8-72525 Mar 1996 JP
9-100800 Apr 1997 JP
9-178083 Jul 1997 JP
9-287600 Nov 1997 JP
11-502586 Mar 1999 JP
11-227866 Aug 1999 JP
2000-116179 Apr 2000 JP
2000-201723 Jul 2000 JP
2001-17358 Jan 2001 JP
2002-21797 Jan 2002 JP
2002-138829 May 2002 JP
2002-213388 Jul 2002 JP
2003-329273 Nov 2003 JP
2004-8275 Jan 2004 JP
2004-208935 Jul 2004 JP
2004-216221 Aug 2004 JP
2005-201507 Jul 2005 JP
2005-307985 Nov 2005 JP
2006-89096 Apr 2006 JP
3127331 Nov 2006 JP
2007-138763 Jun 2007 JP
2007-138789 Jun 2007 JP
2008-39316 Feb 2008 JP
2008-100204 May 2008 JP
3146538 Oct 2008 JP
2008-294243 Dec 2008 JP
2009-44568 Feb 2009 JP
2009-62986 Mar 2009 JP
2010-131259 Jun 2010 JP
2010-203441 Sep 2010 JP
2010-203764 Sep 2010 JP
2011-224470 Nov 2011 JP
2012-31806 Feb 2012 JP
1999-002660 Jan 1999 KR
10-2005-0102317 Oct 2005 KR
2007-0007997 Jan 2007 KR
20-0448319 Mar 2010 KR
10-2010-0055611 May 2010 KR
10-0985378 Sep 2010 KR
517825 Jan 2003 TW
589932 Jun 2004 TW
M394383 Dec 2010 TW
M399207 Mar 2011 TW
M407299 Jul 2011 TW
WO-9013478 Nov 1990 WO
WO-9506822 Mar 1995 WO
WO-9519225 Jul 1995 WO
WO-02073096 Sep 2002 WO
WO-03058795 Jul 2003 WO
WO-03069931 Aug 2003 WO
WO-2005050026 Jun 2005 WO
WO-2005057091 Jun 2005 WO
WO-2006008021 Jan 2006 WO
WO-2006012526 Feb 2006 WO
WO-2007024955 Mar 2007 WO
WO-2007048205 May 2007 WO
WO-2008014641 Feb 2008 WO
WO-2008024569 Feb 2008 WO
WO-2008139491 Nov 2008 WO
WO-2009030879 Mar 2009 WO
WO-2009030881 Mar 2009 WO
WO 2009030879 Mar 2009 WO
WO 2010046691 Apr 2010 WO
WO-2010100449 Sep 2010 WO
WO-2010100451 Sep 2010 WO
WO-2010100452 Sep 2010 WO
WO-2010100453 Sep 2010 WO
WO-2010100462 Sep 2010 WO
WO 2010100448 Sep 2010 WO
WO 2010100455 Sep 2010 WO
WO-2011050041 Apr 2011 WO
WO 2011143924 Nov 2011 WO
WO-2012006882 Jan 2012 WO
WO-2012033517 Mar 2012 WO
WO-2012045255 Apr 2012 WO
WO-2012052737 Apr 2012 WO
WO-2013014419 Jan 2013 WO
Non-Patent Literature Citations (45)
Entry
Search Report dated May 30, 2012, directed to GB Application No. 1202000.4; 2 pages.
Gammack, P. et al., U.S. Office Action mailed Dec. 9, 2010, directed to U.S. Appl. No. 12/203,698; 10 pages.
Gammack, P. et al., U.S. Office Action mailed Jun. 21, 2011, directed to U.S. Appl. No. 12/203,698; 11 pages.
Gammack et al., Office Action mailed Sep. 17, 2012, directed to U.S. Appl. No. 13/114,707; 12 pages.
Gammack, P. et al., U.S. Office Action mailed Dec. 10, 2010, directed to U.S. Appl. No. 12/230,613; 12 pages.
Gammack, P. et al., U.S. Office Action mailed May 13, 2011, directed to U.S. Appl. No. 12/230,613; 13 pages.
Gammack, P. et al., U.S. Office Action mailed Sep. 7, 2011, directed to U.S. Appl. No. 12/230,613; 15 pages.
Gammack, P. et al., U.S. Office Action mailed Jun. 8, 2012, directed to U.S. Appl. No. 12/230,613; 15 pages.
Gammack et al., U.S. Office Action mailed Aug. 20, 2012, directed to U.S. Appl. No. 12/945,558; 15 pages.
Fitton et al., U.S. Office Action mailed Nov. 30, 2010 directed to U.S. Appl. No. 12/560,232; 9 pages.
Nicolas, F. et al., U.S. Office Action mailed Mar. 7, 2011, directed to U.S. Appl. No. 12/622,844; 10 pages.
