Fan assembly

Information

  • Patent Grant
  • 9745981
  • Patent Number
    9,745,981
  • Date Filed
    Friday, November 9, 2012
    12 years ago
  • Date Issued
    Tuesday, August 29, 2017
    7 years ago
Abstract
A nozzle for a fan assembly has an air inlet, an annular air outlet, and an interior passage for conveying air from the air inlet to the air outlet. The interior passage is located between an annular inner wall, and an outer wall extending about the inner wall. The inner wall at least partially defines a bore through which air from outside the nozzle is drawn by air emitted from the air outlet. The inner wall is eccentric with respect to the outer wall so that the cross-sectional area of the interior passage varies about the bore. The variation in the cross-sectional area of the interior passage can control the direction in which air is emitted from around the air outlet to reduce turbulence in the air flow generated by the fan assembly.
Description
REFERENCE TO RELATED APPLICATIONS

This application claims the priority of United Kingdom Application No. 1119500.5, filed Nov. 11, 2011, and United Kingdom Application No. 1205576.0, filed Mar. 29, 2012, the entire contents of which are incorporated herein by reference.


FIELD OF THE INVENTION

The present invention relates to a nozzle for a fan assembly, and a fan assembly comprising such a nozzle.


BACKGROUND OF THE INVENTION

A conventional domestic fan typically includes a set of blades or vanes mounted for rotation about an axis, and drive apparatus for rotating the set of blades to generate an air flow. The movement and circulation of the air flow creates a ‘wind chill’ or breeze and, as a result, the user experiences a cooling effect as heat is dissipated through convection and evaporation. The blades are generally located within a cage which allows an air flow to pass through the housing while preventing users from coming into contact with the rotating blades during use of the fan.


U.S. Pat. No. 2,488,467 describes a fan which does not use caged blades to project air from the fan assembly. Instead, the fan assembly comprises a base which houses a motor-driven impeller for drawing an air flow into the base, and a series of concentric, annular nozzles connected to the base and each comprising an annular outlet located at the front of the nozzle for emitting the air flow from the fan. Each nozzle extends about a bore axis to define a bore about which the nozzle extends.


Each nozzle is in the shape of an airfoil. An airfoil may be considered to have a leading edge located at the rear of the nozzle, a trailing edge located at the front of the nozzle, and a chord line extending between the leading and trailing edges. In U.S. Pat. No. 2,488,467 the chord line of each nozzle is parallel to the bore axis of the nozzles. The air outlet is located on the chord line, and is arranged to emit the air flow in a direction extending away from the nozzle and along the chord line.


Another fan assembly which does not use caged blades to project air from the fan assembly is described in WO 2010/100451. This fan assembly comprises a cylindrical base which also houses a motor-driven impeller for drawing a primary air flow into the base, and a single annular nozzle connected to the base and comprising an annular mouth through which the primary air flow is emitted from the fan. The nozzle defines an opening through which air in the local environment of the fan assembly is drawn by the primary air flow emitted from the mouth, amplifying the primary air flow. The nozzle includes a Coanda surface over which the mouth is arranged to direct the primary air flow. The Coanda surface extends symmetrically about the central axis of the opening so that the air flow generated by the fan assembly is in the form of an annular jet having a cylindrical or frusto-conical profile.


SUMMARY OF THE INVENTION

In a first aspect, the present invention provides a nozzle for a fan assembly, the nozzle comprising an air inlet, at least one air outlet, an annular inner wall at least partially defining a bore through which air from outside the nozzle is drawn by air emitted from said at least one air outlet, an outer wall extending about a longitudinal axis and about the inner wall, and an interior passage located between the inner wall and the outer wall for conveying air from the air inlet to said at least one air outlet, wherein the interior passage has a first section and a second section each for receiving a respective portion of an air flow entering the interior passage through the air inlet, and for conveying the portions of the air flow in opposite angular directions about the bore, and wherein each section of the interior passage has a cross-sectional area formed from the intersection with the interior passage by a plane which extends through and contains the longitudinal axis of the outer wall, and wherein the cross-sectional area of each section of the interior passage decreases in size about the bore.


The air emitted from the nozzle, hereafter referred to as a primary air flow, entrains air surrounding the nozzle, which thus acts as an air amplifier to supply both the primary air flow and the entrained air to the user. The entrained air will be referred to here as a secondary air flow. The secondary air flow is drawn from the room space, region or external environment surrounding the nozzle. The primary air flow combines with the entrained secondary air flow to form a combined, or total, air flow projected forward from the front of the nozzle.


We have found that controlling the cross-sectional area of each section of the nozzle in this manner can reduce turbulence in the combined air flow which is experienced by a user located in front of the nozzle. The reduction in turbulence is a result of minimising the variation in the angle at which the primary air flow is emitted from around the bore of the nozzle. Without this variation in the cross-sectional area, there is a tendency for the primary air flow to be emitted upwardly at a relatively steep angle, relative to the longitudinal axis of the nozzle, from the portion of the interior passage located adjacent to the air inlet, whereas the portion of the air flow emitted from the portion of the interior passage located opposite to the air inlet is emitted at a relatively shallow angle. When the air inlet is located towards the base of the nozzle, this can result in the primary air flow being focussed towards a position located generally in front of an upper end of the nozzle. This convergence of the primary air flow can generate turbulence in the combined air flow generated by the nozzle.


The relative increase in the cross-sectional area of the interior passage adjacent to the air inlet can reduce the velocity at which the primary air flow is emitted from the base of the nozzle. This velocity reduction has been found to reduce the angle at which the air flow is emitted from this portion of the interior passage. Through controlling the shape of the interior passage so that there is a reduction in its cross-sectional area about the bore, any variation in the angle at which the primary air flow is emitted from the nozzle can be significantly reduced.


The variation in the cross-sectional area of each section of the interior passage is seen from the intersection with the interior passage by a series of planes which each extend through and contain the longitudinal axis of the outer wall, upon which the outer wall is centred. The variation in the cross-sectional area of each section of the interior passage may also be referred to as a variation in the cross-sectional area of an air flow path which extends from a first end to a second end of the section of the interior passage, and so this aspect of the present invention also provides a nozzle for a fan assembly, the nozzle comprising an air inlet; at least one air outlet; an annular inner wall at least partially defining a bore through which air from outside the nozzle is drawn by air emitted from said at least one air outlet; an outer wall extending about a longitudinal axis and about the inner wall; and an interior passage located between the inner wall and the outer wall for conveying air from the air inlet to said at least one air outlet; wherein the interior passage has a first section and a second section each for receiving a respective portion of an air flow entering the interior passage through the air inlet, and for conveying the portions of the air flow in opposite angular directions about the bore; along a flow path extending from a first end to a second end of the section; and wherein the cross-sectional area of the flow path decreases in size about the bore.


The cross-sectional area of each section of the interior passage may decrease step-wise about the bore. Alternatively, the cross-sectional area of each section of the interior passage may decrease gradually, or taper, about the bore.


The nozzle is preferably substantially symmetrical about a plane passing through the air inlet and the centre of the nozzle, and so each section of the interior passage preferably has the same variation in cross-sectional area. For example, the nozzle may have a generally circular, elliptical or “race-track” shape, in which each section of the interior passage comprises a relatively straight section located on a respective side of the bore.


The variation in the cross-sectional area of each section of the interior passage is preferably such that the cross-sectional area decreases in size about the bore from a first end for receiving air from the air inlet to a second end. The cross-sectional area of each section preferably has a minimum value located diametrically opposite the air inlet.


The variation in the cross-sectional area of each section of the interior passage is preferably such that the cross-sectional area has a first value adjacent the air inlet and a second value opposite to the air inlet, and where the first value is at least 1.5 times the second value, and more preferably so that the first value is at least 1.8 times the second value.


The variation in the cross-sectional area of each section of the interior passage may be effected by varying about the bore the radial thickness of each section of the nozzle. In this case, the depth of the nozzle, as measured in a direction extending along the axis of the bore, may be substantially constant about the bore. Alternatively, the depth of the nozzle may also vary about the bore. For example, the depth of each section of the nozzle may decrease from a first value adjacent the air inlet to a second value opposite to the air inlet.


The air inlet may comprise a plurality of sections or apertures through which air enters the interior passage of the nozzle. These sections or apertures may be located adjacent one another, or spaced about the nozzle. The at least one air outlet may be located at or towards the front end of the nozzle. Alternatively, the at least one air outlet may be located towards the rear end of the nozzle. The nozzle may comprise a single air outlet or a plurality of air outlets. In one example, the nozzle comprises a single, annular air outlet surrounding the axis of the bore, and this air outlet may be circular in shape, or otherwise have a shape which matches the shape of the front end of the nozzle. Alternatively, each section of the interior passage may comprise a respective air outlet. For example, where the nozzle has a race track shape each straight section of the nozzle may comprise a respective air outlet. The, or each, air outlet is preferably in the form of a slot. The slot preferably has a width in the range from 0.5 to 5 mm.


