Fan brake for removable module

Information

  • Patent Grant
  • 6422814
  • Patent Number
    6,422,814
  • Date Filed
    Friday, April 13, 2001
    23 years ago
  • Date Issued
    Tuesday, July 23, 2002
    22 years ago
Abstract
Fan brakes for decelerating blower impellers particularly for modular equipment enclosures are described. A module includes a blower having an impeller with a plurality of blades. The brake engages the impeller body or blades when the module is at least partially removed from the enclosure and disengages the impeller when the module is inserted into the enclosure. One brake includes an arm coupled to a braking surface. The arm applies the braking surface to the impeller when disengaged by a cam and retracts the braking surface from the impeller when engaged by the cam. A solenoid may be used in lieu of a cam for directly or indirectly applying the braking surface.
Description




FIELD OF THE INVENTION




This invention relates to the field of blowers. In particular, this invention is drawn to blower impeller design.




BACKGROUND OF THE INVENTION




Cabinetry or enclosures for heat generating equipment may contain one or more blowers for active or forced air cooling. The blower displaces the air within the enclosure volume with cooler air external to the enclosure volume. The blower acts as a pump to exchange air inside the enclosure with air external to the enclosure. Typically, the blower is mounted such that the blades are,near the enclosure wall. A guard or cage is often used to prevent objects external to the enclosure from contacting the spinning blades. Once inside the enclosure, however, there is no protection from the spinning blades.




The equipment can be powered down to minimize any risk of contacting exposed blades within the enclosure. Computer servers are often specifically designed with hot pluggable modules. Hot pluggability enables replacing the modules without powering the equipment down in order to ensure a high level of availability. Powering down the equipment before servicing defeats the purpose of designing the equipment for hot pluggability.




SUMMARY OF THE INVENTION




In view of limitations of known systems and methods, a variety of blower fan brakes for equipment enclosures are disclosed. One apparatus includes a module configured for insertion into an enclosure. The module includes at least one blower having an impeller with a plurality of blades. A fan brake engages the impeller when the module is at least partially removed from the enclosure. The fan brake disengages the impeller when the module is inserted into the enclosure.




One blower apparatus includes an impeller having a plurality of blades, a braking surface, and an arm coupled to the braking surface. The arm applies the braking surface to the impeller when disengaged by a cam. The arm retracts the braking surface from the impeller when engaged by the cam.




In various embodiments, the braking surface is applied to the impeller body or the blades. The braking surface may be contoured in a shaped complementary to that of a portion of the periphery of the impeller body. Alternatively, the braking surface may comprise a flap for braking the blades. In some embodiments, a solenoid is used in lieu of the cam for either directly or indirectly applying the braking surface to the impeller upon removal of power.




Other features and advantages of the present invention will be apparent from the accompanying drawings and from the detailed description that follows below.











BRIEF DESCRIPTION OF THE DRAWINGS




The present invention is illustrated by way of example and not limitation in the figures of the accompanying drawings, in which like references indicate similar elements and in which:





FIG. 1

illustrates an enclosure with a plurality of removable modules.





FIG. 2

illustrates one embodiment of a cam activated blower fan brake.





FIG. 3

illustrates an alternative embodiment of a cam activated blower fan brake.





FIG. 4

illustrates one embodiment of a solenoid activated blower fan brake.





FIG. 5

illustrates an alternative embodiment of a solenoid activated blower fan brake.











DETAILED DESCRIPTION




Computer system enclosures frequently have one or more blowers used for cooling the computer. In modular computer equipment, the blowers may be integral with removable modules. Alternatively, the blower may be located on a wall of the equipment enclosure.

FIG. 1

illustrates one embodiment of an enclosure


100


for modular or rack mounted equipment including a plurality of modules


110


. The modules include one or more blowers


120


.




Blowers can pose a safety hazard to individuals servicing the computer system. In particular, blowers integral to removable modules pose a safety hazard to service technicians. The modules are designed to be removed while power is applied to the computer system. Although guards or cages


130


protect inadvertent exposure to the blower impeller blades from outside the enclosure, once inside the enclosure or module there is little protection from the spinning blades.




Although removal of the module may disconnect the blower from power, the blower impeller may continue spinning for a considerable time due to inertia. The technician may not be cognizant of the motion of the blades due to the high rotational speed of the impeller. The technician may not have audio cues either due to the use of quiet blowers or a high level of background noise masking the sound of the blowers. Contact with the spinning blades poses safety issues ranging from startling the technician to serious injury.




In order to decrease the risk of injury, a fan brake is provided. The fan brake engages or disengages the blower impeller when the module is at least partially displaced from its installed position within the enclosure. In one embodiment, the module is mechanically disconnected from power once it is withdrawn a selected distance from its installed position. To ensure that the fan brake is not applied while the blower is powered, the fan brake engages/disengages the blower impeller at a distance greater than or equal to the selected distance when the module is being removed/inserted.





FIG. 2

illustrates one embodiment of an impeller


200


and fan brake


250


. The fan brake applies a braking surface


252


to either an impeller body


220


or the blades


210


of the impeller to decelerate the rotating impeller. In the latter case, the braking action tends to provide an audio reminder that the technician should proceed with caution.




In one embodiment, fan brake


250


comprises a braking surface


252


, an arm


254


, a pivot or hinge


256


, and a cam


258


. The cam is sloped for ease of engaging when the module is inserted into the enclosure. For example, the cam may be positioned to engage the enclosure (e.g., rack bottom


280


) when the module is inserted. The arm maintains the braking surface against the impeller until engaged by the cam. The arm can be spring loaded to ensure that the arm has a tendency to apply the braking surface to the impeller. For example, pivot


256


is spring loaded in one embodiment.