Nicolas, F. et al., U.S. Office Action mailed Sep. 8, 2011, directed to U.S. Appl. No. 12/622,844; 11 pages.
Helps, D. F. et al., U.S. Office Action mailed Feb. 15, 2013, directed to U.S. Appl. No. 12/716,694; 12 pages.
Fitton, et al., U.S. Office Action mailed Mar. 8, 2011, directed to U.S. Appl. No. 12/716,780; 12 pages.
Fitton, et al., U.S. Office Action mailed Sep. 6, 2011, directed to U.S. Appl. No. 12/716,780; 16 pages.
Gammack, P. et al., U.S. Office Action mailed Dec. 9, 2010, directed to U.S. Appl. No. 12/716,781; 17 pages.
Gammack, P. et al., U.S. Final Office Action mailed Jun. 24, 2011, directed to U.S. Appl. No. 12/716,781; 19 pages.
Gammack, P. et al., U.S. Office Action mailed Apr. 12, 2011, directed to U.S. Appl. No. 12/716,749; 8 pages.
Gammack, P. et al., U.S. Office Action mailed Sep. 1, 2011, directed to U.S. Appl. No. 12/716,749; 9 pages.
Gammack, P. et al., U.S. Office Action mailed Jun. 25, 2012, directed to U.S. Appl. No. 12/716,749; 11 pages.
Fitton et al., U.S. Office Action mailed Mar. 30, 2012, directed to U.S. Appl. No. 12/716,707; 7 pages.
Gammack, P. et al., U.S. Office Action mailed May 24, 2011, directed to U.S. Appl. No. 12/716,613; 9 pages.
Gammack, P. et al. U.S. Office Action mailed Oct. 18, 2012, directed to U.S. Appl. No. 12/917,247; 11 pages.
Reba, I. (1966). “Applications of the Coanda Effect,” Scientific American 214:84-92.
Third Party Submission Under 37 CFR 1.99 filed Jun. 2, 2011, directed towards U.S. Appl. No. 12/203,698; 3 pages.
Gammack, P. et al., U.S. Office Action mailed Feb. 10, 2014, directed to U.S. Appl. No. 12/716,515; 21 pages.
Gammack et al., U.S. Office Action mailed Feb. 28, 2013, directed to U.S. Appl. No. 12/945,558; 16 pages.
Gammack et al., U.S. Office Action mailed Feb. 14, 2013, directed to U.S. Appl. No. 12/716,515; 21 pages.
Gammack et al., U.S. Office Action mailed Mar. 14, 2013, directed to U.S. Appl. No. 12/716,740; 15 pages.
Gammack et al., Office Action mailed Jun. 12, 2013, directed towards U.S. Appl. No. 12/945,558; 20 pages.
Gammack et al., Office Action mailed May 29, 2013, directed towards U.S. Appl. No. 13/588,666; 11 pages.
Wallace et al., Office Action mailed Jun. 7, 2013, directed towards U.S. Appl. No. 13/192,223; 30 pages.
International Search Report and Written Opinion dated Apr. 23, 2013, directed towards International Application No. PCT/GB2013/050023; 10 pages.
Fitton et al., U.S. Office Action mailed Jun. 13, 2014, directed to U.S. Appl. No. 13/274,998; 11 pages.
Fitton et al., U.S. Office Action mailed Jun. 13, 2014, directed to U.S. Appl. No. 13/275,034; 10 pages.
Gammack, P. et al., Office Action mailed Aug. 19, 2013, directed to U.S. Appl. No. 12/716,515; 20 pages.
Gammack et al., U.S. Office Action mailed Sep. 3, 2014, directed to U.S. Appl. No. 13/861,891; 7 pages.
Staniforth et al., U.S. Office Action mailed Sep. 18, 2014, directed to U.S. Appl. No. 13/559,142; 18 pages.
Gammack et al., U.S. Office Action mailed Sep. 6, 2013, directed to U.S. Appl. No. 12/716,740; 15 pages.
Gammack et al., Office Action mailed Sep. 27, 2013, directed to U.S. Appl. No. 13/588,666; 10 pages.
Wallace et al., Office Action mailed Oct. 23, 2013, directed to U.S. Appl. No. 13/192,223; 18 pages.
Nock et al., U.S. Office Action mailed Jun. 15, 2015, directed to U.S. Appl. No. 13/760,640; 8 pages.
Fitton et al., U.S. Office Action mailed Dec. 31, 2013, directed to U.S. Appl. No. 13/718,693; 8 pages.
Li et al., U.S. Office Action mailed Oct. 25, 2013, directed to U.S. Appl. No. 13/686,480; 17 pages.
Gammack et al., U.S. Office Action mailed Apr. 24, 2014, directed to U.S. Appl. No. 12/716,740; 16 pages.
Related Publications (1)
Number Date Country
20130199372 A1 Aug 2013 US