The inner wall preferably defines at least a front part of the bore. Each wall may be formed from a single component, but alternatively one or both of the walls may be formed from a plurality of components. The inner wall is preferably eccentric with respect to the outer wall. In other words, the inner wall and the outer wall are preferably not concentric. In one example, the centre, or longitudinal axis, of the inner wall is located above the centre, or longitudinal axis, of the outer wall so that the cross-sectional area of the internal passage decreases from the lower end of the nozzle towards the upper end of the nozzle. This can be a relatively straightforward way of effecting the variation of the cross-section of the nozzle, and so in a second aspect the present invention provides a nozzle for a fan assembly, the nozzle comprising an air inlet, at least one air outlet, an interior passage for conveying air from the air inlet to said at least one air outlet, an annular inner wall, and an outer wall extending about the inner wall, the interior passage being located between the inner wall and the outer wall, the inner wall at least partially defining a bore through which air from outside the nozzle is drawn by air emitted from said at least one air outlet, wherein the inner wall is eccentric with respect to the outer wall.


As discussed above, the cross-sectional area of each section of the nozzle is preferably measured in a series of intersecting planes which each pass through the centre of the outer wall of the nozzle and each contain a longitudinal axis passing through the centre of the outer wall. However, due to the eccentricity of the inner and outer walls the cross-sectional area of each section of the nozzle may be measured in a series of intersecting planes which each pass through the centre of the inner wall of the nozzle and each contain a longitudinal axis passing through the centre of the inner wall. This axis is co-linear with the axis of the bore.


The at least one air outlet is preferably located between the inner wall and the outer wall. For example, the at least one air outlet may be located between overlapping portions of the inner wall and the outer wall. These overlapping portions of the walls may comprise part of an internal surface of the inner wall, and part of an external surface of the outer wall. Alternatively, these overlapping portions of the walls may comprise part of an internal surface of the outer wall, and part of an external surface of the inner wall. A series of spacers may be angularly spaced about one of these parts of the walls for engaging the other wall to control the width of the at least one air outlet. The overlapping portions of the walls are preferably substantially parallel, and so serve to guide the air flow emitted from the nozzle in a selected direction. In one example, the overlapping portions are frusto-conical in shape so that they are inclined relative to the axis of the bore. Depending on the desired profile of the air flow emitted from the nozzle, the overlapping portions may be inclined towards or away from the axis of the bore.


Without wishing to be bound by any theory, we consider that the rate of entrainment of the secondary air flow by the primary air flow may be related to the magnitude of the surface area of the outer profile of the primary air flow emitted from the nozzle. When the primary air flow is outwardly tapering, or flared, the surface area of the outer profile is relatively high, promoting mixing of the primary air flow and the air surrounding the nozzle and thus increasing the flow rate of the combined air flow, whereas when the primary air flow is inwardly tapering, the surface area of the outer profile is relatively low, decreasing the entrainment of the secondary air flow by the primary air flow and so decreasing the flow rate of the combined air flow.


Increasing the flow rate of the combined air flow generated by the nozzle has the effect of decreasing the maximum velocity of the combined air flow. This can make the nozzle suitable for use with a fan assembly for generating a flow of air through a room or an office. On the other hand, decreasing the flow rate of the combined air flow generated by the nozzle has the effect of increasing the maximum velocity of the combined air flow. This can make the nozzle suitable for use with a desk fan or other table-top fan for generating a flow of air for cooling rapidly a user located in front of the fan.


The nozzle may have an annular front wall extending between the inner wall and the outer wall. To reduce the number of components of the nozzle, the front wall is preferably integral with the outer wall. The at least one air outlet may be located adjacent the front wall, for example between the bore and the front wall.


Alternatively, the at least one air outlet may be configured to direct air over the external surface of the inner wall. At least part of the external surface located adjacent to the at least one air outlet may be convex in shape, and provide a Coanda surface over which air emitted from the nozzle is directed.


The air inlet is preferably defined by the outer wall of the nozzle, and is preferably located at the lower end of the nozzle.


The present invention also provides a fan assembly comprising an impeller, a motor for rotating the impeller to generate an air flow, and a nozzle as aforementioned for receiving the air flow. The nozzle is preferably mounted on a base housing the impeller and the motor.


Features described above in connection with the first aspect of the invention are equally applicable to the second aspect of the invention, and vice versa.





BRIEF DESCRIPTION OF THE INVENTION

An embodiment of the present invention will now be described, by way of example only, with reference to the accompanying drawings, in which:



FIG. 1 is a front perspective view, from above, of a first embodiment of a fan assembly;



FIG. 2 is a front view of the fan assembly;



FIG. 3(a) is a left side cross-section view, taken along line E-E in FIG. 2;



FIG. 3(b) is a cross-sectional view through one section of the nozzle of the fan assembly, taken along line A-A in FIG. 2;



FIG. 3(c) is a cross-sectional view through one section of the nozzle of the fan assembly, taken along line B-B in FIG. 2;



FIG. 3(d) is a cross-sectional view through one section of the nozzle of the fan assembly, taken along line C-C in FIG. 2.



FIG. 4 is a front perspective view, from above, of a second embodiment of a fan assembly;



FIG. 5 is a front view of the fan assembly of FIG. 4;



FIG. 6(a) is a left side cross-section view, taken along line E-E in FIG. 5;



FIG. 6(b) is a cross-sectional view through one section of the nozzle of the fan assembly, taken along line A-A in FIG. 5;



FIG. 6(c) is a cross-sectional view through one section of the nozzle of the fan assembly, taken along line B-B in FIG. 5; and



FIG. 6(d) is a cross-sectional view through one section of the nozzle of the fan assembly, taken along line C-C in FIG. 5.





DETAILED DESCRIPTION OF THE INVENTION


FIGS. 1 and 2 are external views of a first embodiment of a fan assembly 10. The fan assembly 10 comprises a body 12 comprising an air inlet 14 through which a primary air flow enters the fan assembly 10, and an annular nozzle 16 mounted on the body 12. The nozzle 16 comprises an air outlet 18 for emitting the primary air flow from the fan assembly 10.


The body 12 comprises a substantially cylindrical main body section 20 mounted on a substantially cylindrical lower body section 22. The main body section 20 and the lower body section 22 preferably have substantially the same external diameter so that the external surface of the upper body section 20 is substantially flush with the external surface of the lower body section 22. In this embodiment the body 12 has a height in the range from 100 to 300 mm, and a diameter in the range from 100 to 200 mm.


The main body section 20 comprises the air inlet 14 through which the primary air flow enters the fan assembly 10. In this embodiment the air inlet 14 comprises an array of apertures formed in the main body section 20. Alternatively, the air inlet 14 may comprise one or more grilles or meshes mounted within windows formed in the main body section 20. The main body section 20 is open at the upper end (as illustrated) thereof to provide an air outlet 23 (shown in FIG. 3(a)) through which the primary air flow is exhausted from the body 12.


The main body section 20 may be tilted relative to the lower body section 22 to adjust the direction in which the primary air flow is emitted from the fan assembly 10. For example, the upper surface of the lower body section 22 and the lower surface of the main body section 20 may be provided with interconnecting features which allow the main body section 20 to move relative to the lower body section 22 while preventing the main body section 20 from being lifted from the lower body section 22. For example, the lower body section 22 and the main body section 20 may comprise interlocking L-shaped members.


The lower body section 22 comprises a user interface of the fan assembly 10. The user interface comprises a plurality of user-operable buttons 24, 26, a dial 28 for enabling a user to control various functions of the fan assembly 10, and a user interface control circuit 30 connected to the buttons 24, 26 and the dial 28. The lower body section 22 is mounted on a base 32 for engaging a surface on which the fan assembly 10 is located.



FIG. 3(a) illustrates a sectional view through the fan assembly 10. The lower body section 22 houses a main control circuit, indicated generally at 34, connected to the user interface control circuit 30. In response to operation of the buttons 24, 26 and the dial 28, the user interface control circuit 30 is arranged to transmit appropriate signals to the main control circuit 34 to control various operations of the fan assembly 10.


The lower body section 22 also houses a mechanism, indicated generally at 36, for oscillating the lower body section 22 relative to the base 32. The operation of the oscillating mechanism 36 is controlled by the main control circuit 34 in response to the user operation of the button 26. The range of each oscillation cycle of the lower body section 22 relative to the base 32 is preferably between 60° and 120°, and in this embodiment is around 80°. In this embodiment, the oscillating mechanism 36 is arranged to perform around 3 to 5 oscillation cycles per minute. A mains power cable (not shown) for supplying electrical power to the fan assembly 10 extends through an aperture 38 formed in the base 32. The cable is connected to a plug for connection to a mains power supply.