When the module is inserted into the enclosure, cam


258


engages the arm


254


to disengage or retract the braking surface


252


from impeller


200


. When cam


258


disengages arm


254


, the arm applies braking surface


252


to the impeller.




In one embodiment, the braking surface contacts the impeller body


220


but not the impeller blades


210


. The braking surface


252


may be contoured to better accommodate the shape of the impeller body periphery in such an embodiment. For example, the braking surface may be arc shaped to accommodate an impeller body having a circular periphery.




In an alternative embodiment, the braking surface


252


contacts the impeller blades


210


. The braking surface contacts each blade as it passes while the impeller continue to rotate. Due to the spacing between blades, the braking effect will be intermittent. This approach tends to result in further notice to the service technician in the form of an audible “clack-clack” noise lasting from the time the fan brake is applied until the impeller has stopped rotating. The shape of the braking surface may be chosen to enhance the audio signal.





FIG. 3

illustrates one embodiment of the fan brake


350


having a brake surface


352


suited for decelerating the impeller through contact with the blades


310


. In order to distribute the braking force across the blade, the braking surface


352


may be designed as a flap (top view


352


). In one embodiment, the flap is composed of a flexible, resilient material such as plastic.





FIGS. 4 and 5

illustrate an embodiment of a fan brake having a solenoid in lieu of a cam for activation. The solenoid


460


rod may be used to engage a separate braking arm


454


in order to apply the braking surface


452


as illustrated in FIG.


4


. Alternatively, the braking surface


562


may be affixed to an end of the solenoid


560


rod or core as illustrated in FIG.


5


. Thus the solenoid can be use for direct or indirect application of the braking surface to the impeller. In either variation, the braking surface may be configured for application to the blades or the impeller body.




The solenoid variation requires the solenoid to engage the blower impeller when the solenoid is in a de-energized state. When the module is removed from the enclosure, power to the module and the solenoid


460


,


560


is removed. Upon removal of power, the solenoid engages the blower impeller. Conversely, the solenoid must be in an energized state to disengage the fan brake. Electrical solutions such as solenoids may be undesirable in energy conscious applications because the solenoid must draw power the entire time the module is inserted in the enclosure.




In the preceding detailed description, the invention is described with reference to specific exemplary embodiments thereof. Various modifications and changes may be made thereto without departing from the broader spirit and scope of the invention as set forth in the claims. The specification and drawings are, accordingly, to be regarded in an illustrative rather than a restrictive sense.



Claims
  • 1. An apparatus comprising:a module configured for insertion into an enclosure, the module having at least one blower including an impeller having a plurality of blades; and a fan brake coupled to the module, wherein the fan brake engages the impeller when the module is at least partially removed from the enclosure, wherein the fan brake disengages the impeller when the module is inserted into the enclosure.
  • 2. The apparatus of claim 1 wherein the fan brake further comprises a solenoid, wherein when the solenoid applies a braking surface to the impeller upon removal of power, wherein the solenoid retracts a braking surface from the impeller upon application of power.
  • 3. The apparatus of claim 2 wherein the fan brake further comprises:an arm pivotably coupled to the module and the solenoid, the braking surface located on the arm, wherein the solenoid engages the arm to indirectly apply the braking surface to the impeller.
  • 4. The apparatus of claim 2 wherein the braking surface is affixed to a solenoid rod, wherein the solenoid directly applies the braking surface to the impeller upon removal of power.
  • 5. The apparatus of claim 2 wherein the braking surface is applied to a body of the impeller.
  • 6. The apparatus of claim 5 wherein the braking surface is contoured to a shape complementary to that of the periphery of the body of the impeller.
  • 7. The apparatus of claim 2 wherein the braking surface is applied to the blades.
  • 8. The apparatus of claim 7 wherein the braking surface is a flap.
  • 9. The apparatus of claim 1 wherein the fan brake further comprises:an arm coupled to the braking surface and pivotably coupled to the module; and a cam coupled to engage the arm to disengage the braking surface from the impeller upon insertion of the module into the enclosure, wherein the arm applies the braking surface to the impeller upon at least partial removal of the module from the enclosure.
  • 10. The apparatus of claim 9 wherein the pivotable coupling is spring loaded.
  • 11. The apparatus of claim 9 wherein the braking surface is applied to a body of the impeller.
  • 12. The apparatus of claim 11 wherein the braking surface is contoured to a shape complementary to that of the periphery of the body of the impeller.
  • 13. The apparatus of claim 9 wherein the braking surface is applied to the blades.
  • 14. The apparatus of claim 13 wherein the braking surface is a flap.
  • 15. A blower apparatus comprising:an impeller having a plurality of blades; a braking surface; an arm coupled to the braking surface, and a cam, wherein the arm applies the braking surface to the impeller when disengaged by the cam, wherein the arm retracts the braking surface from the impeller when engaged by the cam.
  • 16. The apparatus of claim 15 wherein the braking surface is applied to a body of the impeller.
  • 17. The apparatus of claim 16 wherein the braking surface is contoured to a shape complementary to that of the periphery of the body of the impeller.
  • 18. The apparatus of claim 15 wherein the braking surface is applied to the blades.
  • 19. The apparatus of claim 18 wherein the braking surface is a flap.
  • 20. The apparatus of claim 15 wherein the arm is spring loaded to maintain the braking surface against the impeller when disengaged by the cam.
US Referenced Citations (5)
Number Name Date Kind
3560109 Lewis Feb 1971 A
3575527 Watanabe Apr 1971 A
3861866 Saario Jan 1975 A
5921753 Ames Jul 1999 A
6213819 Fan Apr 2001 B1