The present disclosure relates to a fan blade platform for interconnection between adjacent fan blades secured to a rotor fan hub of a turbo fan engine.
Attempts have been made in the design of fan blade platforms, which are usually integrally formed with the fan blades, to reduce the size of the platform formations and consequently the weight of the fan blades. Fan blades are heavy and are expensive to produce due to the use of expensive materials, such as titanium 6-4. The current practice is to extend the fan blade platform from one blade to the next forming the gas path with mating fan blade platforms.
According to a broad general aspect, there is provided a fan blade platform assembly comprising a rotor fan hub, a plurality of fan blades and a plurality of plate inserts, the plate inserts shaped and dimensioned to span a gap formed between platforms of adjacent fan blades of a turbo fan engine, the plates and platforms providing a gaspath surface, the plate inserts retainingly engaged under arresting shoulders of said adjacent fan blades by spring forces exerted by a plurality of spring inserts held captive and in contact between said plate inserts and an outer surface of the rotor fan hub.
According to a further general aspect, there is provided a method of attaching an inner platform to a fan assembly, comprising inserting a plate in a gap between spaced-apart facing platforms of two adjacent fan blades extending from a fan hub, the plate filling the gap between the spaced-apart facing platforms and cooperating with the platforms to form a smooth gas path surface for incoming air, and holding the plate in place in the gap by urging the same radially outwardly against an arresting surface provided on the adjacent fan blades.
Reference is now made to the accompanying figures, in which:
As herein shown, the fan blade section B is comprised of a plurality of fan blades 10 secured about a rotor fan hub 11. Each fan blade 10 has a root section 12 depending from the undersurface of a fan blade platform 31 (see
With reference now to
As mentioned herein above, the connection to the adjacent fan blades can be accomplished by the platform insert 14 which is held in the gap between adjacent fan blade platforms 31 by arresting formations 24 formed integral with the blades 10 in the reduced blade platform area at the transition between the airfoil section 26 of the fan blade 10 and the root portion 12. The anti-fretting or biasing structure 15 is dimensioned such as to push the platform insert 14 against the arresting formations 24 in contact with the opposed fan blades.
As herein shown the opposed side wall portions 19 of the U-shaped legs have an inner curve spring action formation 27 in a top portion thereof. The bottom wall portion 16 as well as the side wall portions 19 also have flat outer side abutment surfaces and are shaped for close fit against the inner side walls of the root portion 12 of the fan blades and the rim 28 of the rotor fan hub 11. As shown in
It is also pointed out that the spring action formation 27 may also be an engaging formation integrally formed with the side wall portions 19 for clapping engagement with an attaching formation (not shown) formed in the opposed side wall of the fan blade root portion 12 whereby to snap fit engage thereon. These biasing legs are installed from the downstream side of the rotor fan hub 11 and forcingly positioned between the hub peripheral wall or rim 28 and the blade platforms 31 whereby to be retained in tension to bias the platform insert 14 radially outwardly against the arresting formations 24 provided on the undersurface the reduced blade platforms 31.
The inner fan blade platform insert 14 can be formed as a flat metal plate which is shaped and dimensioned to span the gap formed between adjacent fan blade platforms 31 of the turbo fan engine A. The platform metal plate can be formed of the same material as the fan blades, usually titanium. The U-shaped legs of the anti-fretting 15 can be integrally joined to the underside of the platform insert 14. As above described, it is retained engaged under arresting formations 24 which can be provided in the form of lips or shoulders extending outwardly from opposed sides of the blade reduced size platforms 31. These lip formations 24 have a flat under face shaped to receive opposed edge face portion of the platform insert 14. As shown in
Accordingly, the platform design as herein describe result in a light weight platform which fill the gap between the fan blades reducing the size of the fan blade platform usually formed integrally with the fan blades and consequently reducing the weight and cost of the fan blades. This also results in less containment/weight needed in the fan case. Further, the anti-fretting structures 15 cooperate with the platform inserts 14 to provide a radially outward biasing force between the rim 28 of the fan hub 11 and the blade platforms 31, thereby resisting movement between the fan blade root and the root slot 13 formed in the rotor fan hub 11 substantially eliminating wear between these elements when the fan blades 10 are turned at low speeds. Accordingly, in the assembly of the fan blades on the rotor fan hub the blade root are easily inserted into the root slots and are later biased in tension by the insertion of the anti-fretting and platform inserts thus eliminating movement between the blade root in the root slot when the fan is turned by wind action with the engine off.
The fan blade anti-fretting insert actively contributes preventing wear between a root portion of a fan blade and a root slot of a rotor fan hub of a turbo fan engine. This can be accomplished by providing an insert member formed of composite spring material having a memory. The insert is positioned in the gap formed between the root portions of adjacent fan blades and abuts at an outer surface portion of the rotor fan hub in the gap and at an upper end thereof abuts a connection formed in opposed fan blades. The insert thus applies a pushing force against the connection engaged by the opposed wall portions to result in a pulling force on the root portion to prevent rocking of the root portion in the root slot at low rotational speeds of the rotor fan hub such as caused by wind milling of the fan blades. The insert member can be formed of spring steel material and can be forced in a gap to locate a bottom wall portion thereof in a radial groove formed in the outer surface portion of the root fan hub for retention of the insert member at a precise location in the gap.
The above description is meant to be exemplary only, and one skilled in the art will recognize that changes may be made to the embodiment described therein without departing from the scope of the invention disclosed. For instance, it is understood that the anti-fretting device could take various forms and is not limited to a pair of interconnected U-shaped legs. It is therefore within the ambit of present invention to cover any obvious modifications provided that these modifications fall within the scope of the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
3294364 | Stanley | Dec 1966 | A |
3712757 | Goodwin | Jan 1973 | A |
4621979 | Zipps et al. | Nov 1986 | A |
4655687 | Atkinson | Apr 1987 | A |
5049035 | Marlin | Sep 1991 | A |
5160243 | Herzner et al. | Nov 1992 | A |
5161949 | Brioude et al. | Nov 1992 | A |
5240375 | Wayte | Aug 1993 | A |
5368444 | Anderson | Nov 1994 | A |
5791877 | Stenneler | Aug 1998 | A |
6217283 | Ravenhall et al. | Apr 2001 | B1 |
6471474 | Mielke et al. | Oct 2002 | B1 |
6514045 | Barton et al. | Feb 2003 | B1 |
7153099 | Queriault et al. | Dec 2006 | B2 |
20040013528 | Leathart | Jan 2004 | A1 |
20040067137 | Moroso | Apr 2004 | A1 |
20040126240 | Bassot et al. | Jul 2004 | A1 |
20040258528 | Goga et al. | Dec 2004 | A1 |
20080232969 | Brault et al. | Sep 2008 | A1 |
Number | Date | Country | |
---|---|---|---|
20100209251 A1 | Aug 2010 | US |