The main body section 20 houses an impeller 40 for drawing the primary air flow through the air inlet 14 and into the body 12. Preferably, the impeller 40 is in the form of a mixed flow impeller. The impeller 40 is connected to a rotary shaft 42 extending outwardly from a motor 44. In this embodiment, the motor 44 is a DC brushless motor having a speed which is variable by the main control circuit 34 in response to user manipulation of the dial 28. The maximum speed of the motor 44 is preferably in the range from 5,000 to 10,000 rpm. The motor 44 is housed within a motor bucket comprising an upper portion 46 connected to a lower portion 48. The upper portion 46 of the motor bucket comprises a diffuser 50 in the form of an annular disc having curved blades.


The motor bucket is located within, and mounted on, a generally frusto-conical impeller housing 52. The impeller housing 52 is, in turn, mounted on a plurality of angularly spaced supports 54, in this example three supports, located within and connected to the main body section 20 of the base 12. The impeller 40 and the impeller housing 52 are shaped so that the impeller 40 is in close proximity to, but does not contact, the inner surface of the impeller housing 52. A substantially annular inlet member 56 is connected to the bottom of the impeller housing 52 for guiding the primary air flow into the impeller housing 52. An electrical cable 58 passes from the main control circuit 34 to the motor 44 through apertures formed in the main body section 20 and the lower body section 22 of the body 12, and in the impeller housing 52 and the motor bucket.


Preferably, the body 12 includes silencing foam for reducing noise emissions from the body 12. In this embodiment, the main body section 20 of the body 12 comprises a first foam member 60 located beneath the air inlet 14, and a second annular foam member 62 located within the motor bucket.


A flexible sealing member 64 is mounted on the impeller housing 52. The flexible sealing member prevents air from passing around the outer surface of the impeller housing 52 to the inlet member 56. The sealing member 64 preferably comprises an annular lip seal, preferably formed from rubber. The sealing member 64 further comprises a guide portion in the form of a grommet for guiding the electrical cable 58 to the motor 44.


Returning to FIGS. 1 and 2, the nozzle 16 has an annular shape. The nozzle 16 comprises an outer wall 70 extending about an annular inner wall 72. In this example, each of the walls 70, 72 is formed from a separate component. The nozzle 16 also has a front wall 74 and a rear wall 76, which in this example are integral with the outer wall 70. A rear end of the inner wall 72 is connected to the rear wall 76, for example using an adhesive.


The inner wall 72 extends about a bore axis, or longitudinal axis, X to define a bore 78 of the nozzle 16. The bore 78 has a generally circular cross-section which varies in diameter along the bore axis X from the rear wall 76 of the nozzle 16 to the front wall 74 of the nozzle 16. In this example, the inner wall 72 has an annular rear section 80 and an annular front section 82 which each extend about the bore 78. The rear section 80 has a frusto-conical shape, and tapers outwardly from the rear wall 76 away from the bore axis X. The front section 82 also has a frusto-conical shape, but tapers inwardly towards the bore axis X. The angle of inclination of the front section 82 relative to the bore axis X is preferably in the range from −20 to 20°, and in this example is around 8°.


As mentioned above, the front wall 74 and the rear wall 76 of the nozzle 16 may be integral with the outer wall 70. The end section 84 of the outer wall 70 which is located adjacent to the inner wall 72 is shaped to extend about, or overlap, the front section 82 of the inner wall 72 to define the air outlet 18 of the nozzle 16 between the outer surface of the outer wall 70 and the inner surface of the inner wall 72. The end section 84 of the outer wall 70 is substantially parallel to the front section 82 of the inner wall 72, and so also tapers inwardly towards the bore axis X at an angle of around 8°. The air outlet 18 of the nozzle 16 is thus located between the walls 70, 72 of the nozzle 16, and is located towards the front end of the nozzle 16. The air outlet 18 is in the form of a generally circular slot centred on, and extending about, the bore axis X. The width of the slot is preferably substantially constant about the bore axis X, and is in the range from 0.5 to 5 mm. A series of angularly spaced spacers 86 may be provided on one of the facing surfaces of the sections 82, 84 to engage the other facing surface to maintain a regular spacing between these facing surfaces. For example, the inner wall 72 may be connected to the outer wall 70 so that, in the absence of the spacers 86, the facing surfaces would make contact, and so the spacers 86 also serve to urge the facing surfaces apart.


The outer wall 70 comprises a base 88 which is connected to the open upper end 23 of the main body section 20 of the body 12, and which has an open lower end which provides an air inlet for receiving the primary air flow from the body 12. The remainder of the outer wall 70 is generally cylindrical shape, and extends about a central axis, or longitudinal axis, Y which is parallel to, but spaced from, the bore axis X. In other words, the outer wall 70 and the inner wall 72 are eccentric. In this example, the bore axis X is located above the central axis Y, with each of the axes X, Y being located in a plane E-E, illustrated in FIG. 2, which extends vertically through the centre of the fan assembly 10.


The outer wall 70 and the inner wall 72 define an interior passage 90 for conveying air from the air inlet 88 to the air outlet 18. The interior passage 90 extends about the bore 78 of the nozzle 16. In view of the eccentricity of the walls 70, 72 of the nozzle 16, the cross-sectional area of the interior passage 90 varies about the bore 78. The interior passage 90 may be considered to comprise first and second curved sections, indicated generally at 92 and 94 in FIGS. 1 and 2, which each extend in opposite angular directions about the bore 78. With reference also to FIGS. 3(a) to 3(d), each section 92, 94 of the interior passage 90 has a cross-sectional area which decreases in size about the bore 78. The cross-sectional area of each section 92, 94 decreases from a first value A1 located adjacent the air inlet of the nozzle 16 to a second value A2 located diametrically opposite the air inlet, and where the two sections 92, 94 are joined. The relative positions of the axes X, Y are such that each section 92, 94 of the interior passage 90 has the same variation in cross-sectional area about the bore 78, with the cross-sectional area of each section 92, 94 decreasing gradually from the first value A1 to the second value A2. The variation in the cross-sectional area of the interior passage 90 is preferably such that A1≧1.5A2, and more preferably such that A1≧1.8A2. As shown in FIGS. 3(b) to 3(d), the variation in the cross-sectional area of each section 92, 94 is effected by a variation in the radial thickness of each section 92, 94 about the bore 78; the depth of the nozzle 16, as measured in a direction extending along the axes X, Y is relatively constant about the bore 78. In one example, A1≈2500 mm2 and A2≈1300 mm2. In another example, A1≈1800 mm2 and A2≈800 mm2.


To operate the fan assembly 10 the user presses button 24 of the user interface. The user interface control circuit 30 communicates this action to the main control circuit 34, in response to which the main control circuit 34 activates the motor 44 to rotate the impeller 40. The rotation of the impeller 40 causes a primary air flow to be drawn into the body 12 through the air inlet 14. The user may control the speed of the motor 44, and therefore the rate at which air is drawn into the body 12 through the air inlet 14, by manipulating the dial 28 of the user interface. Depending on the speed of the motor 44, the primary air flow generated by the impeller 40 may be between 10 and 30 liters per second. The primary air flow passes sequentially through the impeller housing 52 and the air outlet 23 at the open upper end of the main body portion 20 to enter the interior passage 90 of the nozzle 16 via the air inlet located in the base 88 of the nozzle 16.


Within the interior passage 90, the primary air flow is divided into two air streams which pass in opposite angular directions around the bore 78 of the nozzle 16, each within a respective section 92, 94 of the interior passage 90. As the air streams pass through the interior passage 90, air is emitted through the air outlet 18. The emission of the primary air flow from the air outlet 18 causes a secondary air flow to be generated by the entrainment of air from the external environment, specifically from the region around the nozzle 16. This secondary air flow combines with the primary air flow to produce a combined, or total, air flow, or air current, projected forward from the nozzle 16.


The increase in the cross-sectional area of the interior passage 90 adjacent to the air inlet can reduce the velocity at which the primary air flow is emitted from the lower end of the nozzle 16, which in turn can reduce the angle, relative to the bore axis X, at which the air flow is emitted from this portion of the interior passage 90. The gradual reduction about the bore 78 in the cross-sectional area of each section 92, 94 of the interior passage 90 can have the effect of minimising any variation in the angle at which the primary air flow is emitted from the nozzle 16. The variation in the cross-sectional area of the interior passage 90 about the bore 78 thus reduces turbulence in the combined air flow experienced by the user.



FIGS. 4 and 5 are external views of a second embodiment of a fan assembly 100. The fan assembly 100 comprises a body 12 comprising an air inlet 14 through which a primary air flow enters the fan assembly 10, and an annular nozzle 102 mounted on the body 12. The nozzle 102 comprises an air outlet 104 for emitting the primary air flow from the fan assembly 100. The body 12 is the same as the body 12 of the fan assembly 10, and so will not be described again in detail here.


The nozzle 102 has an annular shape. The nozzle 102 comprises an outer wall 106 extending about an annular inner wall 108. In this example, each of the walls 106, 108 is formed from a separate component. Each of the walls 106, 108 has a front end and a rear end. The rear end of the outer wall 106 curves inwardly towards the rear end of the inner wall 108 to define a rear end of the nozzle 102. The front end of the inner wall 108 is folded outwardly towards the front end of the outer wall 106 to define a front end of the nozzle 102. The front end of the outer wall 106 is inserted into a slot located at the front end of the inner wall 108, and is connected to the inner wall 108 using an adhesive introduced to the slot.


The inner wall 108 extends about a bore axis, or longitudinal axis, X to define a bore 110 of the nozzle 102. The bore 110 has a generally circular cross-section which varies in diameter along the bore axis X from the rear end of the nozzle 102 to the front end of the nozzle 102.


The inner wall 108 is shaped so that the external surface of the inner wall 108, that is, the surface that defines the bore 110, has a number of sections. The external surface of the inner wall 108 has a convex rear section 112, an outwardly flared frusto-conical front section 114 and a cylindrical section 116 located between the rear section 112 and the front section 114.


The outer wall 106 comprises a base 118 which is connected to the open upper end 23 of the main body section 20 of the body 12, and which has an open lower end which provides an air inlet for receiving the primary air flow from the body 12. The majority of the outer wall 106 is generally cylindrical shape. The outer wall 106 extends about a central axis, or longitudinal axis, Y which is parallel to, but spaced from, the bore axis X. In other words, the outer wall 106 and the inner wall 108 are eccentric. In this example, the bore axis X is located above the central axis Y, with each of the axes X, Y being located in a plane E-E, illustrated in FIG. 5, which extends vertically through the centre of the fan assembly 100.


The rear end of the outer wall 106 is shaped to overlap the rear end of the inner wall 108 to define the air outlet 104 of the nozzle 102 between the inner surface of the outer wall 106 and the outer surface of the inner wall 108. The air outlet 104 is in the form of a generally circular slot centred on, and extending about, the bore axis X. The width of the slot is preferably substantially constant about the bore axis X, and is in the range from 0.5 to 5 mm. The overlapping portions 120, 122 of the outer wall 106 and the inner wall 108 are substantially parallel, and are arranged to direct air over the convex rear section 112 of the inner wall 108, which provides a Coanda surface of the nozzle 102. A series of angularly spaced spacers 124 may be provided on one of the facing surfaces of the overlapping portions 120, 122 of the outer wall 106 and the inner wall 108 to engage the other facing surface to maintain a regular spacing between these facing surfaces.


The outer wall 106 and the inner wall 108 define an interior passage 126 for conveying air from the air inlet 88 to the air outlet 104. The interior passage 126 extends about the bore 110 of the nozzle 102. In view of the eccentricity of the walls 106, 108 of the nozzle 102, the cross-sectional area of the interior passage 126 varies about the bore 110. The interior passage 126 may be considered to comprise first and second curved sections, indicated generally at 128 and 130 in FIGS. 4 and 5, which each extend in opposite angular directions about the bore 110. With reference also to FIGS. 6(a) to 6(d), similar to the first embodiment each section 128, 130 of the interior passage 126 has a cross-sectional area which decreases in size about the bore 110. The cross-sectional area of each section 128, 130 decreases from a first value A1 located adjacent the air inlet of the nozzle 102 to a second value A2 located diametrically opposite the air inlet, and where ends of the two sections 128, 130 are joined. The relative positions of the axes X, Y are such that each section 128, 130 of the interior passage 126 has the same variation in cross-sectional area about the bore 110, with the cross-sectional area of each section 128, 130 decreasing gradually from the first value A1 to the second value A2. The variation in the cross-sectional area of the interior passage 126 is preferably such that A1≧1.5A2, and more preferably such that A1≧1.8A2. As shown in FIGS. 6(b) to 6(d), the variation in the cross-sectional area of each section 128, 130 is effected by a variation in the radial thickness of each section 128, 130 about the bore 110; the depth of the nozzle 102, as measured in a direction extending along the axes X, Y is relatively constant about the bore 110. In one example, A1≈2200 mm2 and A2≈1200 mm2.


The operation of the fan assembly 100 is the same as that of the fan assembly 10. A primary air flow is drawn through the air inlet 14 of the base 12 through rotation of the impeller 40 by the motor 44. The primary air flow passes sequentially through the impeller housing 52 and the air outlet 23 at the open upper end of the main body portion 20 to enter the interior passage 126 of the nozzle 102 via the air inlet located in the base 118 of the nozzle 102.


Within the interior passage 126, the primary air flow is divided into two air streams which pass in opposite angular directions around the bore 110 of the nozzle 102, each within a respective section 128, 130 of the interior passage 126. As the air streams pass through the interior passage 126, air is emitted through the air outlet 104. The emission of the primary air flow from the air outlet 104 causes a secondary air flow to be generated by the entrainment of air from the external environment, specifically from the region around the nozzle 102. This secondary air flow combines with the primary air flow to produce a combined, or total, air flow, or air current, projected forward from the nozzle 102. In this embodiment, the variation in the cross-sectional area of the interior passage 126 about the bore 110 can minimise the variation in the static pressure about the interior passage 126.


In summary, a nozzle for a fan assembly has an air inlet, an air outlet, and an interior passage for conveying air from the air inlet to the air outlet. The interior passage is located between an annular inner wall, and an outer wall extending about the inner wall. The inner wall at least partially defines a bore through which air from outside the nozzle is drawn by air emitted from the air outlet. The cross-sectional area of the interior passage varies about the bore. The variation in the cross-sectional area of the interior passage can control the direction in which air is emitted from around the air outlet to reduce turbulence in the air flow generated by the fan assembly. The variation in the cross-sectional area of the interior passage may be achieved by arranging the inner wall so that it is eccentric with respect to the outer wall.

Claims
  • 1. A nozzle for a fan assembly, the nozzle comprising: an air inlet;at least one air outlet;an annular inner wall at least partially defining a bore through which air from outside the nozzle is drawn by air emitted from said at least one air outlet, wherein the inner wall comprises an outwardly flared frusto-conical front section;an outer wall extending about a longitudinal axis and about the inner wall; andan interior passage located between the inner wall and the outer wall for conveying air from the air inlet to said at least one air outlet;wherein the interior passage has a first section and a second section each for receiving a respective portion of an air flow entering the interior passage through the air inlet, and for conveying the portions of the air flow in opposite angular directions about the bore;and wherein each section of the interior passage has a cross-sectional area formed from the intersection with the interior passage of a plane which extends through and contains the longitudinal axis of the outer wall, wherein the cross-sectional area of each section of the interior passage decreases in size about the bore and a length of the outwardly flared frusto-conical front section in a radial direction from the longitudinal axis decreases in size about the bore.
  • 2. The nozzle of claim 1, wherein the cross-sectional area of each section of the interior passage tapers about the bore.
  • 3. The nozzle of claim 1, wherein each section of the interior passage has the same variation in cross-sectional area.
  • 4. The nozzle of claim 1, wherein the cross-sectional area of each section of the interior passage decreases in size about the bore from a first end for receiving air from the air inlet to a second end.
  • 5. The nozzle of claim 1, wherein the cross-sectional area of each section has a minimum value located diametrically opposite the air inlet.
  • 6. The nozzle of claim 1, wherein the cross-sectional area of each section has a first value located adjacent the air inlet and a second value located diametrically opposite the air inlet, and wherein the first value is at least 1.5 times the second value.
  • 7. The nozzle of claim 6, wherein the first value is at least 1.8 times the second value.
  • 8. The nozzle of claim 1, wherein each section of the nozzle has a substantially constant depth about the bore.
  • 9. The nozzle of claim 1, wherein the inner wall is eccentric with respect to the outer wall.
  • 10. A nozzle for a fan assembly, the nozzle comprising: an air inlet;at least one air outlet;an interior passage for conveying air from the air inlet to said at least one air outlet;an annular inner wall comprising an outwardly flared frusto-conical front section; andan outer wall extending about a longitudinal axis and about the inner wall, the interior passage being located between the inner wall and the outer wall, the inner wall at least partially defining a bore through which air from outside the nozzle is drawn by air emitted from said at least one air outlet;wherein the inner wall is eccentric with respect to the outer wall, the nozzle has a substantially constant depth about the bore, and a length of the outwardly flared frusto-conical front section in a radial direction from the longitudinal axis decreases in size about the bore.
  • 11. The nozzle of claim 10, wherein each of the inner wall and the outer wall extends about a respective longitudinal axis, and wherein the longitudinal axis of the outer wall is located between the air inlet and the longitudinal axis of the inner wall.
  • 12. The nozzle of claim 11, wherein the longitudinal axis of the inner wall is located vertically above the longitudinal axis of the outer wall.
  • 13. The nozzle of claim 10, wherein the interior passage has a cross-sectional area which varies in size about the bore.
  • 14. The nozzle of claim 13, wherein the cross-sectional area of the interior passage has a minimum value located diametrically opposite the air inlet.
  • 15. The nozzle of claim 13, wherein the cross-sectional area of the interior passage has a first value located adjacent the air inlet and a second value located diametrically opposite the air inlet, and wherein the first value is at least 1.5 times the second value.
  • 16. The nozzle of claim 15, wherein the first value is at least 1.8 times the second value.
  • 17. The nozzle of claim 10, wherein the nozzle has a radial thickness which varies in size about the bore.
Priority Claims (2)
Number Date Country Kind
1119500.5 Nov 2011 GB national
1205576.0 Mar 2012 GB national
US Referenced Citations (305)
Number Name Date Kind
284962 Huston Sep 1883 A
1357261 Svoboda Nov 1920 A
1767060 Ferguson Jun 1930 A
1896869 Larsh Feb 1933 A
2014185 Martin Sep 1935 A
2035733 Wall Mar 1936 A
2071266 Schmidt Feb 1937 A
D103476 Weber Mar 1937 S
2115883 Sher May 1938 A
D115344 Chapman Jun 1939 S
2210458 Keilholtz Aug 1940 A
2258961 Saathoff Oct 1941 A
2295502 Lamb Sep 1942 A
2336295 Reimuller Dec 1943 A
2363839 Demuth Nov 1944 A
2433795 Stokes Dec 1947 A
2473325 Aufiero Jun 1949 A
2476002 Stalker Jul 1949 A
2488467 De Lisio Nov 1949 A
2510132 Morrison Jun 1950 A
2544379 Davenport Mar 1951 A
2547448 Demuth Apr 1951 A
2583374 Hoffman Jan 1952 A
2620127 Radcliffe Dec 1952 A
2711682 Drechsel Jun 1955 A
2765977 Morrison Oct 1956 A
2808198 Morrison Oct 1957 A
2813673 Smith Nov 1957 A
2830779 Wentling Apr 1958 A
2838229 Belanger Jun 1958 A
2922277 Berlin Jan 1960 A
2922570 Allen Jan 1960 A
3004403 Laporte Oct 1961 A
3047208 Coanda Jul 1962 A
3270655 Guirl et al. Sep 1966 A
D206973 De Lisio Feb 1967 S
3503138 Fuchs et al. Mar 1970 A
3518776 Wolff et al. Jul 1970 A
3724092 McCleerey Apr 1973 A
3729934 Denning et al. May 1973 A
3743186 Mocarski Jul 1973 A
3795367 Mocarski Mar 1974 A
3872916 Beck Mar 1975 A
3875745 Franklin Apr 1975 A
3885891 Throndson May 1975 A
3943329 Hlavac Mar 1976 A
4037991 Taylor Jul 1977 A
4046492 Inglis Sep 1977 A
4061188 Beck Dec 1977 A
4073613 Desty Feb 1978 A
4090814 Teodorescu et al. May 1978 A
4113416 Kataoka et al. Sep 1978 A
4136735 Beck et al. Jan 1979 A
4173995 Beck Nov 1979 A
4180130 Beck et al. Dec 1979 A
4184417 Chancellor Jan 1980 A
4184541 Beck et al. Jan 1980 A
4192461 Arborg Mar 1980 A
4332529 Alperin Jun 1982 A
4336017 Desty Jun 1982 A
4342204 Melikian et al. Aug 1982 A
4448354 Reznick et al. May 1984 A
4568243 Schubert et al. Feb 1986 A
4630475 Mizoguchi Dec 1986 A
4643351 Fukamachi et al. Feb 1987 A
4703152 Shih-Chin Oct 1987 A
4716946 Grigoletto Jan 1988 A
4718870 Watts Jan 1988 A
4732539 Shin-Chin Mar 1988 A
4734017 Levin Mar 1988 A
4790133 Stuart Dec 1988 A
4850804 Huang Jul 1989 A
4878620 Tarleton Nov 1989 A
4893990 Tomohiro et al. Jan 1990 A
4978281 Conger Dec 1990 A
5061405 Stanek et al. Oct 1991 A
D325435 Coup et al. Apr 1992 S
5110266 Toyoshima et al. May 1992 A
5168722 Brock Dec 1992 A
5176856 Takahashi et al. Jan 1993 A
5188508 Scott et al. Feb 1993 A
D343231 Lim Jan 1994 S
5296769 Havens et al. Mar 1994 A
D346017 Lim Apr 1994 S
5310313 Chen May 1994 A
5317815 Hwang Jun 1994 A
5338495 Steiner et al. Aug 1994 A
5402938 Sweeney Apr 1995 A
5407324 Starnes, Jr. et al. Apr 1995 A
5425902 Miller et al. Jun 1995 A
5435489 Jenkins et al. Jul 1995 A
5483616 Chiu et al. Jan 1996 A
5518370 Wang et al. May 1996 A
D374712 Jane et al. Oct 1996 S
5609473 Litvin Mar 1997 A
5645769 Tamaru et al. Jul 1997 A
5649370 Russo Jul 1997 A
D382951 Deines et al. Aug 1997 S
5671321 Bagnuolo Sep 1997 A
5677982 Levine et al. Oct 1997 A
5735683 Muschelknautz Apr 1998 A
5762034 Foss Jun 1998 A
5762661 Kleinberger et al. Jun 1998 A
5783117 Byassee et al. Jul 1998 A
5794306 Firdaus Aug 1998 A
D398983 Keller et al. Sep 1998 S
5841080 Iida et al. Nov 1998 A
5843344 Junkel et al. Dec 1998 A
5859952 Levine et al. Jan 1999 A
5862037 Behl Jan 1999 A
5868197 Potier Feb 1999 A
5881685 Foss et al. Mar 1999 A
D415271 Feer Oct 1999 S
6015274 Bias et al. Jan 2000 A
D423663 Rossman et al. Apr 2000 S
6073881 Chen Jun 2000 A
D429808 Krauss et al. Aug 2000 S
6123618 Day Sep 2000 A
6155782 Hsu Dec 2000 A
D435899 Melwani Jan 2001 S
6254337 Arnold Jul 2001 B1
6269549 Carlucci et al. Aug 2001 B1
6278248 Hong et al. Aug 2001 B1
6282746 Schleeter Sep 2001 B1
6293121 Labrador Sep 2001 B1
6321034 Jones-Lawlor et al. Nov 2001 B2
6386845 Bedard May 2002 B1
6480672 Rosenzweig et al. Nov 2002 B1
6599088 Stagg Jul 2003 B2
6604694 Kordas et al. Aug 2003 B1
D483851 Fok Dec 2003 S
D485895 Melwani Jan 2004 S
D486903 Chiang Feb 2004 S
6789787 Stutts Sep 2004 B2
6791056 VanOtteren et al. Sep 2004 B2
6830433 Birdsell et al. Dec 2004 B2
6845971 Bachert Jan 2005 B2
D512772 Lee Dec 2005 S
D513067 Blateri Dec 2005 S
7059826 Lasko Jun 2006 B2
7088913 Verhoorn et al. Aug 2006 B1
7147336 Chou Dec 2006 B1
D539414 Russak et al. Mar 2007 S
7192258 Kuo et al. Mar 2007 B2
7198473 Stickland et al. Apr 2007 B2
7412781 Mattinger et al. Aug 2008 B2
7478993 Hong et al. Jan 2009 B2
7540474 Huang et al. Jun 2009 B1
D595835 Fu Jul 2009 S
D598532 Dyson et al. Aug 2009 S
D602143 Gammack et al. Oct 2009 S
D602144 Dyson et al. Oct 2009 S
D605748 Gammack et al. Dec 2009 S
7660110 Vinson et al. Feb 2010 B2
7664377 Liao Feb 2010 B2
D614280 Dyson et al. Apr 2010 S
7731050 Parks et al. Jun 2010 B2
7775848 Auerbach Aug 2010 B1
7806388 Junkel et al. Oct 2010 B2
7841045 Shaanan et al. Nov 2010 B2
D633997 Hideharu et al. Mar 2011 S
D633999 Hideharu et al. Mar 2011 S
7931449 Fitton et al. Apr 2011 B2
D638114 Li et al. May 2011 S
D643098 Wallace et al. Aug 2011 S
8002520 Dawson et al. Aug 2011 B2
D646373 Liebson et al. Oct 2011 S
8092166 Nicolas et al. Jan 2012 B2
8113490 Chen Feb 2012 B2
8152495 Boggess, Jr. et al. Apr 2012 B2
8246317 Gammack Aug 2012 B2
D669164 Hsu Oct 2012 S
8308445 Gammack et al. Nov 2012 B2
D672023 Wallace et al. Dec 2012 S
D672024 Fitton et al. Dec 2012 S
8348629 Fitton et al. Jan 2013 B2
8356804 Fitton et al. Jan 2013 B2
D678993 Kung-Hua Mar 2013 S
8403640 Gammack et al. Mar 2013 B2
8408869 Hutton et al. Apr 2013 B2
D681793 Li May 2013 S
D684249 Herbst Jun 2013 S
8454322 Gammack et al. Jun 2013 B2
8469660 Dyson et al. Jun 2013 B2
8529226 Li Sep 2013 B2
8544826 Ediger et al. Oct 2013 B2
D700959 Sickinger et al. Mar 2014 S
8684687 Dyson et al. Apr 2014 B2
D705415 Lo May 2014 S
8721286 Gammack et al. May 2014 B2
8721307 Li May 2014 B2
8764412 Gammack et al. Jul 2014 B2
8783663 Fitton et al. Jul 2014 B2
8784071 Gammack Jul 2014 B2
20020104972 Guzorek Aug 2002 A1
20020106547 Sugawara et al. Aug 2002 A1
20030059307 Moreno et al. Mar 2003 A1
20030164367 Bucher et al. Sep 2003 A1
20030171093 Gumucio Del Pozo Sep 2003 A1
20030190183 Hsing Oct 2003 A1
20040022631 Birdsell et al. Feb 2004 A1
20040049842 Prehodka Mar 2004 A1
20040106370 Honda et al. Jun 2004 A1
20040149881 Allen Aug 2004 A1
20050031448 Lasko et al. Feb 2005 A1
20050053465 Roach et al. Mar 2005 A1
20050069407 Winkler et al. Mar 2005 A1
20050128698 Huang Jun 2005 A1
20050163670 Alleyne et al. Jul 2005 A1
20050173997 Schmid et al. Aug 2005 A1
20050281672 Parker et al. Dec 2005 A1
20060172682 Orr et al. Aug 2006 A1
20060199515 Lasko et al. Sep 2006 A1
20060263073 Clarke et al. Nov 2006 A1
20060279927 Strohm Dec 2006 A1
20070035189 Matsumoto Feb 2007 A1
20070041857 Fleig Feb 2007 A1
20070065280 Fok Mar 2007 A1
20070166160 Russak et al. Jul 2007 A1
20070176502 Kasai et al. Aug 2007 A1
20070224044 Hong et al. Sep 2007 A1
20070237500 Wang Oct 2007 A1
20070269323 Zhou et al. Nov 2007 A1
20080020698 Spaggiari Jan 2008 A1
20080124060 Gao May 2008 A1
20080152482 Patel Jun 2008 A1
20080166224 Giffin Jul 2008 A1
20080286130 Purvines Nov 2008 A1
20080314250 Cowie et al. Dec 2008 A1
20090026850 Fu Jan 2009 A1
20090032130 Dumas et al. Feb 2009 A1
20090039805 Tang Feb 2009 A1
20090060710 Gammack et al. Mar 2009 A1
20090060711 Gammack et al. Mar 2009 A1
20090078120 Kummer et al. Mar 2009 A1
20090120925 Lasko May 2009 A1
20090191054 Winkler Jul 2009 A1
20090214341 Craig Aug 2009 A1
20100133707 Huang Jun 2010 A1
20100150699 Nicolas et al. Jun 2010 A1
20100162011 Min Jun 2010 A1
20100171465 Seal et al. Jul 2010 A1
20100225012 Fitton Sep 2010 A1
20100226749 Gammack et al. Sep 2010 A1
20100226750 Gammack Sep 2010 A1
20100226751 Gammack et al. Sep 2010 A1
20100226752 Gammack et al. Sep 2010 A1
20100226753 Dyson et al. Sep 2010 A1
20100226754 Hutton et al. Sep 2010 A1
20100226758 Cookson et al. Sep 2010 A1
20100226763 Gammack et al. Sep 2010 A1
20100226764 Gammack et al. Sep 2010 A1
20100226769 Helps Sep 2010 A1
20100226771 Crawford et al. Sep 2010 A1
20100226787 Gammack et al. Sep 2010 A1
20100226797 Fitton et al. Sep 2010 A1
20100226801 Gammack Sep 2010 A1
20100254800 Fitton et al. Oct 2010 A1
20110058935 Gammack et al. Mar 2011 A1
20110110805 Gammack et al. May 2011 A1
20110164959 Fitton et al. Jul 2011 A1
20110223014 Crawford et al. Sep 2011 A1
20110223015 Gammack et al. Sep 2011 A1
20110236228 Fitton et al. Sep 2011 A1
20120031509 Wallace et al. Feb 2012 A1
20120033952 Wallace et al. Feb 2012 A1
20120034108 Wallace et al. Feb 2012 A1
20120039705 Gammack Feb 2012 A1
20120045315 Gammack Feb 2012 A1
20120045316 Gammack Feb 2012 A1
20120057959 Hodgson et al. Mar 2012 A1
20120082561 Gammack et al. Apr 2012 A1
20120093629 Fitton et al. Apr 2012 A1
20120093630 Fitton et al. Apr 2012 A1
20120114513 Simmonds et al. May 2012 A1
20120230658 Fitton et al. Sep 2012 A1
20120308375 Gammack Dec 2012 A1
20130011252 Crawford et al. Jan 2013 A1
20130026664 Staniforth et al. Jan 2013 A1
20130028763 Staniforth et al. Jan 2013 A1
20130028766 Staniforth et al. Jan 2013 A1
20130142676 Zou Jun 2013 A1
20130161842 Fitton et al. Jun 2013 A1
20130199372 Nock et al. Aug 2013 A1
20130234346 Staniforth et al. Sep 2013 A1
20130234347 Staniforth et al. Sep 2013 A1
20130249122 Staniforth et al. Sep 2013 A1
20130249124 Staniforth et al. Sep 2013 A1
20130249126 Staniforth et al. Sep 2013 A1
20130272858 Stickney et al. Oct 2013 A1
20130280051 Nicolas et al. Oct 2013 A1
20130280061 Stickney Oct 2013 A1
20130280096 Gammack et al. Oct 2013 A1
20130309065 Johnson et al. Nov 2013 A1
20130309080 Johnson et al. Nov 2013 A1
20130323100 Poulton et al. Dec 2013 A1
20130336771 Dyson et al. Dec 2013 A1
20140017069 Peters Jan 2014 A1
20140077398 Staniforth et al. Mar 2014 A1
20140079566 Gammack et al. Mar 2014 A1
20140084492 Staniforth et al. Mar 2014 A1
20140210114 Staniforth et al. Jul 2014 A1
20140210115 Staniforth et al. Jul 2014 A1
20140255173 Poulton et al. Sep 2014 A1
20140255217 Li Sep 2014 A1
Foreign Referenced Citations (278)
Number Date Country
560119 Aug 1957 BE
1055344 May 1979 CA
2155482 Sep 1996 CA
346643 May 1960 CH
2085866 Oct 1991 CN
2111392 Jul 1992 CN
2549372 May 2003 CN
1437300 Aug 2003 CN
2650005 Oct 2004 CN
2713643 Jul 2005 CN
1680727 Oct 2005 CN
2833197 Nov 2006 CN
201011346 Jan 2008 CN
201147215 Nov 2008 CN
201180678 Jan 2009 CN
201221477 Apr 2009 CN
101424279 May 2009 CN
101451754 Jun 2009 CN
201281416 Jul 2009 CN
201349269 Nov 2009 CN
101684828 Mar 2010 CN
201486901 May 2010 CN
101749288 Jun 2010 CN
201502549 Jun 2010 CN
201507461 Jun 2010 CN
101825096 Sep 2010 CN
101825101 Sep 2010 CN
101825102 Sep 2010 CN
101825103 Sep 2010 CN
101825104 Sep 2010 CN
201568337 Sep 2010 CN
101858355 Oct 2010 CN
101936310 Jan 2011 CN
201696365 Jan 2011 CN
201696366 Jan 2011 CN
201739198 Feb 2011 CN
201739199 Feb 2011 CN
101984299 Mar 2011 CN
101985948 Mar 2011 CN
201763705 Mar 2011 CN
201763706 Mar 2011 CN
201770513 Mar 2011 CN
201771875 Mar 2011 CN
201779080 Mar 2011 CN
201786777 Apr 2011 CN
201786778 Apr 2011 CN
201802648 Apr 2011 CN
301539668 May 2011 CN
102095236 Jun 2011 CN
201858204 Jun 2011 CN
201874898 Jun 2011 CN
201874901 Jun 2011 CN
201917047 Aug 2011 CN
102251973 Nov 2011 CN
102287357 Dec 2011 CN
102367813 Mar 2012 CN
202267207 Jun 2012 CN
301949285 Jun 2012 CN
202338473 Jul 2012 CN
202431623 Sep 2012 CN
1 291 090 Mar 1969 DE
24 51 557 May 1976 DE
27 48 724 May 1978 DE
3644567 Jul 1988 DE
195 10 397 Sep 1996 DE
197 12 228 Oct 1998 DE
100 00 400 Mar 2001 DE
10041805 Jun 2002 DE
10 2009 007 037 Aug 2010 DE
0 044 494 Jan 1982 EP
0186581 Jul 1986 EP
0 459 812 Dec 1991 EP
0 784 947 Jul 1997 EP
1 094 224 Apr 2001 EP
1 138 954 Oct 2001 EP
1357296 Oct 2003 EP
1 779 745 May 2007 EP
1 939 456 Jul 2008 EP
1 980 432 Oct 2008 EP
2 000 675 Dec 2008 EP
2191142 Jun 2010 EP
2 414 738 Feb 2012 EP
2 578 889 Apr 2013 EP
1033034 Jul 1953 FR
1119439 Jun 1956 FR
1.387.334 Jan 1965 FR
2 375 471 Jul 1978 FR
2 534 983 Apr 1984 FR
2 640 857 Jun 1990 FR
2 658 593 Aug 1991 FR
2794195 Dec 2000 FR
2 874 409 Feb 2006 FR
2 906 980 Apr 2008 FR
2928706 Sep 2009 FR
22235 Jun 1914 GB
383498 Nov 1932 GB
593828 Oct 1947 GB
601222 Apr 1948 GB
633273 Dec 1949 GB
641622 Aug 1950 GB
661747 Nov 1951 GB
863 124 Mar 1961 GB
1067956 May 1967 GB
1 262 131 Feb 1972 GB
1 265 341 Mar 1972 GB
1 278 606 Jun 1972 GB
1 304 560 Jan 1973 GB
1 403 188 Aug 1975 GB
1 434 226 May 1976 GB
1 501 473 Feb 1978 GB
2 094 400 Sep 1982 GB
2 107 787 May 1983 GB
2 111 125 Jun 1983 GB
2 178 256 Feb 1987 GB
2 185 531 Jul 1987 GB
2 185 533 Jul 1987 GB
2 218 196 Nov 1989 GB
2 236 804 Apr 1991 GB
2 240 268 Jul 1991 GB
2 242 935 Oct 1991 GB
2 285 504 Jul 1995 GB
2 289 087 Nov 1995 GB
2383277 Jun 2003 GB
2 428 569 Feb 2007 GB
2 452 593 Mar 2009 GB
2452490 Mar 2009 GB
2463698 Mar 2010 GB
2464736 Apr 2010 GB
2466058 Jun 2010 GB
2468312 Sep 2010 GB
2468313 Sep 2010 GB
2468315 Sep 2010 GB
2468317 Sep 2010 GB
2468319 Sep 2010 GB
2468320 Sep 2010 GB
2468323 Sep 2010 GB
2468328 Sep 2010 GB
2468329 Sep 2010 GB
2468331 Sep 2010 GB
2468369 Sep 2010 GB
2468498 Sep 2010 GB
2473037 Mar 2011 GB
2479760 Oct 2011 GB
2482547 Feb 2012 GB
2484671 Apr 2012 GB
2484695 Apr 2012 GB
2484761 Apr 2012 GB
2493231 Jan 2013 GB
2493505 Feb 2013 GB
2493507 Feb 2013 GB
2500011 Sep 2013 GB
31-13055 Aug 1956 JP
35-4369 Mar 1960 JP
39-7297 Mar 1964 JP
46-7230 Dec 1971 JP
47-21718 Oct 1972 JP
49-43764 Apr 1974 JP
49-150403 Dec 1974 JP
51-7258 Jan 1976 JP
52-121045 Sep 1977 JP
53-60100 May 1978 JP
56-167897 Dec 1981 JP
57-71000 May 1982 JP
57-157097 Sep 1982 JP
61-31830 Feb 1986 JP
61-116093 Jun 1986 JP
61-280787 Dec 1986 JP
62-98099 May 1987 JP
62-223494 Oct 1987 JP
63-36794 Mar 1988 JP
63-179198 Jul 1988 JP
63-198933 Dec 1988 JP
63-306340 Dec 1988 JP
64-21300 Feb 1989 JP
64-58955 Mar 1989 JP
64-83884 Mar 1989 JP
1-138399 May 1989 JP
1-224598 Sep 1989 JP
2-146294 Jun 1990 JP
2-218890 Aug 1990 JP
2-248690 Oct 1990 JP
3-52515 May 1991 JP
3-267598 Nov 1991 JP
3-286775 Dec 1991 JP
4-43895 Feb 1992 JP
4-366330 Dec 1992 JP
5-99386 Apr 1993 JP
5-157093 Jun 1993 JP
5-164089 Jun 1993 JP
5-263786 Oct 1993 JP
6-74190 Mar 1994 JP
6-86898 Mar 1994 JP
6-147188 May 1994 JP
6-257591 Sep 1994 JP
6-280800 Oct 1994 JP
6-336113 Dec 1994 JP
7-190443 Jul 1995 JP
8-21400 Jan 1996 JP
8-72525 Mar 1996 JP
8-313019 Nov 1996 JP
9-100800 Apr 1997 JP
9-178083 Jul 1997 JP
9-287600 Nov 1997 JP
11-502586 Mar 1999 JP
11-227866 Aug 1999 JP
2000-55419 Feb 2000 JP
2000-116179 Apr 2000 JP
2000-201723 Jul 2000 JP
2001-17358 Jan 2001 JP
2002-21797 Jan 2002 JP
2002-138829 May 2002 JP
2002-213388 Jul 2002 JP
2003-4265 Jan 2003 JP
2003-329273 Nov 2003 JP
2004-8275 Jan 2004 JP
2004-208935 Jul 2004 JP
2004-216221 Aug 2004 JP
2005-201507 Jul 2005 JP
2005-307985 Nov 2005 JP
2006-89096 Apr 2006 JP
2006-189221 Jul 2006 JP
3127331 Nov 2006 JP
2007-138763 Jun 2007 JP
2007-138789 Jun 2007 JP
2008-39316 Feb 2008 JP
2008-100204 May 2008 JP
3144127 Aug 2008 JP
3146538 Oct 2008 JP
2008-294243 Dec 2008 JP
2009-44568 Feb 2009 JP
2009-62986 Mar 2009 JP
D1371413 Oct 2009 JP
2009-275925 Nov 2009 JP
D1376284 Dec 2009 JP
2010-46411 Mar 2010 JP
2010-131259 Jun 2010 JP
2010-203760 Sep 2010 JP
2010-203764 Sep 2010 JP
2012-31806 Feb 2012 JP
1999-002660 Jan 1999 KR
10-2005-0102317 Oct 2005 KR
2007-0007997 Jan 2007 KR
20-0448319 Mar 2010 KR
10-2010-0055611 May 2010 KR
10-0985378 Sep 2010 KR
517825 Jan 2003 TW
589932 Jun 2004 TW
M394383 Dec 2010 TW
M399207 Mar 2011 TW
M407299 Jul 2011 TW
WO-9013478 Nov 1990 WO
WO-9506822 Mar 1995 WO
WO-02073096 Sep 2002 WO
WO-03058795 Jul 2003 WO
WO-03069931 Aug 2003 WO
WO-2005050026 Jun 2005 WO
WO-2005057091 Jun 2005 WO
WO-2006008021 Jan 2006 WO
WO-2006012526 Feb 2006 WO
WO-2007024955 Mar 2007 WO
WO-2007048205 May 2007 WO
WO-2008014641 Feb 2008 WO
WO-2008024569 Feb 2008 WO
WO-2008139491 Nov 2008 WO
WO-2009030879 Mar 2009 WO
WO-2009030881 Mar 2009 WO
WO-2010100449 Sep 2010 WO
WO-2010100451 Sep 2010 WO
WO-2010100452 Sep 2010 WO
WO-2010100453 Sep 2010 WO
WO-2010100462 Sep 2010 WO
WO-2011050041 Apr 2011 WO
WO-2011147318 Dec 2011 WO
WO-2012006882 Jan 2012 WO
WO-2012033517 Mar 2012 WO
WO-2012052737 Apr 2012 WO
WO-2013014419 Jan 2013 WO
WO-2013132218 Sep 2013 WO
Non-Patent Literature Citations (59)
Entry
Search Report dated Jul. 16, 2012, directed to GB Application No. 1205576.0; 1 page.
Gammack, P. et al., U.S. Office Action mailed Dec. 9, 2010, directed to U.S. Appl. No. 12/203,698; 10 pages.
Gammack, P. et al., U.S. Office Action mailed Jun. 21,2011, directed to U.S. Appl. No. 12/203,698; 11 pages.
Gammack et al., Office Action mailed Sep. 17, 2012, directed to U.S. Appl. No. 13/114,707; 12 pages.
Gammack, P. et al., U.S. Office Action mailed Dec. 10, 2010, directed to U.S. Appl. No. 12/230,613; 12 pages.
Gammack, P. et al., U.S. Office Action mailed May 13, 2011, directed to U.S. Appl. No. 12/230,613; 13 pages.
Gammack, P. et al., U.S. Office Action mailed Sep. 7, 2011, directed to U.S. Appl. No. 12/230,613; 15 pages.
Gammack, P. et al., U.S. Office Action mailed Jun. 8, 2012, directed to U.S. Appl. No. 12/230,613; 15 pages.
Gammack et al., U.S. Office Action mailed Aug. 20, 2012, directed to U.S. Appl. No. 12/945,558; 15 pages.
Fitton et al., U.S. Office Action mailed Nov. 30, 2010 directed to U.S. Appl. No. 12/560,232; 9 pages.
Nicolas, F. et al., U.S. Office Action mailed Mar. 7, 2011, directed to U.S. Appl. No. 12/622,844; 10 pages.
Nicolas, F. et al., U.S. Office Action mailed Sep. 8, 2011, directed to U.S. Appl. No. 12/622,844; 11 pages.
Fitton, et al., U.S. Office Action mailed Mar. 8, 2011, directed to U.S. Appl. No. 12/716,780; 12 pages.
Fitton, et al., U.S. Office Action mailed Sep. 6, 2011, directed to U.S. Appl. No. 12/716,780; 16 pages.
Gammack, P. et al., U.S. Office Action mailed Dec. 9, 2010, directed to U.S. Appl. No. 12/716,781; 17 pages.
Gammack, P. et al., U.S. Final Office Action mailed Jun. 24, 2011, directed to U.S. Appl. No. 12/716,781; 19 pages.
Gammack, P. et al., U.S. Office Action mailed Apr. 12, 2011, directed to U.S. Appl. No. 12/716,749; 8 pages.
Gammack, P. et al., U.S. Office Action mailed Sep. 1, 2011, directed to U.S. Appl. No. 12/716,749; 9 pages.
Gammack, P. et al., U.S. Office Action mailed Jun. 25, 2012, directed to U.S. Appl. No. 12/716,749; 11 pages.
Fitton et al., U.S. Office Action mailed Mar. 30, 2012, directed to U.S. Appl. No. 12/716,707; 7 pages.
Gammack, P. et al., U.S. Office Action mailed May 24, 2011, directed to U.S. Appl. No. 12/716,613; 9 pages.
Gammack, P. et al. U.S. Office Action mailed Oct. 18, 2012, directed to U.S. Appl. No. 12/917,247; 11 pages.
Reba, I. (1966). “Applications of the Coanda Effect,” Scientific American 214:84-92.
Third Party Submission Under 37 CFR 1.99 filed Jun. 2, 2011, directed towards U.S. Appl. No. 12/203,698; 3 pages.
Fitton et al., U.S. Office Action mailed Dec. 31, 2013, directed to U.S. Appl. No. 13/718,693; 8 pages.
Helps, D. F. et al., U.S. Office Action mailed Feb. 15, 2013, directed to U.S. Appl. No. 12/716,694; 12 pages.
Search Report dated Feb. 14, 2012, directed towards GB Application No. 1119500.5; 1 page.
Gammack, P. et al., U.S. Office Action mailed Feb. 10, 2014, directed to U.S. Appl. No. 12/716,515; 21 pages.
Gammack et al., U.S. Office Action mailed Feb. 28, 2013, directed to U.S. Appl. No. 12/945,558; 16 pages.
Gammack et al., U.S. Office Action mailed Feb. 14, 2013, directed to U.S. Appl. No. 12/716,515; 21 pages.
Gammack et al., U.S. Office Action mailed Mar. 14, 2013, directed to U.S. Appl. No. 12/716,740; 15 pages.
Li et al., U.S. Office Action mailed Oct. 25, 2013, directed to U.S. Appl. No. 13/686,480; 17 pages.
Gammack et al., U.S. Office Action mailed Apr. 24, 2014, directed to U.S. Appl. No. 12/716,740; 16 pages.
Dos Reis et al., U.S. Office Action mailed Sep. 23, 2014, directed to U.S. Appl. No. 29/466,240; 9 pages.
Dos Reis et al., U.S. Office Action mailed Sep. 24, 2014, directed to U.S. Appl. No. 29/466,229; 9 pages.
Dos Reis et al., U.S. Office Action mailed Sep. 19, 2014, directed to U.S. Appl. No. 29/466,190; 9 pages.
Mcpherson et al., U.S. Office Action mailed Sep. 19, 2014, directed to U.S. Appl. No. 29/466,094; 8 pages.
Mcpherson et al., U.S. Office Action mailed Sep. 19, 2014, directed to U.S. Appl. No. 29/466,241; 8 pages.
Mcpherson et al., U.S. Office Action mailed Sep. 19, 2014, directed to U.S. Appl. No. 29/466,253; 7 pages.
Dyson et al., U.S. Office Action mailed Sep. 12, 2014, directed to U.S. Appl. No. 29/480,896; 10 pages.
Dyson et al., U.S. Office Action mailed Sep. 12, 2014, directed to U.S. Appl. No. 29/480,915; 9 pages.
Poulton et al., U.S. Office Action mailed Sep. 12, 2014, directed to U.S. Appl. No. 29/480,919; 10 pages.
Deniss. (Sep. 9, 2010) “iFan, The Chinese Clone of the Dyson Air Multiplier,” located at <http://chinitech.com/en/chinese-clones/ifan-le-clone-chinois-du-dyson-air-multiplier> visited on Aug. 29, 2014. (6 pages).
Amee. (Mar. 29, 2012) “Breeze Right Bladeless Fan Up to 41% Off,” located at <http://madamedeals.com/breeze-right-bladeless-fan-up-to-41-off/> visited on Sep. 3, 2014. (2 pages).
Questel. (Jun. 11, 2014) “Designs-Questel” located at <http://sobjprd.questel.fr/export/QPTUJ214/pdf2/19f053ea-a60f-4c58-9232-c458147a9adf-224304.pdf/> visited on Sep. 4, 2014. (67 pages).
Amazon. “Pisenic Bladeless Fan 16 Inches with Remote Control, Bladeless Fan Air Conditioner 110v, Air Multiplier Table Fans, Green,” located at <http://www.amazon.com/Pisenic-Bladeless-Fan-16-Conditioner/dp/B007VCI78M%3FSubscriptionid%3DAKIAJYLII7AAJMX7ETAA%26tag%3Dtk78-20%26linkCode%3Dxm2%26camp%3D2025%26creative%3D165953%26creativeASIN%3DB007VCI78M#cm—cr—dpwidget> visited on Sep. 2, 2014. (4 pages).
Steiner, L., (May 14, 2013) “Dyson Fan Heater Review: Cozy Up to Dyson Fan Heater,” located at <http://www.vissbiz.com/dyson-fan-heater-review/cozy-up-to-dyson-fan-heater/> visited on Sep. 3, 2014. (3 pages).
Fitton et al., U.S. Office Action mailed Jun. 13, 2014, directed to U.S. Appl. No. 13/274,998; 11 pages.
Fitton et al., U.S. Office Action mailed Jun. 13, 2014, directed to U.S. Appl. No. 13/275,034; 10 pages.
Gammack et al., U.S. Office Action mailed Sep. 3, 2014, directed to U.S. Appl. No. 13/861,891; 7 pages.
Staniforth et al., U.S. Office Action mailed Sep. 18, 2014, directed to U.S. Appl. No. 13/559,142; 18 pages.
Gammack, P. et al., Office Action mailed Aug. 19, 2013, directed to U.S. Appl. No. 12/716,515; 20 pages.
International Search Report and Written Opinion mailed Sep. 19, 2013, directed to International Application No. PCT/GB2012/052742; 10 pages.
Gammack et al., U.S. Office Action mailed Sep. 6, 2013, directed to U.S. Appl. No. 12/716,740; 15 pages.
Gammack et al., Office Action mailed Sep. 27, 2013, directed to U.S. Appl. No. 13/588,666; 10 pages.
Wallace et al., Office Action mailed Oct. 23, 2013, directed to U.S. Appl. No. 13/192,223; 18 pages.
Gammack et al., Office Action mailed Jun. 12, 2013, directed towards U.S. Appl. No. 12/945,558; 20 pages.
Gammack et al., Office Action mailed May 29, 2013, directed towards U.S. Appl. No. 13/588,666; 11 pages.
Wallace et al., Office Action mailed Jun. 7, 2013, directed towards U.S. Appl. No. 13/192,223; 30 pages.
Related Publications (1)
Number Date Country
20130129490 A1 May 2013 US